Contents

1 Setup and data

source("../utils/utils.R")
   ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
   ✔ dplyr     1.1.2     ✔ readr     2.1.4
   ✔ forcats   1.0.0     ✔ stringr   1.5.0
   ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
   ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
   ✔ purrr     1.0.1     
   ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
   ✖ dplyr::filter() masks stats::filter()
   ✖ dplyr::lag()    masks stats::lag()
   ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
   
   Attaching package: 'magrittr'
   
   
   The following object is masked from 'package:purrr':
   
       set_names
   
   
   The following object is masked from 'package:tidyr':
   
       extract
   
   
   Loading required package: GenomicRanges
   
   Loading required package: stats4
   
   Loading required package: BiocGenerics
   
   
   Attaching package: 'BiocGenerics'
   
   
   The following objects are masked from 'package:lubridate':
   
       intersect, setdiff, union
   
   
   The following objects are masked from 'package:dplyr':
   
       combine, intersect, setdiff, union
   
   
   The following objects are masked from 'package:stats':
   
       IQR, mad, sd, var, xtabs
   
   
   The following objects are masked from 'package:base':
   
       anyDuplicated, aperm, append, as.data.frame, basename, cbind,
       colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
       get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
       match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
       Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
       table, tapply, union, unique, unsplit, which.max, which.min
   
   
   Loading required package: S4Vectors
   
   
   Attaching package: 'S4Vectors'
   
   
   The following objects are masked from 'package:lubridate':
   
       second, second<-
   
   
   The following objects are masked from 'package:dplyr':
   
       first, rename
   
   
   The following object is masked from 'package:tidyr':
   
       expand
   
   
   The following objects are masked from 'package:base':
   
       expand.grid, I, unname
   
   
   Loading required package: IRanges
   
   
   Attaching package: 'IRanges'
   
   
   The following object is masked from 'package:lubridate':
   
       %within%
   
   
   The following objects are masked from 'package:dplyr':
   
       collapse, desc, slice
   
   
   The following object is masked from 'package:purrr':
   
       reduce
   
   
   Loading required package: GenomeInfoDb
   
   
   Attaching package: 'GenomicRanges'
   
   
   The following object is masked from 'package:magrittr':
   
       subtract
   
   
   Loading required package: grid
   
   Loading required package: Biostrings
   
   Loading required package: XVector
   
   
   Attaching package: 'XVector'
   
   
   The following object is masked from 'package:purrr':
   
       compact
   
   
   
   Attaching package: 'Biostrings'
   
   
   The following object is masked from 'package:grid':
   
       pattern
   
   
   The following object is masked from 'package:base':
   
       strsplit
   
   
   
   Attaching package: 'gridExtra'
   
   
   The following object is masked from 'package:BiocGenerics':
   
       combine
   
   
   The following object is masked from 'package:dplyr':
   
       combine
   
   
   
   Attaching package: 'data.table'
   
   
   The following object is masked from 'package:GenomicRanges':
   
       shift
   
   
   The following object is masked from 'package:IRanges':
   
       shift
   
   
   The following objects are masked from 'package:S4Vectors':
   
       first, second
   
   
   The following objects are masked from 'package:lubridate':
   
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
       yday, year
   
   
   The following objects are masked from 'package:dplyr':
   
       between, first, last
   
   
   The following object is masked from 'package:purrr':
   
       transpose
   
   
   
   
   Registered S3 method overwritten by 'gplots':
     method         from 
     reorder.factor gdata
   
   ChIPseeker v1.34.1  For help: https://guangchuangyu.github.io/software/ChIPseeker
   
   If you use ChIPseeker in published research, please cite:
   Qianwen Wang, Ming Li, Tianzhi Wu, Li Zhan, Lin Li, Meijun Chen, Wenqin Xie, Zijing Xie, Erqiang Hu, Shuangbin Xu, Guangchuang Yu. Exploring epigenomic datasets by ChIPseeker. Current Protocols 2022, 2(10): e585
   
   Loading required package: graph
   
   
   Attaching package: 'graph'
   
   
   The following object is masked from 'package:Biostrings':
   
       complement
   
   
   The following object is masked from 'package:stringr':
   
       boundary
   
   
   Loading required package: Biobase
   
   Welcome to Bioconductor
   
       Vignettes contain introductory material; view with
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
   
   
   Loading required package: GO.db
   
   Loading required package: AnnotationDbi
   
   
   Attaching package: 'AnnotationDbi'
   
   
   The following object is masked from 'package:dplyr':
   
       select
   
   
   Loading required package: SparseM
   
   
   Attaching package: 'SparseM'
   
   
   The following object is masked from 'package:base':
   
       backsolve
   
   
   
   groupGOTerms:    GOBPTerm, GOMFTerm, GOCCTerm environments built.
   
   
   Attaching package: 'topGO'
   
   
   The following object is masked from 'package:grid':
   
       depth
   
   
   The following object is masked from 'package:IRanges':
   
       members
   
   
   Loading required package: GenomicFeatures
   
   
   Attaching package: 'GenomicFeatures'
   
   
   The following object is masked from 'package:topGO':
   
       genes
config = load_config()

# load CHT results
cht_full = lapply(ab_tp_list, function(ab_tp) load_cht_results(ab_tp, remove_chr = F)) %>% bind_rows()
cht = cht_full %>% filter(!TEST.SNP.CHROM %in% c("chrX", "chrY", "chrM"))
cht_sign = cht %>% filter(signif_strongAI) 

# genes and promoters
genes = load_genes()
promoters = resize(genes, width = 1000, fix = "start")

# combined motif set (all TFs, peaks + alleles)
fimo = get_full_motif_sets(cht, ab_tp_list)
# only alleles
fimo_alleles  = lapply(ab_tp_list, function(ab_tp) parse_motifs_in_two_alleles(ab_tp, cht)) %>% bind_rows() 

2 Figure 3A

# get variants distance to motifs (excluding peaks without motifs)
res_df = lapply(ab_tp_list, function(ab_tp) get_variant_distance2TFmotif(ab_tp, cht, fimo, same_peak = T) %>% 
                  mutate(condition = ab_tp)) %>% bind_rows()

dist_breaks = c(-1, 0, 20, 40, 60, 80, 100, 3000)
dist_labels = c("in motif", "1-20 bp", "21-40 bp", "41-60 bp", "61-80 bp", "81-100 bp", ">100 bp")

res_full = data.frame(matrix(ncol = 5, nrow = 0))
names(res_full) = c("dist_bin", "n", "share", "type", "condition")

for(ab_tp in ab_tp_list) {
  
  # all variants
  df_sel = res_df %>% filter(condition == ab_tp)
  N_var = length(unique(df_sel$snp_id)) # number of variants in peaks with motifs
  N_peak = length(unique(df_sel$peak_id)) # number of peaks with motifs
  
  # significant variants
  df_sign = df_sel %>% filter(signif_strongAI)
  N_var_sign = length(unique(df_sign$snp_id)) # number of significant variants in peaks with motifs
  N_peak_sign = length(unique(df_sign$peak_id)) # number of AI peaks with motifs

  sign_sum = df_sign %>% 
    group_by(peak_id) %>% 
    mutate(min_dist = min(dist2motif)) %>%
    filter(dist2motif == min_dist) %>%
    select(peak_id, dist2motif) %>% unique() %>% ungroup() %>%
    mutate(N_tot = n(), dist_bin = cut(dist2motif, breaks = dist_breaks, labels = dist_labels)) %>%
    group_by(dist_bin) %>%
    summarize(n = n(), share = n / mean(N_tot), type = "real", condition = ab_tp)
  
  
  df_non_sign = df_sel %>% group_by(peak_id) %>% mutate(AI_peak = any(signif_strongAI)) %>% filter(!AI_peak) %>% ungroup()
  
  background_sum = lapply(1:100, function(i) {
    
    print(i)
    
    # 1. select same number of peaks as in AI peaks
    peak_ids = sample(unique(df_non_sign$peak_id), N_peak_sign)
    df_bg = df_non_sign %>% filter(peak_id %in% peak_ids)
    
    # 2. select same number of variants as for AI peaks
    variant_ids = sample(unique(df_bg$snp_id), N_var_sign)
    df_bg %<>% filter(snp_id %in% variant_ids)
    
    N_peak_bg = length(unique(df_bg$peak_id)) 
    
    bg_sum = df_bg %>% 
      group_by(peak_id) %>% 
      mutate(min_dist = min(dist2motif)) %>%
      filter(dist2motif == min_dist) %>%
      select(peak_id, dist2motif) %>% unique() %>% ungroup() %>%
      mutate(N_tot = n(), dist_bin = cut(dist2motif, breaks = dist_breaks, labels = dist_labels)) %>%
      group_by(dist_bin) %>%
      summarize(n = n(), share = n / mean(N_tot), share_full = n / N_peak_bg)
    
    
    bg_sum$type = "background"
    bg_sum
    
  }) %>% bind_rows()
  
  background_sum %<>% group_by(dist_bin) %>% summarize(n = mean(n), share = mean(share), type = "background", condition = ab_tp)
  
  res = rbind.data.frame(sign_sum, background_sum)
  
  res_full = rbind.data.frame(res_full, res)

