metaSNV_post.py 16.2 KB
Newer Older
Paul Costea's avatar
Paul Costea committed
1
#!/usr/bin/env python
2 3 4 5
import os
import sys
import time
import argparse
Paul Costea's avatar
Paul Costea committed
6 7
import glob

8 9 10 11 12 13 14 15 16 17
try:
	import numpy as np
except ImportError:
	sys.stderr.write("Numpy is necessary to run postfiltering.\n")
	sys.exit(1)
try:
	import pandas as pd
except ImportError:
	sys.stderr.write("Pandas is necessary to run postfiltering.\n")
	sys.exit(1)
Paul Costea's avatar
Paul Costea committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


basedir = os.path.dirname(os.path.abspath(__file__))


#############################
# Parse Commandline Arguments
#############################
def get_arguments():
	'''
	Get commandline arguments and return namespace
	'''
	## Initialize Parser
	parser = argparse.ArgumentParser(prog='metaSNV_post.py', description='metaSNV post processing', epilog='''Note:''', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
	
# Not Showns:
	parser.add_argument('--version', action='version', version='%(prog)s 2.0', help=argparse.SUPPRESS)
	parser.add_argument("--debug", action="store_true", help=argparse.SUPPRESS)

	
#	TODO: POPULATION STATISTICS
	## Population Statistics (Fst - ):
#	parser.add_argument("-f", "--fst", action="store_true")
	## pNpS ratio:
#	parser.add_argument("-n", "--pnps", action="store_true")
	
	
# OPTIONAL arguments:
Paul Igor Costea's avatar
Paul Igor Costea committed
46
	parser.add_argument('-b', metavar='FLOAT', type=float, default=40.0,
47 48 49
                                help="Coverage breadth: minimal horizontal genome coverage percentage per sample per species")
	parser.add_argument('-d', metavar='FLOAT', type=float, default=5.0,
                                help="Coverage depth: minimal average vertical genome coverage per sample per species")
Paul Costea's avatar
Paul Costea committed
50 51 52
	parser.add_argument('-m',metavar='INT', type=int, help="Minimum number of samples per species", default=2)
	parser.add_argument('-c',metavar='FLOAT', type=float, help="FILTERING STEP II: minimum coverage per position per sample per species", default=5.0)
	parser.add_argument('-p',metavar='FLOAT', type=float, help="FILTERING STEP II: required proportion of informative samples (coverage non-zero) per position", default=0.50)
53
	
54
	parser.add_argument('-div',action='store_true',help="Compute diversity measures")
55
	
Paul Costea's avatar
Paul Costea committed
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
# REQUIRED  arguments:
	parser.add_argument('projdir', help='project name', metavar='Proj')
	
	return parser.parse_args()

	##############################

def debugging(taxids_of_interest, header_cov):
	'''Sanity check for the Dict of TaxID:Samples'''
	
	nr_keys = 0
	taxids_of_interest = []
	for key in samples_of_interest:
		nr_keys += 1
		taxids_of_interest.append(key)

	taxids_of_interest.sort()
	print("DEBUGGING:\nNr_TaxIDs_of_Interest.keys: {}".format(nr_keys))
	print(taxids_of_interest)
#	print("\n")
#   print("nr_TaxIDs_of_Interest.keys: {}".format(nr_keys))

	header = "\t".join(header_cov)
	print("DEBUGGING: no. samples in header: {}\n".format(len(header_cov)))
#   print("header: {}".format(header))

	sys.exit("only filter 1")

	
def file_check():
	''' Check if required files exist (True / False)'''
87
	args.projdir = args.projdir.rstrip('/')
Paul Igor Costea's avatar
Paul Igor Costea committed
88 89
	args.coverage_file = args.projdir+'/'+args.projdir.split('/')[-1]+'.all_cov.tab'
	args.percentage_file = args.projdir+'/'+args.projdir.spit('/')[-1]+'.all_perc.tab'
Paul Costea's avatar
Paul Costea committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	args.all_samples = args.projdir+'/'+'all_samples'

