
Introduction to using a
High-Performance
Computing cluster

Mike Smith

Connecting to our cluster

Connecting to our cluster

● Connect using

● and then

● Replace “##” with the number of your workstation e.g.

user10

● Password: SoftwareC

ssh bq_11denbi@129.206.69.162

ssh user##@172.16.72.70

Download example programs

git clone https://github.com/grimbough/embl_swc_hpc.git

When is HPC useful?

● When you realise your standard computer is too small or

too slow for your data

○ Compute Intensive: Task requiring a large amount of computation

■ e.g. more rigourous sequence alignment

○ Memory Intensive: Task requiring a large amount of memory

■ e.g. scaling up from bacteria to human genome

○ Data Intensive: Task involves operating on a large amount of data

■ e.g. 50 human genomes

Types of Cluster - Shared Memory

Types of Cluster - Shared Memory

Types of Cluster - Distributed Memory

Types of Cluster - Distributed Memory

How do we work with a distributed cluster?

● Typically interact with a single ‘Master’ node

● A job scheduler manages where and when tasks are run

○ There are many options available e.g. LSF, Torque, SLURM,

Condor, Univa Grid Engine

● Matches job requirements with available resources

● If no slots are available a job will wait until resources are

available

Our example cluster

● Consists of four nodes:

○ master - 2 cores, 4GB RAM (doesn’t do any work)

○ node1 - 2 cores, 4GB RAM

○ node2 - 4 cores, 8GB RAM

○ node3 - 8 cores, 16GB RAM

● Not enough resources for us all to run programs
simultaneously

● Clusters are about sharing!

● scontrol show nodes - shows makeup of the cluster

Our first cluster job

● srun - submits a job to the cluster

srun hostname

Example python program

● Program should be present in the ‘exercises’ directory

● Takes two arguments

○ -t Time to wait in seconds

○ -l Length of list to create (don’t go over 4,000,000 !)

● Prints arguments to screen ⇨ creates list ⇨ waits ⇨ prints

memory usage ⇨ exits

./hpc_example.py -t 10 -l 100

Example python program

● Not super convenient, use & to run in background

● squeue - lists current jobs (default only yours are shown)

srun ./hpc_example.py -t 10 -l 100

srun ./hpc_example.py -t 120 -l 100 &

Redirecting output

● Not always helpful to print things to screen

● Use srun --output=output.txt

srun --output=output.txt \
./hpc_example.py -t 20 -l 100 &

srun --output=output.txt \
./hpc_example.py -t 30 -l 5000000

Try creating a larger list

Requesting Additional Resources

● Sharing resources between users is a key function of the job scheduler

● Jobs are killed if they try to use more than their allocated share

● View configuration with:

scontrol show partition

Requesting Additional Resources

● Sharing resources between users is a key function of the job scheduler

● Jobs are killed if they try to use more than their allocated share

● We can raise this limit using --mem=250

srun --mem=250 \
--output=output.txt \
./hpc_example.py -t 30 -l 5000000 &

Try reserving a LARGE amount of memory

● Look at the running jobs with squeue

● Only a small number of jobs will be allowed to run
simultaneously

srun --mem=8000 \
--output=output.txt \
./hpc_example.py -t 30 -l 5000000 &

Understanding the compute requirements of your
task is key to effectively using a HPC cluster

● Ask for too much
○ Job will wait for a long time necessarily
○ Reserve resources you don’t need

● Ask for too little
○ Job may be killed without finishing
○ You start using resources you haven’t asked for, potentially slowing things

down for everyone

● Run tests on a subset
● Some programs let you specify resource usage, so read

the manual

Interactive jobs

● Sometimes we want to interact with a job

○ e.g. if we’re testing code works

●

● All other parameters can also be used as before

srun --pty bash

srun --mem=250 --pty bash

Using sbatch

● Jobs can be submitted as scripts as well

sbatch batch_job.sh

● Try modifying batch_job.sh to run the python program

twice with different parameters

Job dependencies

● We can make part 2 run only when part 1 is finished

jid=$(sbatch --parsable batch_job.sh)

sbatch --dependency=afterok:$jid batch_job.sh

Things we haven’t covered

● We have discussed only memory, jobs can have many

more resource requirements

○ In particular the number of cores / threads you want to
use

● Job checkpoints, suspension and resumption

● Executing more complex parallel programs

● ...

Questions?