}
   [1] 1
   [1] 2
   [1] 3
   [1] 4
   [1] 5
   [1] 6
   [1] 7
   [1] 8
   [1] 9
   [1] 10
   [1] 11
   [1] 12
   [1] 13
   [1] 14
   [1] 15
   [1] 16
   [1] 17
   [1] 18
   [1] 19
   [1] 20
   [1] 21
   [1] 22
   [1] 23
   [1] 24
   [1] 25
   [1] 26
   [1] 27
   [1] 28
   [1] 29
   [1] 30
   [1] 31
   [1] 32
   [1] 33
   [1] 34
   [1] 35
   [1] 36
   [1] 37
   [1] 38
   [1] 39
   [1] 40
   [1] 41
   [1] 42
   [1] 43
   [1] 44
   [1] 45
   [1] 46
   [1] 47
   [1] 48
   [1] 49
   [1] 50
   [1] 51
   [1] 52
   [1] 53
   [1] 54
   [1] 55
   [1] 56
   [1] 57
   [1] 58
   [1] 59
   [1] 60
   [1] 61
   [1] 62
   [1] 63
   [1] 64
   [1] 65
   [1] 66
   [1] 67
   [1] 68
   [1] 69
   [1] 70
   [1] 71
   [1] 72
   [1] 73
   [1] 74
   [1] 75
   [1] 76
   [1] 77
   [1] 78
   [1] 79
   [1] 80
   [1] 81
   [1] 82
   [1] 83
   [1] 84
   [1] 85
   [1] 86
   [1] 87
   [1] 88
   [1] 89
   [1] 90
   [1] 91
   [1] 92
   [1] 93
   [1] 94
   [1] 95
   [1] 96
   [1] 97
   [1] 98
   [1] 99
   [1] 100
   [1] 1
   [1] 2
   [1] 3
   [1] 4
   [1] 5
   [1] 6
   [1] 7
   [1] 8
   [1] 9
   [1] 10
   [1] 11
   [1] 12
   [1] 13
   [1] 14
   [1] 15
   [1] 16
   [1] 17
   [1] 18
   [1] 19
   [1] 20
   [1] 21
   [1] 22
   [1] 23
   [1] 24
   [1] 25
   [1] 26
   [1] 27
   [1] 28
   [1] 29
   [1] 30
   [1] 31
   [1] 32
   [1] 33
   [1] 34
   [1] 35
   [1] 36
   [1] 37
   [1] 38
   [1] 39
   [1] 40
   [1] 41
   [1] 42
   [1] 43
   [1] 44
   [1] 45
   [1] 46
   [1] 47
   [1] 48
   [1] 49
   [1] 50
   [1] 51
   [1] 52
   [1] 53
   [1] 54
   [1] 55
   [1] 56
   [1] 57
   [1] 58
   [1] 59
   [1] 60
   [1] 61
   [1] 62
   [1] 63
   [1] 64
   [1] 65
   [1] 66
   [1] 67
   [1] 68
   [1] 69
   [1] 70
   [1] 71
   [1] 72
   [1] 73
   [1] 74
   [1] 75
   [1] 76
   [1] 77
   [1] 78
   [1] 79
   [1] 80
   [1] 81
   [1] 82
   [1] 83
   [1] 84
   [1] 85
   [1] 86
   [1] 87
   [1] 88
   [1] 89
   [1] 90
   [1] 91
   [1] 92
   [1] 93
   [1] 94
   [1] 95
   [1] 96
   [1] 97
   [1] 98
   [1] 99
   [1] 100
   [1] 1
   [1] 2
   [1] 3
   [1] 4
   [1] 5
   [1] 6
   [1] 7
   [1] 8
   [1] 9
   [1] 10
   [1] 11
   [1] 12
   [1] 13
   [1] 14
   [1] 15
   [1] 16
   [1] 17
   [1] 18
   [1] 19
   [1] 20
   [1] 21
   [1] 22
   [1] 23
   [1] 24
   [1] 25
   [1] 26
   [1] 27
   [1] 28
   [1] 29
   [1] 30
   [1] 31
   [1] 32
   [1] 33
   [1] 34
   [1] 35
   [1] 36
   [1] 37
   [1] 38
   [1] 39
   [1] 40
   [1] 41
   [1] 42
   [1] 43
   [1] 44
   [1] 45
   [1] 46
   [1] 47
   [1] 48
   [1] 49
   [1] 50
   [1] 51
   [1] 52
   [1] 53
   [1] 54
   [1] 55
   [1] 56
   [1] 57
   [1] 58
   [1] 59
   [1] 60
   [1] 61
   [1] 62
   [1] 63
   [1] 64
   [1] 65
   [1] 66
   [1] 67
   [1] 68
   [1] 69
   [1] 70
   [1] 71
   [1] 72
   [1] 73
   [1] 74
   [1] 75
   [1] 76
   [1] 77
   [1] 78
   [1] 79
   [1] 80
   [1] 81
   [1] 82
   [1] 83
   [1] 84
   [1] 85
   [1] 86
   [1] 87
   [1] 88
   [1] 89
   [1] 90
   [1] 91
   [1] 92
   [1] 93
   [1] 94
   [1] 95
   [1] 96
   [1] 97
   [1] 98
   [1] 99
   [1] 100
   [1] 1
   [1] 2
   [1] 3
   [1] 4
   [1] 5
   [1] 6
   [1] 7
   [1] 8
   [1] 9
   [1] 10
   [1] 11
   [1] 12
   [1] 13
   [1] 14
   [1] 15
   [1] 16
   [1] 17
   [1] 18
   [1] 19
   [1] 20
   [1] 21
   [1] 22
   [1] 23
   [1] 24
   [1] 25
   [1] 26
   [1] 27
   [1] 28
   [1] 29
   [1] 30
   [1] 31
   [1] 32
   [1] 33
   [1] 34
   [1] 35
   [1] 36
   [1] 37
   [1] 38
   [1] 39
   [1] 40
   [1] 41
   [1] 42
   [1] 43
   [1] 44
   [1] 45
   [1] 46
   [1] 47
   [1] 48
   [1] 49
   [1] 50
   [1] 51
   [1] 52
   [1] 53
   [1] 54
   [1] 55
   [1] 56
   [1] 57
   [1] 58
   [1] 59
   [1] 60
   [1] 61
   [1] 62
   [1] 63
   [1] 64
   [1] 65
   [1] 66
   [1] 67
   [1] 68
   [1] 69
   [1] 70
   [1] 71
   [1] 72
   [1] 73
   [1] 74
   [1] 75
   [1] 76
   [1] 77
   [1] 78
   [1] 79
   [1] 80
   [1] 81
   [1] 82
   [1] 83
   [1] 84
   [1] 85
   [1] 86
   [1] 87
   [1] 88
   [1] 89
   [1] 90
   [1] 91
   [1] 92
   [1] 93
   [1] 94
   [1] 95
   [1] 96
   [1] 97
   [1] 98
   [1] 99
   [1] 100
   [1] 1
   [1] 2
   [1] 3
   [1] 4
   [1] 5
   [1] 6
   [1] 7
   [1] 8
   [1] 9
   [1] 10
   [1] 11
   [1] 12
   [1] 13
   [1] 14
   [1] 15
   [1] 16
   [1] 17
   [1] 18
   [1] 19
   [1] 20
   [1] 21
   [1] 22
   [1] 23
   [1] 24
   [1] 25
   [1] 26
   [1] 27
   [1] 28
   [1] 29
   [1] 30
   [1] 31
   [1] 32
   [1] 33
   [1] 34
   [1] 35
   [1] 36
   [1] 37
   [1] 38
   [1] 39
   [1] 40
   [1] 41
   [1] 42
   [1] 43
   [1] 44
   [1] 45
   [1] 46
   [1] 47
   [1] 48
   [1] 49
   [1] 50
   [1] 51
   [1] 52
   [1] 53
   [1] 54
   [1] 55
   [1] 56
   [1] 57
   [1] 58
   [1] 59
   [1] 60
   [1] 61
   [1] 62
   [1] 63
   [1] 64
   [1] 65
   [1] 66
   [1] 67
   [1] 68
   [1] 69
   [1] 70
   [1] 71
   [1] 72
   [1] 73
   [1] 74
   [1] 75
   [1] 76
   [1] 77
   [1] 78
   [1] 79
   [1] 80
   [1] 81
   [1] 82
   [1] 83
   [1] 84
   [1] 85
   [1] 86
   [1] 87
   [1] 88
   [1] 89
   [1] 90
   [1] 91
   [1] 92
   [1] 93
   [1] 94
   [1] 95
   [1] 96
   [1] 97
   [1] 98
   [1] 99
   [1] 100
   [1] 1
   [1] 2
   [1] 3
   [1] 4
   [1] 5
   [1] 6
   [1] 7
   [1] 8
   [1] 9
   [1] 10
   [1] 11
   [1] 12
   [1] 13
   [1] 14
   [1] 15
   [1] 16
   [1] 17
   [1] 18
   [1] 19
   [1] 20
   [1] 21
   [1] 22
   [1] 23
   [1] 24
   [1] 25
   [1] 26
   [1] 27
   [1] 28
   [1] 29
   [1] 30
   [1] 31
   [1] 32
   [1] 33
   [1] 34
   [1] 35
   [1] 36
   [1] 37
   [1] 38
   [1] 39
   [1] 40
   [1] 41
   [1] 42
   [1] 43
   [1] 44
   [1] 45
   [1] 46
   [1] 47
   [1] 48
   [1] 49
   [1] 50
   [1] 51
   [1] 52
   [1] 53
   [1] 54
   [1] 55
   [1] 56
   [1] 57
   [1] 58
   [1] 59
   [1] 60
   [1] 61
   [1] 62
   [1] 63
   [1] 64
   [1] 65
   [1] 66
   [1] 67
   [1] 68
   [1] 69
   [1] 70
   [1] 71
   [1] 72
   [1] 73
   [1] 74
   [1] 75
   [1] 76
   [1] 77
   [1] 78
   [1] 79
   [1] 80
   [1] 81
   [1] 82
   [1] 83
   [1] 84
   [1] 85
   [1] 86
   [1] 87
   [1] 88
   [1] 89
   [1] 90
   [1] 91
   [1] 92
   [1] 93
   [1] 94
   [1] 95
   [1] 96
   [1] 97
   [1] 98
   [1] 99
   [1] 100
res_full$dist_bin = factor(res_full$dist_bin, levels = rev(dist_labels))
res_full$tf_labels = ab_tp_labels[res_full$condition]  
res_full$tf_labels = factor(res_full$tf_labels, levels = ab_tp_labels)