	print("Checking for necessary input files...")
	if os.path.isfile(args.coverage_file) and os.path.isfile(args.percentage_file):
		print("found: '{}' \nfound:'{}'".format(args.coverage_file, args.percentage_file))
	else:
		sys.exit("\nERROR: No such file '{}',\nERROR: No such file '{}'".format(args.coverage_file, args.percentage_file))

	if os.path.isfile(args.all_samples):
		print("found: '{}'\n".format(args.all_samples))
	else:
		sys.exit("\nERROR: No such file '{}'".format(args.all_samples))

def print_arguments():
	## Print Defined Thresholds:
	print("Options:")
	if args.b:
		print("threshold: percentage covered (breadth) {}".format(args.b) )
	if args.d:
		print("threshold: average coverage (depth) {}".format(args.d) )
	if args.m:
		print("threshold: Min. number samples_of_interest per taxid_of_interest {}".format(args.m) )
	if args.c:
		print("threshold: Min. position coverage per sample within samples_of_interest {}".format(args.c) )
	if args.p:
		print("threshold: Min. proportion of covered samples in samples_of_interest {}".format(args.p) )	
	print("")

###############################
## FILTER I: Count SAMPLES_OF_INTEREST per TAXON_OF_INTEREST
#	Example: "Which taxon has at least 10 SoI?"
#  --Coverage Conditions:
#	Sample of Interest:
#		1. breadth > 40 %  
#		2. depth   >  5 X
#  --Min. number Samples:
#		3. min samples/TaxID > 10
def relevant_taxa(args):
	'''function that goes through the coverage files and determines taxa and samples of interest'''

	samples_of_interest = {}
	with open(args.coverage_file, 'r') as COV, open(args.percentage_file, 'r') as PER:
		header_cov = COV.readline().split()
		header_per = PER.readline().split()
		COV.readline()	# skip second row in COV_FILE
		PER.readline()  # skip second row in PER_FILE

		# Check if header match:
		if header_cov != header_per:
			sys.exit("ERROR: Coverage file headers do not match!")  #Exit with error message

		# Read taxon by taxon (line by line) check coverage conditions (thresholds)
		for cov,perc in zip(COV,PER):	# Line_cov: TaxID \t cov_valueS1 \t cov_value_S2[...]\n (no white spaces)	
			cstring = cov.split()
			pstring = perc.split()	
			cov_taxID = cstring.pop(0)
			perc_taxID = pstring.pop(0)
			coverage = list(map(float, cstring))  # convert list_of_strings 2 list_of_floats (TaxID=INT!)
			percentage = list(map(float, pstring))  # convert list_of_strings 2 list_of_floats
			sample_count = 0
			sample_names = []

#			print(cov_taxID,perc_taxID)

			if cov_taxID != perc_taxID:	# check if taxIDs match!
				sys.exit("ERROR: TaxIDs in the coverage files are not in the same order!")

			for c,p in zip(coverage,percentage): # two arrays with floats (taxID pop[removed]) 
				sample_count += 1

				if c >= args.d and p >= args.b:	

					sample_names.append(header_cov[sample_count-1]) # starting at 0 in array

				if sample_count == len(header_cov) and len(sample_names) >= args.m:

					samples_of_interest[cov_taxID] = sample_names

	return {'SoI':samples_of_interest, 'h':header_cov}#return dict()
	COV.close()
	PER.close()
	#################################
	# FILTER I: END 'returns(<'samples_of_interest', type=dict>)'
	#################################



def header_comparison(header_cov):
	'''Comparing the sample order in the coverage and all_samples file'''

	# sort snp_indices by sample_of_interest names
	header = "\t".join(header_cov)
	#print("\nNr.Samples_cov_header: {}".format(len(header_cov)))
	#print("cov_header: {}\n\n".format(header_cov[:10]))
	#print("\ncov_header: {}\n {}\n\n".format(len(header_cov),header))