shares_in_motif = res_full %>% 
  arrange(tf_labels) %>% 
  filter(dist_bin == "in motif", type == "real") %>% 
  select(share) %>% unlist() %>% unique() %>% round(2)
  
p = ggplot(res_full %>% filter(type == "real"), aes(x = tf_labels, y = n, fill = dist_bin)) +
  geom_bar(stat = "identity") +
  scale_fill_manual(values = c(brewer.pal(n = 9, name = "Greys")[2:7], cbPalette[2]), name = "Variant to motif\ndistance") +
  theme_bw() +
  xlab("") +
  ylab("Share of peaks \n(only peaks with motifs considered)") +
  annotate(geom = "text", label = shares_in_motif, y = 10, x = 1:6) +
  theme(axis.text.x=element_text(size=11, angle = 45, hjust = 1, colour = TFcols),
        axis.title=element_text(size=12),
        legend.text = element_text(size=12),
        panel.grid.major = element_line(colour = "lightgrey"),
        panel.grid.minor = element_line(colour = "lightgrey"))
   Warning: Vectorized input to `element_text()` is not officially supported.
   ℹ Results may be unexpected or may change in future versions of ggplot2.
p

outf = file.path(outdir_fig_main, paste0("Fig3A_dist2motif.pdf"))
ggsave(outf, p, width = 5, height = 5)

3 Figure 3B

fimo_alleles %<>% mutate(condition_label = ab_tp_labels[condition], condition_label = factor(condition_label, levels = ab_tp_labels)) 


df_sum = fimo_alleles %>% 
  select(snp_id, condition, in_peak, signif_strongAI, condition_label) %>% unique() %>%
  group_by(in_peak) %>% 
  mutate(N = n(), in_peak = factor(in_peak, levels = c(TRUE, FALSE))) %>% 
  group_by(condition_label, in_peak, signif_strongAI) %>% 
  summarize(n = n(), share = n / mean(N))
   `summarise()` has grouped output by 'condition_label', 'in_peak'. You can
   override using the `.groups` argument.
p = ggplot(df_sum, aes(x = in_peak, y = share, fill = signif_strongAI)) + geom_bar(stat = "identity") + 
  theme_bw() +
  scale_fill_manual(values = c("lightgrey", cbPalette[2]), name = "AI variant") +
  xlab("Motif in peak") +
  ylab("Share of variants in motifs") +
  theme(axis.text.x=element_text(size=12, angle = 45, hjust = 1),
        axis.title=element_text(size=12),
        legend.text = element_text(size=12))

p

outf = file.path(outdir_fig_main, paste0("Fig3B_motifs_in_peaks.pdf"))
ggsave(outf, p, width = 3, height = 4)

4 Figure 3C

fimo_alleles %<>% mutate(condition_label = ab_tp_labels[condition], condition_label = factor(condition_label, levels = ab_tp_labels)) 


# Distance of motif to peak summit
df_filt = fimo_alleles %>% filter(in_peak) %>% select(snp_id, condition, signif_strongAI, dist2summit) %>% unique()

p = ggplot(df_filt, aes(x = dist2summit, color = signif_strongAI)) + 
  geom_density(size = 1) + 
  theme_bw() +
  scale_color_manual(values = c("grey", cbPalette[2]), name = "AI variant") +
  xlab("Distance to peak summit") +
  ylab("Density") +
  scale_y_continuous(breaks = seq(0, 0.01, by = 0.002), labels = seq(0, 0.01, by = 0.002)) +
  theme(axis.text=element_text(size=10),
        axis.title=element_text(size=12),
        legend.text = element_text(size=12),
        legend.position = c(0.7, 0.8))
   Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
   ℹ Please use `linewidth` instead.
   This warning is displayed once every 8 hours.
   Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
   generated.
p

outf = file.path(outdir_fig_main, paste0("Fig3C_dist2summit.pdf"))
ggsave(outf, p, width = 3, height = 4)

5 Figure 3D

fimo_alleles$motif_presence = "both alleles"
fimo_alleles$motif_presence[!is.na(fimo_alleles$score.ref) & is.na(fimo_alleles$score.alt)] = "only REF"
fimo_alleles$motif_presence[is.na(fimo_alleles$score.ref) & !is.na(fimo_alleles$score.alt)] = "only ALT"


df_filt = fimo_alleles %>% 
  filter(signif_strongAI & in_peak) %>% 
  group_by(snp_id, condition) %>% 
  mutate(n = n()) %>% filter(n == 1 & motif_presence != "both alleles") # remove cases when motif was shifted and motifs in both alleles
                                                                           
p = ggplot(df_filt %>% filter(signif_strongAI & in_peak), aes(x = motif_presence, y = AI)) + 
  geom_violin(fill = "lightgrey") + geom_boxplot(width = 0.4, outlier.size = 0.2, fill = "darkblue", alpha = 0.5) +
  geom_hline(yintercept = 0.5, color = "darkred", size = 1, linetype = "dashed") +
  theme_bw() +
  ylab("Allele Imbalance") +
  xlab("Motif presence") +
  theme(axis.text.x=element_text(size=12, angle = 45, hjust = 1), axis.text.y=element_text(size=12),
        axis.title.x=element_text(size=14), axis.title.y=element_text(size=14),
        axis.title=element_text(size=12),
        legend.text = element_text(size=12))



p

outf = file.path(outdir_fig_main, paste0("Fig3D_motifs_in_alleles.pdf"))
ggsave(outf, p, width = 2, height = 4)

6 Figure 3E

# Correlation between AI and delta_score

score_thres = 0
df_shared = fimo_alleles %>% filter(in_peak & !is.na(score.ref) & !is.na(score.alt) & 
                                      signif_strongAI) %>%
  mutate(delta_score = as.numeric(score.ref) - as.numeric(score.alt),
         type = ifelse((AI > 0.6 & delta_score > 0) | (AI < 0.4 & delta_score < 0), "concordant", "discordant"))

df_shared %>% filter(abs(delta_score) > score_thres) %>% 
  group_by(condition, is_indel) %>% 
  summarize(min(abs(delta_score)), max(dist2summit), cor(delta_score, AI), share_concordant = sum(type == "concordant") / n(), n())
   `summarise()` has grouped output by 'condition'. You can override using the
   `.groups` argument.
df_sum = df_shared %>% filter(signif_strongAI & abs(delta_score) > score_thres  & dist2summit < 250) %>% 
  summarize(min(abs(delta_score)), max(dist2summit), cor = cor(delta_score, AI), share_concordant = sum(type == "concordant") / n(), n())

cor = round(df_sum$cor, 2)
n_conc = round(df_sum$share_concordant, 2) * 100
n_disc = (1 - round(df_sum$share_concordant, 2)) * 100


p = ggplot(df_shared %>% filter(abs(delta_score) > score_thres ), aes(x = delta_score, y = AI, color = type)) + 
  geom_point(size = 1, color = cbPalette[2]) + 
  geom_smooth(method = "lm", se = F, color = "darkblue", size = 0.5) +
  geom_vline(xintercept = -score_thres, color = "grey", size = 0.7) +
  geom_vline(xintercept = score_thres, color = "grey", size = 0.7) +
  geom_hline(yintercept = 0.6, color = "grey", size = 0.7) +
  geom_hline(yintercept = 0.4, color = "grey", size = 0.7) +
  theme_bw() +
  annotate(geom = "text", x = -3.5, y = 0.95, label = paste("R=", cor)) +
  annotate(geom = "text", x = -3.5, y = 0.88, label = paste("% concordant: ", n_conc), size = 4) +
  xlab("Motif score change (REF-ALT)") +
  ylab("Allele Imbalamce") +
  #scale_color_manual(values = c(cbPalette[2], "darkgrey"), labels = c(paste0("concordant, ", n_conc, "%"), paste0("discordant, ", n_disc, "%")), name = "Variant type") +
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=14),
        legend.text = element_text(size=12),
        legend.title = element_text(size=12))


p
   `geom_smooth()` using formula = 'y ~ x'

outf = file.path(outdir_fig_main, paste0("Fig3E_score_ai_concordance.pdf"))
ggsave(outf, p, width = 4, height = 4)
   `geom_smooth()` using formula = 'y ~ x'

7 Figure 3F - Examples of AIs by position

df = lapply(ab_tp_list, function(ab_tp) {df = prepare_snps_in_motif_2alleles_4plotting(ab_tp, cht, remove_indels = T) %>%
                                              mutate(ab = TFs[ab_tp])}) %>% 
                                         bind_rows()

tf2pos = c(3, 3, 9, 5)
names(tf2pos) = unique(TFs)

for(tf in names(tf2pos)) {
  
  pos = tf2pos[tf]
  
  tmp = df %>% filter(ab == tf & var_pos == pos) %>%
  group_by(allele) %>% mutate(mean_allele_pref = mean(share_affinity)) %>%
  arrange(mean_allele_pref) %>%
  ungroup() %>%
  mutate(allele = factor(allele, levels = unique(allele)))

  letter_cols = letter_colors
  cols = letter_cols[as.character(unique(tmp$allele))]
  
  p = ggplot(tmp, aes(x = interaction(snp_id, condition), y = share_affinity, fill = allele)) + geom_bar(stat = "identity") +
    geom_hline(yintercept = 0.5, linetype = "dashed", color = "darkgrey") +
    scale_fill_manual(name = "Allele", values = cols) +
    scale_color_manual(name = "Allele", values = cols) +
    xlab("SNPs in position") +
    ylab("Allele Imbalance") +
    ggtitle(paste(tf, ", position", pos)) +
    theme_bw() +
    theme(axis.text.y = element_text(size=14), axis.text.x = element_blank(), 
          axis.title.x = element_text(size=14), axis.title.y = element_text(size=14),
          plot.title = element_text(size= 16, hjust = 0.5))

  print(p)
  outf = file.path(outdir_fig_main, paste0("Fig3F_AI_per_pos_", tf, "_pos", pos,  ".pdf"))
  ggsave(outf, p,  width = 3, height = 2)

  
}

8 Figure 3G - Known PWMs

outf_base = file.path(outdir_fig_main, "/motif_logos/")

lapply(unique(TFs), function(tf) {print(tf)
                                  # forward strand
                                  p1 = get_motif_pfm_logo(tf, x_axis = T)
                                  print(p1)
                                  outf1 = file.path(outf_base, paste0("Fig_3G_known_pwm_fw_", tf,  "_icm.pdf"))
                                  ggsave(outf1, p1,  width = 4, height = 2)
                                  # reverse strand
                                  p2 = get_motif_pfm_logo(tf, x_axis = T, rev_comp = T)
                                  outf2 = file.path(outf_base, paste0("Fig_3G_known_pwm_rv_", tf,  "_icm.pdf"))
                                  ggsave(outf2, p2,  width = 4, height = 2)
                                  print(p2)})
   [1] "Twi"
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   [1] "CTCF"
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   [1] "Mef2"
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   [1] "Bin"
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   [[1]]

   
   [[2]]

   
   [[3]]

   
   [[4]]

9 Figure 3G - AI-PCMs and AI-ICMs

outf_base = file.path(outdir_fig_main, "/motif_logos/")

for(TF in names(TF2cond)) {
  
  cond = TF2cond[[TF]]
  df = lapply(cond, function(ab_tp) {df = prepare_snps_in_motif_2alleles_4plotting(ab_tp, cht, remove_indels = T)}) %>% bind_rows()
  print(paste0("N SNPs: ", nrow(df)/2))
  mat = make_ppm(df) + 0.01
  #p = convert_type(p, "PPM")
  p = view_logo(mat, colour.scheme = letter_colors, sort.positions = T) +
    theme_classic() +
    scale_x_continuous(breaks = 1:ncol(mat), labels = 1:ncol(mat), name = "Position") +
    ylab("# SNPs") +
    theme(axis.text.y = element_text(size=12), axis.text.x = element_text(size=12),
          axis.title.y = element_text(size=12), axis.title.x = element_text(size=12),
          legend.position="none",
          plot.title = element_text(color="black", face="bold", size=16, hjust=0.5))
  print(p)
  outf1 = file.path(outf_base, paste0("Fig_3G_AI_pcm_", TF,  ".pdf"))
  ggsave(outf1, p,  width = 4, height = 2)

  mat = convert_type(mat, "PPM")  
  p = view_motifs(mat, use.type = "ICM", colour.scheme = letter_colors, sort.positions = T) +
    theme_classic() +
    scale_x_continuous(breaks = 1:ncol(mat), labels = 1:ncol(mat), name = "Position") +
    ylab("Bits") +
    theme(axis.text.y = element_text(size=12), axis.text.x = element_text(size=12),
          axis.title.y = element_text(size=12), axis.title.x = element_text(size=12),
          legend.position="none",
          plot.title = element_text(color="black", face="bold", size=16, hjust=0.5))
  print(p)
  outf2 = file.path(outf_base, paste0("Fig_3G_AI_icm_", TF,  ".pdf"))
  ggsave(outf2, p,  width = 4, height = 2)
  
}
   [1] "N SNPs: 48"
   `summarise()` has grouped output by 'var_pos'. You can override using the
   `.groups` argument.
   Scale for x is already present. Adding another scale for x, which will replace
   the existing scale.
   motifs converted to class 'universalmotif'
   Scale for x is already present. Adding another scale for x, which will replace
   the existing scale.

   [1] "N SNPs: 111"
   `summarise()` has grouped output by 'var_pos'. You can override using the
   `.groups` argument.
   Scale for x is already present. Adding another scale for x, which will replace
   the existing scale.

   motifs converted to class 'universalmotif'
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   [1] "N SNPs: 92"
   `summarise()` has grouped output by 'var_pos'. You can override using the
   `.groups` argument.
   Scale for x is already present. Adding another scale for x, which will replace
   the existing scale.

   motifs converted to class 'universalmotif'
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

   [1] "N SNPs: 97"
   `summarise()` has grouped output by 'var_pos'. You can override using the
   `.groups` argument.
   Scale for x is already present. Adding another scale for x, which will replace
   the existing scale.

   motifs converted to class 'universalmotif'
   Scale for x is already present.
   Adding another scale for x, which will replace the existing scale.