	### read <all_samples> for snp_file header:
	all_samples = open(args.all_samples,'r')
	snp_header = all_samples.read().splitlines()
	snp_header = [i.split('/')[-1] for i in snp_header] #get name /trim/off/path/to/sample.name.bam
	snp_header_joined = "\t".join(snp_header)
	
	#print("Nr.Samples in (all_samples): {}".format(len(snp_header)))
	#print("all_samples: {}\n".format(snp_header[:10]))
	
	# Compare the sample order in ALL.COV/ALL.PERC and all_samples
	#print("Comparing headers..")
	#if header == snp_header_joined:
	#	print("Headers match nicely\n")
	#else:
	#	print("CAUTION: Header in COV_FILE does not match the order of samples in the SNP_FILES,\n\t no problem, we took care of it!\n")
	
	return snp_header	

	
#################################
## FILTER II: ACQUIRE SNPs WITH SUFFICIENT OCCURRENCE WITHIN SAMPLES_OF_INTEREST
#  --SNP Conditions (Default):
#           1. Position covered by at least (5) reads
#           2. Position present in at least 50 % of the accepted samples_of_interest

def filter_two(args, snp_header, snp_files, outdir):
	'''position wise filtering'''
	
	header_taxID = ''
	snp_taxID = '_'
#	print(locals())
	for best_split_x in snp_files:
	
		with open(best_split_x, 'r') as file:
			for snp_line in file:	#position wise loop
				snp_taxID = snp_line.split()[0].split('.')[0]#Name of Genome change from . to ]

			## SPECIES FILTER:
				if snp_taxID not in samples_of_interest.keys():#Check if Genome is of interest
				
					continue #Taxon is not relevant, NEXT!
	
				else:
			## SAMPLE FILTER: only load samples with enough coverage
					sample_list = samples_of_interest[snp_taxID]#Load Sample List
					# !!! Sample order, get indices - INDICES based on ORDER in COV/PERC file!!!
					sample_indices = []
					for name in sample_list:

						sample_indices.append(snp_header.index(name))
			## POSITION FILTER:
			# Positions with sufficient coverage (c) and support (p, proportion) in the discovery set (covered samples).
				# Discovery set: sufficiently covered samples
				#..site coverage >= cX
				#..proportion 	>= p% (SoIs)
					whole_line = snp_line.split()
					site_coverage = list(map(int, whole_line[4].split('|'))) # Site coverages as list of ints
					nr_good = 0
					for index in sample_indices:
						if site_coverage[index] < args.c or site_coverage[index] == 0:
							continue#NOT enough coverage depth at position in sample, no increment
						else:
							nr_good += 1
				#FILTER: Position incidence with sufficient coverage:
					if float(nr_good)/len(sample_indices) < args.p:#if snp_incidence < x % drop SNP
	
						continue#mainly uninformative position, SNP incidence < x %, SNP droped!
	
					else:
					# CALCULATE SNP ALLELE FREQUENCY:
						# If at least one position passed cutoffs open file (if new TaxID):
						if header_taxID != snp_taxID:
							if 'outfile' in locals():
								print("closing: {}".format(header_taxID) )
								outfile.close()
							outfile = open(outdir+'/'+'%s.filtered.freq' % snp_taxID, 'w')
							print("Generating: {}".format(outdir+'/'+'%s.filtered.freq' % snp_taxID))
							outfile.write('\t' + "\t".join(sample_list) + '\n')
		
							header_taxID = snp_taxID#Jump to current TaxID
			
					#Loop through alternative alleles [5](comma separated):
						line_id = ":".join(whole_line[:4])#line_id composed of CHROM:REFGENE:POS:REFBASE
						reference_base = whole_line[3]
						alt_bases_totalcov = []#total coverage per alt allele
						#VCF format
	
						#LOOP Start:
						for snp in whole_line[5].split(','):
	
							xS = snp.split('|')
							snp_coverage = list(map(float, xS[3:]))#coverage string (unfiltered!)
	
							#Sanity check:	
							if len(site_coverage) != len(snp_coverage):
								print("ERROR: SNP FILE {} is corrupted".format(best_split_x))
								sys.exit("ERROR: Site coverage and SNP coverage string have uneven length!")
	
							#Compute allele frequency tables:
							alt_base = snp.split('|')[1]#alternative base	
	
							#FREQUENCY Computation
							total_reads = 0
							snp_frq = []#frequencies for SNPs (pos >5X in at least 50% of the SoIs)
							for index in sample_indices:
	
						#prevent division by zero! TODO:Notify usr about Nonsense Value (f.i. -c = 0!	
								if site_coverage[index] >= args.c and site_coverage[index] != 0:
	
									snp_frq.append(snp_coverage[index]/site_coverage[index])
	
								else:
									snp_frq.append(-1)	
	
					# WRITE OUTPUT Allele Frequencies (Default)
							outfile.write(":".join(snp_line.split()[:4])+'>'+alt_base +':'+ xS[2] + '\t' + "\t".join(str(x) for x in snp_frq) + '\n')

#if header_taxID != snp_taxID:
	if 'outfile' in locals():
		#print("closing: last = {}".format(header_taxID))
		outfile.close()

def l1nonans(d1,d2):
    return np.abs(d1 - d2).mean()

def alleledist(d1,d2, threshold=.6):
    return (np.abs(d1 - d2) > threshold).mean()

def computeAllDist(args):

    print "Computing distances"
    allFreq = glob.glob(args.projdir + '/filtered/pop/*.freq')
    for f in allFreq:

	data = pd.read_table(f, index_col=0, na_values=['-1']).T
    	dist = [[l1nonans(data.iloc[i], data.iloc[j]) for i in range(len(data))] for j in range(len(data))]
    	dist = pd.DataFrame(dist, index=data.index, columns=data.index)

    	dist.to_csv(args.projdir+'/distances/'+'%s.mann.dist' % f.split('/')[-1].replace('.freq',''), sep='\t')

    	dist = [[alleledist(data.iloc[i], data.iloc[j]) for i in range(len(data))] for j in range(len(data))]
    	dist = pd.DataFrame(dist, index=data.index, columns=data.index)

    	dist.to_csv(args.projdir+'/distances/'+'%s.allele.dist' % f.split('/')[-1].replace('.freq',''), sep='\t')

331 332 333



334
def genetic_distance(sample1, sample2):
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    '''Pairwise genetic distance'''


    # The expression used to compute dist_nd would compute all the necessary
    # values if appplied to sample[12]. However, the case where there are no
    # duplicates is the majority (often >90% of cases) and can be done much
    # faster, so it is special cased here:
    sample1nd = sample1.reset_index().drop_duplicates(subset='index', keep=False).set_index('index')
    sample2nd = sample2.reset_index().drop_duplicates(subset='index', keep=False).set_index('index')
    sample2nd = sample2nd.reindex(index=sample1nd.index)
    s1 = sample1nd.values
    s2 = sample2nd.values
    valid = ~(np.isnan(s1) | np.isnan(s2))
    s1 = s1[valid]
    s2 = s2[valid]
    s1 = np.vstack([s1, 1 - s1])
    s2 = np.vstack([s2, 1 - s2])
    dist_nd = (s1[0]*s2[1]+s1[1]*s2[0]).sum()

    def compute_diversity(x):
        out = np.outer(x.s1.values, x.s2.values)
        return np.nansum(out) - np.nansum(out.diagonal())

    sample1d = sample1.ix[sample1.index[sample1.index.duplicated()]]
    sample2d = sample2.ix[sample2.index[sample2.index.duplicated()]]
    if not len(sample1d) or not len(sample2d):
        # No duplicates
        return dist_nd
    both = pd.DataFrame({'s1' : sample1d, 's2' : sample2d})
    both = both.reset_index()
    both = pd.concat([both,(1. - both.groupby('index').sum()).reset_index()])
    dist_d = both.groupby('index', group_keys=False).apply(compute_diversity).sum()
    return dist_d + dist_nd