LS0tCnRpdGxlOiAiRmlndXJlXzMiCm91dHB1dDoKICAgQmlvY1N0eWxlOjpodG1sX2RvY3VtZW50OgogICAgICB0b2M6IHRydWUKICAgICAgZGZfcHJpbnQ6IHBhZ2VkCiAgICAgIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICAgICAgaGlnaGxpZ2h0OiB0YW5nbwojYmlibGlvZ3JhcGh5OiBrbm5fbWxfaW50cm8uYmliCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKYGBge3Igc3R5bGUsIGVjaG89RkFMU0UsIHJlc3VsdHM9ImFzaXMifQpsaWJyYXJ5KCJrbml0ciIpCm9wdGlvbnMoZGlnaXRzID0gMiwgd2lkdGggPSA4MCkKb3B0aW9ucyhiaXRtYXBUeXBlID0gJ2NhaXJvJykKZ29sZGVuX3JhdGlvIDwtICgxICsgc3FydCg1KSkgLyAyCm9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFLCB0aWR5ID0gRkFMU0UsIGluY2x1ZGUgPSBUUlVFLCBjYWNoZSA9IEZBTFNFLAogICAgICAgICAgICAgICBkZXY9YygncG5nJywgJ3BkZicpLCBjb21tZW50ID0gJyAgJywgZHBpID0gMzAwKQoKb3B0aW9ucyhzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UpCmtuaXRyOjpvcHRzX2NodW5rJHNldChjYWNoZT1GQUxTRSkKb3B0aW9ucyhkaWdpdHMgPSA1KSAgICAgICAgIApgYGAKCiMgU2V0dXAgYW5kIGRhdGEKCmBgYHtyfQpzb3VyY2UoIi4uL3V0aWxzL3V0aWxzLlIiKQpjb25maWcgPSBsb2FkX2NvbmZpZygpCgojIGxvYWQgQ0hUIHJlc3VsdHMKY2h0X2Z1bGwgPSBsYXBwbHkoYWJfdHBfbGlzdCwgZnVuY3Rpb24oYWJfdHApIGxvYWRfY2h0X3Jlc3VsdHMoYWJfdHAsIHJlbW92ZV9jaHIgPSBGKSkgJT4lIGJpbmRfcm93cygpCmNodCA9IGNodF9mdWxsICU+JSBmaWx0ZXIoIVRFU1QuU05QLkNIUk9NICVpbiUgYygiY2hyWCIsICJjaHJZIiwgImNock0iKSkKY2h0X3NpZ24gPSBjaHQgJT4lIGZpbHRlcihzaWduaWZfc3Ryb25nQUkpIAoKIyBnZW5lcyBhbmQgcHJvbW90ZXJzCmdlbmVzID0gbG9hZF9nZW5lcygpCnByb21vdGVycyA9IHJlc2l6ZShnZW5lcywgd2lkdGggPSAxMDAwLCBmaXggPSAic3RhcnQiKQoKIyBjb21iaW5lZCBtb3RpZiBzZXQgKGFsbCBURnMsIHBlYWtzICsgYWxsZWxlcykKZmltbyA9IGdldF9mdWxsX21vdGlmX3NldHMoY2h0LCBhYl90cF9saXN0KQojIG9ubHkgYWxsZWxlcwpmaW1vX2FsbGVsZXMgID0gbGFwcGx5KGFiX3RwX2xpc3QsIGZ1bmN0aW9uKGFiX3RwKSBwYXJzZV9tb3RpZnNfaW5fdHdvX2FsbGVsZXMoYWJfdHAsIGNodCkpICU+JSBiaW5kX3Jvd3MoKSAKCmBgYAoKCiMgRmlndXJlIDNBCgpgYGB7cn0KCiMgZ2V0IHZhcmlhbnRzIGRpc3RhbmNlIHRvIG1vdGlmcyAoZXhjbHVkaW5nIHBlYWtzIHdpdGhvdXQgbW90aWZzKQpyZXNfZGYgPSBsYXBwbHkoYWJfdHBfbGlzdCwgZnVuY3Rpb24oYWJfdHApIGdldF92YXJpYW50X2Rpc3RhbmNlMlRGbW90aWYoYWJfdHAsIGNodCwgZmltbywgc2FtZV9wZWFrID0gVCkgJT4lIAogICAgICAgICAgICAgICAgICBtdXRhdGUoY29uZGl0aW9uID0gYWJfdHApKSAlPiUgYmluZF9yb3dzKCkKCmRpc3RfYnJlYWtzID0gYygtMSwgMCwgMjAsIDQwLCA2MCwgODAsIDEwMCwgMzAwMCkKZGlzdF9sYWJlbHMgPSBjKCJpbiBtb3RpZiIsICIxLTIwIGJwIiwgIjIxLTQwIGJwIiwgIjQxLTYwIGJwIiwgIjYxLTgwIGJwIiwgIjgxLTEwMCBicCIsICI+MTAwIGJwIikKCnJlc19mdWxsID0gZGF0YS5mcmFtZShtYXRyaXgobmNvbCA9IDUsIG5yb3cgPSAwKSkKbmFtZXMocmVzX2Z1bGwpID0gYygiZGlzdF9iaW4iLCAibiIsICJzaGFyZSIsICJ0eXBlIiwgImNvbmRpdGlvbiIpCgpmb3IoYWJfdHAgaW4gYWJfdHBfbGlzdCkgewogIAogICMgYWxsIHZhcmlhbnRzCiAgZGZfc2VsID0gcmVzX2RmICU+JSBmaWx0ZXIoY29uZGl0aW9uID09IGFiX3RwKQogIE5fdmFyID0gbGVuZ3RoKHVuaXF1ZShkZl9zZWwkc25wX2lkKSkgIyBudW1iZXIgb2YgdmFyaWFudHMgaW4gcGVha3Mgd2l0aCBtb3RpZnMKICBOX3BlYWsgPSBsZW5ndGgodW5pcXVlKGRmX3NlbCRwZWFrX2lkKSkgIyBudW1iZXIgb2YgcGVha3Mgd2l0aCBtb3RpZnMKICAKICAjIHNpZ25pZmljYW50IHZhcmlhbnRzCiAgZGZfc2lnbiA9IGRmX3NlbCAlPiUgZmlsdGVyKHNpZ25pZl9zdHJvbmdBSSkKICBOX3Zhcl9zaWduID0gbGVuZ3RoKHVuaXF1ZShkZl9zaWduJHNucF9pZCkpICMgbnVtYmVyIG9mIHNpZ25pZmljYW50IHZhcmlhbnRzIGluIHBlYWtzIHdpdGggbW90aWZzCiAgTl9wZWFrX3NpZ24gPSBsZW5ndGgodW5pcXVlKGRmX3NpZ24kcGVha19pZCkpICMgbnVtYmVyIG9mIEFJIHBlYWtzIHdpdGggbW90aWZzCgogIHNpZ25fc3VtID0gZGZfc2lnbiAlPiUgCiAgICBncm91cF9ieShwZWFrX2lkKSAlPiUgCiAgICBtdXRhdGUobWluX2Rpc3QgPSBtaW4oZGlzdDJtb3RpZikpICU+JQogICAgZmlsdGVyKGRpc3QybW90aWYgPT0gbWluX2Rpc3QpICU+JQogICAgc2VsZWN0KHBlYWtfaWQsIGRpc3QybW90aWYpICU+JSB1bmlxdWUoKSAlPiUgdW5ncm91cCgpICU+JQogICAgbXV0YXRlKE5fdG90ID0gbigpLCBkaXN0X2JpbiA9IGN1dChkaXN0Mm1vdGlmLCBicmVha3MgPSBkaXN0X2JyZWFrcywgbGFiZWxzID0gZGlzdF9sYWJlbHMpKSAlPiUKICAgIGdyb3VwX2J5KGRpc3RfYmluKSAlPiUKICAgIHN1bW1hcml6ZShuID0gbigpLCBzaGFyZSA9IG4gLyBtZWFuKE5fdG90KSwgdHlwZSA9ICJyZWFsIiwgY29uZGl0aW9uID0gYWJfdHApCiAgCiAgCiAgZGZfbm9uX3NpZ24gPSBkZl9zZWwgJT4lIGdyb3VwX2J5KHBlYWtfaWQpICU+JSBtdXRhdGUoQUlfcGVhayA9IGFueShzaWduaWZfc3Ryb25nQUkpKSAlPiUgZmlsdGVyKCFBSV9wZWFrKSAlPiUgdW5ncm91cCgpCiAgCiAgYmFja2dyb3VuZF9zdW0gPSBsYXBwbHkoMToxMDAsIGZ1bmN0aW9uKGkpIHsKICAgIAogICAgcHJpbnQoaSkKICAgIAogICAgIyAxLiBzZWxlY3Qgc2FtZSBudW1iZXIgb2YgcGVha3MgYXMgaW4gQUkgcGVha3MKICAgIHBlYWtfaWRzID0gc2FtcGxlKHVuaXF1ZShkZl9ub25fc2lnbiRwZWFrX2lkKSwgTl9wZWFrX3NpZ24pCiAgICBkZl9iZyA9IGRmX25vbl9zaWduICU+JSBmaWx0ZXIocGVha19pZCAlaW4lIHBlYWtfaWRzKQogICAgCiAgICAjIDIuIHNlbGVjdCBzYW1lIG51bWJlciBvZiB2YXJpYW50cyBhcyBmb3IgQUkgcGVha3MKICAgIHZhcmlhbnRfaWRzID0gc2FtcGxlKHVuaXF1ZShkZl9iZyRzbnBfaWQpLCBOX3Zhcl9zaWduKQogICAgZGZfYmcgJTw+JSBmaWx0ZXIoc25wX2lkICVpbiUgdmFyaWFudF9pZHMpCiAgICAKICAgIE5fcGVha19iZyA9IGxlbmd0aCh1bmlxdWUoZGZfYmckcGVha19pZCkpIAogICAgCiAgICBiZ19zdW0gPSBkZl9iZyAlPiUgCiAgICAgIGdyb3VwX2J5KHBlYWtfaWQpICU+JSAKICAgICAgbXV0YXRlKG1pbl9kaXN0ID0gbWluKGRpc3QybW90aWYpKSAlPiUKICAgICAgZmlsdGVyKGRpc3QybW90aWYgPT0gbWluX2Rpc3QpICU+JQogICAgICBzZWxlY3QocGVha19pZCwgZGlzdDJtb3RpZikgJT4lIHVuaXF1ZSgpICU+JSB1bmdyb3VwKCkgJT4lCiAgICAgIG11dGF0ZShOX3RvdCA9IG4oKSwgZGlzdF9iaW4gPSBjdXQoZGlzdDJtb3RpZiwgYnJlYWtzID0gZGlzdF9icmVha3MsIGxhYmVscyA9IGRpc3RfbGFiZWxzKSkgJT4lCiAgICAgIGdyb3VwX2J5KGRpc3RfYmluKSAlPiUKICAgICAgc3VtbWFyaXplKG4gPSBuKCksIHNoYXJlID0gbiAvIG1lYW4oTl90b3QpLCBzaGFyZV9mdWxsID0gbiAvIE5fcGVha19iZykKICAgIAogICAgCiAgICBiZ19zdW0kdHlwZSA9ICJiYWNrZ3JvdW5kIgogICAgYmdfc3VtCiAgICAKICB9KSAlPiUgYmluZF9yb3dzKCkKICAKICBiYWNrZ3JvdW5