369 370

def computeAllDiv(args):
Paul Costea's avatar
Paul Costea committed
371

372
    print "Computing diversities"
373 374 375 376 377 378 379 380
    cov_perc = pd.read_table(args.percentage_file, skiprows=[1], index_col=False)
    cov_perc = cov_perc.set_index(cov_perc.loc[:, 'Unnamed: 0'])
    cov_perc = cov_perc.drop('Unnamed: 0', 1)

    bedfile_tab = pd.read_table(args.projdir + '/bed_header', index_col=0, header=None)
    bed_index = [i.split('.')[0] for i in list(bedfile_tab.index)]
    bedfile_tab = bedfile_tab.set_index(pd.Index(bed_index))

381
    allFreq = glob.glob(args.projdir + '/filtered/pop/*.freq')
382 383 384
    for f in allFreq:
        species = int(f.split('/')[-1].split('.')[0])
        genome_length = bedfile_tab.loc[str(species), 2].sum()
Paul Costea's avatar
Paul Costea committed
385

386 387
        data = pd.read_table(f, index_col=0, na_values=['-1'])
        pre_index = [i.split(':') for i in list(data.index)]
Paul Costea's avatar
Paul Costea committed
388 389
        pos_index = [item[0] + ':' + item[1] + ':' + item[2] for item in pre_index]
        data = data.set_index(pd.Index(pos_index))
390
        # Correcting the coverage by the genome length observed in each pairwise comparison
Paul Costea's avatar
Paul Costea committed
391
        correction_cov = [[(min(cov_perc.loc[species, i], cov_perc.loc[species, j]) * genome_length) / 100 for i in data.columns] for j in data.columns]
392
        dist = [[genetic_distance(data.iloc[:, i], data.iloc[:, j]) / correction_cov[j][i] for i in range(j + 1)] for j in range(len(data.columns))]
Paul Costea's avatar
Paul Costea committed
393 394 395 396 397
        FST = [[(1-(dist[i][i]+dist[j][j])/(2*dist[j][i])) for i in range(j + 1)] for j in range(len(dist))]

        dist = pd.DataFrame(dist, index=data.columns, columns=data.columns)
        FST = pd.DataFrame(FST, index=data.columns, columns=data.columns)

398
        dist.to_csv(args.projdir + '/distances/' + '%s.diversity' % species, sep='\t')
Paul Costea's avatar
Paul Costea committed
399
        FST.to_csv(args.projdir + '/distances/' + '%s.FST' % species, sep='\t')
400

Paul Costea's avatar
Paul Costea committed
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
if __name__ == "__main__":
#	print("globals: {}".format(globals()))

	args = get_arguments()
	print_arguments()
	file_check()

	if args.debug:
		print_arguments()

#==========================================
# Filtering I - Determine Taxa of Interest:
#==========================================

	samples_of_interest = relevant_taxa(args)['SoI']
	header_cov = relevant_taxa(args)['h']

	if args.debug:
		debugging(samples_of_interest, header_cov)#needs: samples_of_interest,header_cov


#=========================================
# Filtering II - Position wise filtering
#=========================================
	snp_header = header_comparison(header_cov) #not necessary?! we identify it anyways..

	filter_two(args, snp_header,glob.glob(args.projdir + '/snpCaller/called*'),args.projdir + '/filtered/pop')
	filter_two(args, snp_header,glob.glob(args.projdir + '/snpCaller/indiv*'),args.projdir + '/filtered/ind')

	computeAllDist(args)

432 433 434
	if args.div:
		computeAllDiv(args)