kX3N1bSAlPD4lIGdyb3VwX2J5KGRpc3RfYmluKSAlPiUgc3VtbWFyaXplKG4gPSBtZWFuKG4pLCBzaGFyZSA9IG1lYW4oc2hhcmUpLCB0eXBlID0gImJhY2tncm91bmQiLCBjb25kaXRpb24gPSBhYl90cCkKICAKICByZXMgPSByYmluZC5kYXRhLmZyYW1lKHNpZ25fc3VtLCBiYWNrZ3JvdW5kX3N1bSkKICAKICByZXNfZnVsbCA9IHJiaW5kLmRhdGEuZnJhbWUocmVzX2Z1bGwsIHJlcykKCn0KCgpyZXNfZnVsbCRkaXN0X2JpbiA9IGZhY3RvcihyZXNfZnVsbCRkaXN0X2JpbiwgbGV2ZWxzID0gcmV2KGRpc3RfbGFiZWxzKSkKcmVzX2Z1bGwkdGZfbGFiZWxzID0gYWJfdHBfbGFiZWxzW3Jlc19mdWxsJGNvbmRpdGlvbl0gIApyZXNfZnVsbCR0Zl9sYWJlbHMgPSBmYWN0b3IocmVzX2Z1bGwkdGZfbGFiZWxzLCBsZXZlbHMgPSBhYl90cF9sYWJlbHMpCgpzaGFyZXNfaW5fbW90aWYgPSByZXNfZnVsbCAlPiUgCiAgYXJyYW5nZSh0Zl9sYWJlbHMpICU+JSAKICBmaWx0ZXIoZGlzdF9iaW4gPT0gImluIG1vdGlmIiwgdHlwZSA9PSAicmVhbCIpICU+JSAKICBzZWxlY3Qoc2hhcmUpICU+JSB1bmxpc3QoKSAlPiUgdW5pcXVlKCkgJT4lIHJvdW5kKDIpCiAgCnAgPSBnZ3Bsb3QocmVzX2Z1bGwgJT4lIGZpbHRlcih0eXBlID09ICJyZWFsIiksIGFlcyh4ID0gdGZfbGFiZWxzLCB5ID0gbiwgZmlsbCA9IGRpc3RfYmluKSkgKwogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiKSArCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYyhicmV3ZXIucGFsKG4gPSA5LCBuYW1lID0gIkdyZXlzIilbMjo3XSwgY2JQYWxldHRlWzJdKSwgbmFtZSA9ICJWYXJpYW50IHRvIG1vdGlmXG5kaXN0YW5jZSIpICsKICB0aGVtZV9idygpICsKICB4bGFiKCIiKSArCiAgeWxhYigiU2hhcmUgb2YgcGVha3MgXG4ob25seSBwZWFrcyB3aXRoIG1vdGlmcyBjb25zaWRlcmVkKSIpICsKICBhbm5vdGF0ZShnZW9tID0gInRleHQiLCBsYWJlbCA9IHNoYXJlc19pbl9tb3RpZiwgeSA9IDEwLCB4ID0gMTo2KSArCiAgdGhlbWUoYXhpcy50ZXh0Lng9ZWxlbWVudF90ZXh0KHNpemU9MTEsIGFuZ2xlID0gNDUsIGhqdXN0ID0gMSwgY29sb3VyID0gVEZjb2xzKSwKICAgICAgICBheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTEyKSwKICAgICAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplPTEyKSwKICAgICAgICBwYW5lbC5ncmlkLm1ham9yID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJsaWdodGdyZXkiKSwKICAgICAgICBwYW5lbC5ncmlkLm1pbm9yID0gZWxlbWVudF9saW5lKGNvbG91ciA9ICJsaWdodGdyZXkiKSkKCnAKb3V0ZiA9IGZpbGUucGF0aChvdXRkaXJfZmlnX21haW4sIHBhc3RlMCgiRmlnM0FfZGlzdDJtb3RpZi5wZGYiKSkKZ2dzYXZlKG91dGYsIHAsIHdpZHRoID0gNSwgaGVpZ2h0ID0gNSkKCmBgYAoKCiMgRmlndXJlIDNCCgpgYGB7cn0KZmltb19hbGxlbGVzICU8PiUgbXV0YXRlKGNvbmRpdGlvbl9sYWJlbCA9IGFiX3RwX2xhYmVsc1tjb25kaXRpb25dLCBjb25kaXRpb25fbGFiZWwgPSBmYWN0b3IoY29uZGl0aW9uX2xhYmVsLCBsZXZlbHMgPSBhYl90cF9sYWJlbHMpKSAKCgpkZl9zdW0gPSBmaW1vX2FsbGVsZXMgJT4lIAogIHNlbGVjdChzbnBfaWQsIGNvbmRpdGlvbiwgaW5fcGVhaywgc2lnbmlmX3N0cm9uZ0FJLCBjb25kaXRpb25fbGFiZWwpICU+JSB1bmlxdWUoKSAlPiUKICBncm91cF9ieShpbl9wZWFrKSAlPiUgCiAgbXV0YXRlKE4gPSBuKCksIGluX3BlYWsgPSBmYWN0b3IoaW5fcGVhaywgbGV2ZWxzID0gYyhUUlVFLCBGQUxTRSkpKSAlPiUgCiAgZ3JvdXBfYnkoY29uZGl0aW9uX2xhYmVsLCBpbl9wZWFrLCBzaWduaWZfc3Ryb25nQUkpICU+JSAKICBzdW1tYXJpemUobiA9IG4oKSwgc2hhcmUgPSBuIC8gbWVhbihOKSkKCnAgPSBnZ3Bsb3QoZGZfc3VtLCBhZXMoeCA9IGluX3BlYWssIHkgPSBzaGFyZSwgZmlsbCA9IHNpZ25pZl9zdHJvbmdBSSkpICsgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIpICsgCiAgdGhlbWVfYncoKSArCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYygibGlnaHRncmV5IiwgY2JQYWxldHRlWzJdKSwgbmFtZSA9ICJBSSB2YXJpYW50IikgKwogIHhsYWIoIk1vdGlmIGluIHBlYWsiKSArCiAgeWxhYigiU2hhcmUgb2YgdmFyaWFudHMgaW4gbW90aWZzIikgKwogIHRoZW1lKGF4aXMudGV4dC54PWVsZW1lbnRfdGV4dChzaXplPTEyLCBhbmdsZSA9IDQ1LCBoanVzdCA9IDEpLAogICAgICAgIGF4aXMudGl0bGU9ZWxlbWVudF90ZXh0KHNpemU9MTIpLAogICAgICAgIGxlZ2VuZC50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemU9MTIpKQoKcApvdXRmID0gZmlsZS5wYXRoKG91dGRpcl9maWdfbWFpbiwgcGFzdGUwKCJGaWczQl9tb3RpZnNfaW5fcGVha3MucGRmIikpCmdnc2F2ZShvdXRmLCBwLCB3aWR0aCA9IDMsIGhlaWdodCA9IDQpCgpgYGAKCgojIEZpZ3VyZSAzQwoKCmBgYHtyLCBmaWcud2lkdGg9NCwgZmlnLmhlaWdodD0zfQpmaW1vX2FsbGVsZXMgJTw+JSBtdXRhdGUoY29uZGl0aW9uX2xhYmVsID0gYWJfdHBfbGFiZWxzW2NvbmRpdGlvbl0sIGNvbmRpdGlvbl9sYWJlbCA9IGZhY3Rvcihjb25kaXRpb25fbGFiZWwsIGxldmVscyA9IGFiX3RwX2xhYmVscykpIAoKCiMgRGlzdGFuY2Ugb2YgbW90aWYgdG8gcGVhayBzdW1taXQKZGZfZmlsdCA9IGZpbW9fYWxsZWxlcyAlPiUgZmlsdGVyKGluX3BlYWspICU+JSBzZWxlY3Qoc25wX2lkLCBjb25kaXRpb24sIHNpZ25pZl9zdHJvbmdBSSwgZGlzdDJzdW1taXQpICU+JSB1bmlxdWUoKQoKcCA9IGdncGxvdChkZl9maWx0LCBhZXMoeCA9IGRpc3Qyc3VtbWl0LCBjb2xvciA9IHNpZ25pZl9zdHJvbmdBSSkpICsgCiAgZ2VvbV9kZW5zaXR5KHNpemUgPSAxKSArIAogIHRoZW1lX2J3KCkgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKCJncmV5IiwgY2JQYWxldHRlWzJdKSwgbmFtZSA9ICJBSSB2YXJpYW50IikgKwogIHhsYWIoIkRpc3RhbmNlIHRvIHBlYWsgc3VtbWl0IikgKwogIHlsYWIoIkRlbnNpdHkiKSArCiAgc2NhbGVfeV9jb250aW51b3VzKGJyZWFrcyA9IHNlcSgwLCAwLjAxLCBieSA9IDAuMDAyKSwgbGFiZWxzID0gc2VxKDAsIDAuMDEsIGJ5ID0gMC4wMDIpKSArCiAgdGhlbWUoYXhpcy50ZXh0PWVsZW1lbnRfdGV4dChzaXplPTEwKSwKICAgICAgICBheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTEyKSwKICAgICAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplPTEyKSwKICAgICAgICBsZWdlbmQucG9zaXRpb24gPSBjKDAuNywgMC44KSkKCgpwCm91dGYgPSBmaWxlLnBhdGgob3V0ZGlyX2ZpZ19tYWluLCBwYXN0ZTAoIkZpZzNDX2Rpc3Qyc3VtbWl0LnBkZiIpKQpnZ3NhdmUob3V0ZiwgcCwgd2lkdGggPSAzLCBoZWlnaHQgPSA0KQpgYGAKCgojIEZpZ3VyZSAzRAoKYGBge3J9CgpmaW1vX2FsbGVsZXMkbW90aWZfcHJlc2VuY2UgPSAiYm90aCBhbGxlbGVzIgpmaW1vX2FsbGVsZXMkbW90aWZfcHJlc2VuY2VbIWlzLm5hKGZpbW9fYWxsZWxlcyRzY29yZS5yZWYpICYgaXMubmEoZmltb19hbGxlbGVzJHNjb3JlLmFsdCldID0gIm9ubHkgUkVGIgpmaW1vX2FsbGVsZXMkbW90aWZfcHJlc2VuY2VbaXMubmEoZmltb19hbGxlbGVzJHNjb3JlLnJlZikgJiAhaXMubmEoZmltb19hbGxlbGVzJHNjb3JlLmFsdCldID0gIm9ubHkgQUxUIgoKCmRmX2ZpbHQgPSBmaW1vX2FsbGVsZXMgJT4lIAogIGZpbHRlcihzaWduaWZfc3Ryb25nQUkgJiBpbl9wZWFrKSAlPiUgCiAgZ3JvdXBfYnkoc25wX2lkLCBjb25kaXRpb24pICU+JSAKICBtdXRhdGUobiA9IG4oKSkgJT4lIGZpbHRlcihuID09IDEgJiBtb3RpZl9wcmVzZW5jZSAhPSAiYm90aCBhbGxlbGVzIikgIyByZW1vdmUgY2FzZXMgd2hlbiBtb3RpZiB3YXMgc2hpZnRlZCBhbmQgbW90aWZzIGluIGJvdGggYWxsZWxlcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKcCA9IGdncGxvdChkZl9maWx0ICU+JSBmaWx0ZXIoc2lnbmlmX3N0cm9uZ0FJICYgaW5fcGVhayksIGFlcyh4ID0gbW90aWZfcHJlc2VuY2UsIHkgPSBBSSkpICsgCiAgZ2VvbV92aW9saW4oZmlsbCA9ICJsaWdodGdyZXkiKSArIGdlb21fYm94cGxvdCh3aWR0aCA9IDAuNCwgb3V0bGllci5zaXplID0gMC4yLCBmaWxsID0gImRhcmtibHVlIiwgYWxwaGEgPSAwLjUpICsKICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSAwLjUsIGNvbG9yID0gImRhcmtyZWQiLCBzaXplID0gMSwgbGluZXR5cGUgPSAiZGFzaGVkIikgKwogIHRoZW1lX2J3KCkgKwogIHlsYWIoIkFsbGVsZSBJbWJhbGFuY2UiKSArCiAgeGxhYigiTW90aWYgcHJlc2VuY2UiKSArCiAgdGhlbWUoYXhpcy50ZXh0Lng9ZWxlbWVudF90ZXh0KHNpemU9MTIsIGFuZ2xlID0gNDUsIGhqdXN0ID0gMSksIGF4aXMudGV4dC55PWVsZW1lbnRfdGV4dChzaXplPTEyKSwKICAgICAgICBheGlzLnRpdGxlLng9ZWxlbWVudF90ZXh0KHNpemU9MTQpLCBheGlzLnRpdGxlLnk9ZWxlbWVudF90ZXh0KHNpemU9MTQpLAogICAgICAgIGF4aXMudGl0bGU9ZWxlbWVudF90ZXh0KHNpemU9MTIpLAogICAgICAgIGxlZ2VuZC50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemU9MTIpKQoKCgpwCm91dGYgPSBmaWxlLnBhdGgob3V0ZGlyX2ZpZ19tYWluLCBwYXN0ZTAoIkZpZzNEX21vdGlmc19pbl9hbGxlbGVzLnBkZiIpKQpnZ3NhdmUob3V0ZiwgcCwgd2lkdGggPSAyLCBoZWlnaHQgPSA0KQoKCmBgYAoKCiMgRmlndXJlIDNFCgpgYGB7cn0KCiMgQ29ycmVsYXRpb24gYmV0d2VlbiBBSSBhbmQgZGVsdGFfc2NvcmUKCnNjb3JlX3RocmVzID0gMApkZl9zaGFyZWQgPSBmaW1vX2FsbGVsZXMgJT4lIGZpbHRlcihpbl9wZWFrICYgIWlzLm5hKHNjb3JlLnJlZikgJiAhaXMubmEoc2NvcmUuYWx0KSAmIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpZ25pZl9zdHJvbmdBSSkgJT4lCiAgbXV0YXRlKGRlbHRhX3Njb3JlID0gYXMubnVtZXJpYyhzY29yZS5yZWYpIC0gYXMubnVtZXJpYyhzY29yZS5hbHQpLAogICAgICAgICB0eXBlID0gaWZlbHNlKChBSSA+IDAuNiAmIGRlbHRhX3Njb3JlID4gMCkgfCAoQUkgPCAwLjQgJiBkZWx0YV9zY29yZSA8IDApLCAiY29uY29yZGFudCIsICJkaXNjb3JkYW50IikpCgpkZl9zaGFyZWQgJT4lIGZpbHRlcihhYnMoZGVsdGFfc2NvcmUpID4gc2NvcmVfdGhyZXMpICU+JSAKICBncm91cF9ieShjb25kaXRpb24sIGlzX2luZGVsKSAlPiUgCiAgc3VtbWFyaXplKG1pbihhYnMoZGVsdGFfc2NvcmUpKSwgbWF4KGRpc3Qyc3VtbWl0KSwgY29yKGRlbHRhX3Njb3JlLCBBSSksIHNoYXJlX2NvbmNvcmRhbnQgPSBzdW0odHlwZSA9PSAiY29uY29yZGFudCIpIC8gbigpLCBuKCkpCgpkZl9zdW0gPSBkZl9zaGFyZWQgJT4lIGZpbHRlcihzaWduaWZfc3Ryb25nQUkgJiBhYnMoZGVsdGFfc2NvcmUpID4gc2NvcmVfdGhyZXMgICYgZGlzdDJzdW1taXQgPCAyNTApICU+JSAKICBzdW1tYXJpemUobWluKGFicyhkZWx0YV9zY29yZSkpLCBtYXgoZGlzdDJzdW1taXQpLCBjb3IgPSBjb3IoZGVsdGFfc2NvcmUsIEFJKSwgc2hhcmVfY29uY29yZGFudCA9IHN1bSh0eXBlID09ICJjb25jb3JkYW50IikgLyBuKCksIG4oKSkKCmNvciA9IHJvdW5kKGRmX3N1bSRjb3IsIDIpCm5fY29uYyA9IHJvdW5kKGRmX3N1bSRzaGFyZV9jb25jb3JkYW50LCAyKSAqIDEwMApuX2Rpc2MgPSAoMSAtIHJvdW5kKGRmX3N1bSRzaGFyZV9jb25jb3JkYW50LCAyKSkgKiAxMDAKCgpwID0gZ2dwbG90KGRmX3NoYXJlZCAlPiUgZmlsdGVyKGFicyhkZWx0YV9zY29yZSkgPiBzY29yZV90aHJlcyApLCBhZXMoeCA9IGRlbHRhX3Njb3JlLCB5ID0gQUksIGNvbG9yID0gdHlwZSkpICsgCiAgZ2VvbV9wb2ludChzaXplID0gMSwgY29sb3IgPSBjYlBhbGV0dGVbMl0pICsgCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwgc2UgPSBGLCBjb2xvciA9ICJkYXJrYmx1ZSIsIHNpemUgPSAwLjUpICsKICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSAtc2NvcmVfdGhyZXMsIGNvbG9yID0gImdyZXkiLCBzaXplID0gMC43KSArCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gc2NvcmVfdGhyZXMsIGNvbG9yID0gImdyZXkiLCBzaXplID0gMC43KSArCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gMC42LCBjb2xvciA9ICJncmV5Iiwgc2l6ZSA9IDAuNykgKwogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDAuNCwgY29sb3IgPSAiZ3JleSIsIHNpemUgPSAwLjcpICsKICB0aGVtZV9idygpICsKICBhbm5vdGF0ZShnZW9tID0gInRleHQiLCB4ID0gLTMuNSwgeSA9IDAuOTUsIGxhYmVsID0gcGFzdGUoIlI9IiwgY29yKSkgKwogIGFubm90YXRlKGdlb20gPSAidGV4dCIsIHggPSAtMy41LCB5ID0gMC44OCwgbGFiZWwgPSBwYXN0ZSgiJSBjb25jb3JkYW50OiAiLCBuX2NvbmMpLCBzaXplID0gNCkgKwogIHhsYWIoIk1vdGlmIHNjb3JlIGNoYW5nZSAoUkVGLUFMVCkiKSArCiAgeWxhYigiQWxsZWxlIEltYmFsYW1jZSIpICsKICAjc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoY2JQYWxldHRlWzJdLCAiZGFya2dyZXkiKSwgbGFiZWxzID0gYyhwYXN0ZTAoImNvbmNvcmRhbnQsICIsIG5fY29uYywgIiUiKSwgcGFzdGUwKCJkaXNjb3JkYW50LCAiLCBuX2Rpc2MsICIlIikpLCBuYW1lID0gIlZhcmlhbnQgdHlwZSIpICsKICB0aGVtZShheGlzLnRleHQ9ZWxlbWVudF90ZXh0KHNpemU9MTIpLAogICAgICAgIGF4aXMudGl0bGU9ZWxlbWVudF90ZXh0KHNpemU9MTQpLAogICAgICAgIGxlZ2VuZC50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemU9MTIpLAogICAgICAgIGxlZ2VuZC50aXRsZSA9IGVsZW1lbnRfdGV4dChzaXplPTEyKSkKCgpwCm91dGYgPSBmaWxlLnBhdGgob3V0ZGlyX2ZpZ19tYWluLCBwYXN0ZTAoIkZpZzNFX3Njb3JlX2FpX2NvbmNvcmRhbmNlLnBkZiIpKQpnZ3NhdmUob3V0ZiwgcCwgd2lkdGggPSA0LCBoZWlnaHQgPSA0KQoKYGBgCgojIEZpZ3VyZSAzRiAtIEV4YW1wbGVzIG9mIEFJcyBieSBwb3NpdGlvbgoKYGBge3J9CmRmID0gbGFwcGx5KGFiX3RwX2xpc3QsIGZ1bmN0aW9uKGFiX3RwKSB7ZGYgPSBwcmVwYXJlX3NucHNfaW5fbW90aWZfMmFsbGVsZXNfNHBsb3R0aW5nKGFiX3RwLCBjaHQsIHJlbW92ZV9pbmRlbHMgPSBUKSAlPiUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG11dGF0ZShhYiA9IFRGc1thYl90cF0pfSkgJT4lIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJpbmRfcm93cygpCgp0ZjJwb3MgPSBjKDMsIDMsIDksIDUpCm5hbWVzKHRmMnBvcykgPSB1bmlxdWUoVEZzKQoKZm9yKHRmIGluIG5hbWVzKHRmMnBvcykpIHsKICAKICBwb3MgPSB0ZjJwb3NbdGZdCiAgCiAgdG1wID0gZGYgJT4lIGZpbHRlcihhYiA9PSB0ZiAmIHZhcl9wb3MgPT0gcG9zKSAlPiUKICBncm91cF9ieShhbGxlbGUpICU+JSBtdXRhdGUobWVhbl9hbGxlbGVfcHJlZiA9IG1lYW4oc2hhcmVfYWZmaW5pdHkpKSAlPiUKICBhcnJhbmdlKG1lYW5fYWxsZWxlX3ByZWYpICU+JQogIHVuZ3JvdXAoKSAlPiUKICBtdXRhdGUoYWxsZWxlID0gZmFjdG9yKGFsbGVsZSwgbGV2ZWxzID0gdW5pcXVlKGFsbGVsZSkpKQoKICBsZXR0ZXJfY29scyA9IGxldHRlcl9jb2xvcnMKICBjb2xzID0gbGV0dGVyX2NvbHNbYXMuY2hhcmFjdGVyKHVuaXF1ZSh0bXAkYWxsZWxlKSldCiAgCiAgcCA9IGdncGxvdCh0bXAsIGFlcyh4ID0gaW50ZXJhY3Rpb24oc25wX2lkLCBjb25kaXRpb24pLCB5ID0gc2hhcmVfYWZmaW5pdHksIGZpbGwgPSBhbGxlbGUpKSArIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiKSArCiAgICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSAwLjUsIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImRhcmtncmV5IikgKwogICAgc2NhbGVfZmlsbF9tYW51YWwobmFtZSA9ICJBbGxlbGUiLCB2YWx1ZXMgPSBjb2xzKSArCiAgICBzY2FsZV9jb2xvcl9tYW51YWwobmFtZSA9ICJBbGxlbGUiLCB2YWx1ZXMgPSBjb2xzKSArCiAgICB4bGFiKCJTTlBzIGluIHBvc2l0aW9uIikgKwogICAgeWxhYigiQWxsZWxlIEltYmFsYW5jZSIpICsKICAgIGdndGl0bGUocGFzdGUodGYsICIsIHBvc2l0aW9uIiwgcG9zKSkgKwogICAgdGhlbWVfYncoKSArCiAgICB0aGVtZShheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplPTE0KSwgYXhpcy50ZXh0LnggPSBlbGVtZW50X2JsYW5rKCksIAogICAgICAgICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KHNpemU9MTQpLCBheGlzLnRpdGxlLnkgPSBlbGVtZW50X3RleHQoc2l6ZT0xNCksCiAgICAgICAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KHNpemU9IDE2LCBoanVzdCA9IDAuNSkpCgogIHByaW50KHApCiAgb3V0ZiA9IGZpbGUucGF0aChvdXRkaXJfZmlnX21haW4sIHBhc3RlMCgiRmlnM0ZfQUlfcGVyX3Bvc18iLCB0ZiwgIl9wb3MiLCBwb3MsICAiLnBkZiIpKQogIGdnc2F2ZShvdXRmLCBwLCAgd2lkdGggPSAzLCBoZWlnaHQgPSAyKQoKICAKfQoKYGBgCgoKCiMgRmlndXJlIDNHIC0gS25vd24gUFdNcwoKYGBge3J9CgpvdXRmX2Jhc2UgPSBmaWxlLnBhdGgob3V0ZGlyX2ZpZ19tYWluLCAiL21vdGlmX2xvZ29zLyIpCgpsYXBwbHkodW5pcXVlKFRGcyksIGZ1bmN0aW9uKHRmKSB7cHJpbnQodGYpCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIGZvcndhcmQgc3RyYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwMSA9IGdldF9tb3RpZl9wZm1fbG9nbyh0ZiwgeF9heGlzID0gVCkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHByaW50KHAxKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb3V0ZjEgPSBmaWxlLnBhdGgob3V0Zl9iYXNlLCBwYXN0ZTAoIkZpZ18zR19rbm93bl9wd21fZndfIiwgdGYsICAiX2ljbS5wZGYiKSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdnc2F2ZShvdXRmMSwgcDEsICB3aWR0aCA9IDQsIGhlaWdodCA9IDIpCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHJldmVyc2Ugc3RyYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwMiA9IGdldF9tb3RpZl9wZm1fbG9nbyh0ZiwgeF9heGlzID0gVCwgcmV2X2NvbXAgPSBUKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb3V0ZjIgPSBmaWxlLnBhdGgob3V0Zl9iYXNlLCBwYXN0ZTAoIkZpZ18zR19rbm93bl9wd21fcnZfIiwgdGYsICAiX2ljbS5wZGYiKSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdnc2F2ZShvdXRmMiwgcDIsICB3aWR0aCA9IDQsIGhlaWdodCA9IDIpCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwcmludChwMil9KQoKYGBgCgoKCiMgRmlndXJlIDNHIC0gQUktUENNcyBhbmQgQUktSUNNcwoKYGBge3J9CgpvdXRmX2Jhc2UgPSBmaWxlLnBhdGgob3V0ZGlyX2ZpZ19tYWluLCAiL21vdGlmX2xvZ29zLyIpCgpmb3IoVEYgaW4gbmFtZXMoVEYyY29uZCkpIHsKICAKICBjb25kID0gVEYyY29uZFtbVEZdXQogIGRmID0gbGFwcGx5KGNvbmQsIGZ1bmN0aW9uKGFiX3RwKSB7ZGYgPSBwcmVwYXJlX3NucHNfaW5fbW90aWZfMmFsbGVsZXNfNHBsb3R0aW5nKGFiX3RwLCBjaHQsIHJlbW92ZV9pbmRlbHMgPSBUKX0pICU+JSBiaW5kX3Jvd3MoKQogIHByaW50KHBhc3RlMCgiTiBTTlBzOiAiLCBucm93KGRmKS8yKSkKICBtYXQgPSBtYWtlX3BwbShkZikgKyAwLjAxCiAgI3AgPSBjb252ZXJ0X3R5cGUocCwgIlBQTSIpCiAgcCA9IHZpZXdfbG9nbyhtYXQsIGNvbG91ci5zY2hlbWUgPSBsZXR0ZXJfY29sb3JzLCBzb3J0LnBvc2l0aW9ucyA9IFQpICsKICAgIHRoZW1lX2NsYXNzaWMoKSArCiAgICBzY2FsZV94X2NvbnRpbnVvdXMoYnJlYWtzID0gMTpuY29sKG1hdCksIGxhYmVscyA9IDE6bmNvbChtYXQpLCBuYW1lID0gIlBvc2l0aW9uIikgKwogICAgeWxhYigiIyBTTlBzIikgKwogICAgdGhlbWUoYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoc2l6ZT0xMiksIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemU9MTIpLAogICAgICAgICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemU9MTIpLCBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoc2l6ZT0xMiksCiAgICAgICAgICBsZWdlbmQucG9zaXRpb249Im5vbmUiLAogICAgICAgICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChjb2xvcj0iYmxhY2siLCBmYWNlPSJib2xkIiwgc2l6ZT0xNiwgaGp1c3Q9MC41KSkKICBwcmludChwKQogIG91dGYxID0gZmlsZS5wYXRoKG91dGZfYmFzZSwgcGFzdGUwKCJGaWdfM0dfQUlfcGNtXyIsIFRGLCAgIi5wZGYiKSkKICBnZ3NhdmUob3V0ZjEsIHAsICB3aWR0aCA9IDQsIGhlaWdodCA9IDIpCgogIG1hdCA9IGNvbnZlcnRfdHlwZShtYXQsICJQUE0iKSAgCiAgcCA9IHZpZXdfbW90aWZzKG1hdCwgdXNlLnR5cGUgPSAiSUNNIiwgY29sb3VyLnNjaGVtZSA9IGxldHRlcl9jb2xvcnMsIHNvcnQucG9zaXRpb25zID0gVCkgKwogICAgdGhlbWVfY2xhc3NpYygpICsKICAgIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAxOm5jb2wobWF0KSwgbGFiZWxzID0gMTpuY29sKG1hdCksIG5hbWUgPSAiUG9zaXRpb24iKSArCiAgICB5bGFiKCJCaXRzIikgKwogICAgdGhlbWUoYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoc2l6ZT0xMiksIGF4aXMudGV4dC54ID0gZWxlbWVudF90ZXh0KHNpemU9MTIpLAogICAgICAgICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KHNpemU9MTIpLCBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoc2l6ZT0xMiksCiAgICAgICAgICBsZWdlbmQucG9zaXRpb249Im5vbmUiLAogICAgICAgICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChjb2xvcj0iYmxhY2siLCBmYWNlPSJib2xkIiwgc2l6ZT0xNiwgaGp1c3Q9MC41KSkKICBwcmludChwKQogIG91dGYyID0gZmlsZS5wYXRoKG91dGZfYmFzZSwgcGFzdGUwKCJGaWdfM0dfQUlfaWNtXyIsIFRGLCAgIi5wZGYiKSkKICBnZ3NhdmUob3V0ZjIsIHAsICB3aWR0aCA9IDQsIGhlaWdodCA9IDIpCiAgCn0KCmBgYAo=