
Compute Cluster Workshop

Mike Smith & Toby Hodges

Introduction

https://git.embl.de/grp-bio-it/embl_hpc

19/03/194

What is a compute cluster?

• A bunch of individual machines (nodes) tied together

• Nodes are often heterogeneous

• No. of CPU cores, Memory, Disk space, ...

• Special software is used to represent those machines as a pool of
shared resources

• This software gives you ability to ask for a chunk of this pool to run
your software

19/03/195

What is a compute cluster?

• Tailored to batch processing (=jobs)
• Interactive use possible

• You don’t care on which machine your job is running
• If you do, you can ask for specific resources to be allocated to you

High Performance Computng (HPC): the (efectve) use of multple
computers to do things you couldn’t do on a single machine.

19/03/196

When is HPC useful?

• When you want to get results faster than what your laptop can offer

• Compute Intensive: Task requiring a large amount of computation

• e.g. more rigorous sequence alignment

• Memory Intensive: Task requiring a large amount of memory

• e.g. scaling up from bacterial to human genome

• Data Intensive: Task involved operating on a large amount of data

• e.g. 50 human genomes

19/03/197

Where to find help
• Training like this one and the one tomorrow

• Wiki: https://wiki.embl.de/cluster/

• chat.embl.org #cluster

• itsupport@embl.de

• clusterNG mailing list

• Meetings as needed
• When there are new things to announce and explain

• Bio-IT drop-in sessions and meetings, Coding Club

https://wiki.embl.de/cluster/
mailto:itsupport@embl.de

Jobs & Scheduling

19/03/199

How do I work with a cluster?
• Typically interact with a frontend (head) node

• A job scheduler manages where and when tasks are run
• There are many options available e.g. LSF, Torque,

Slurm, Condor, Univa Grid Engine

• Matches job requirements with available resources
• If no slots are available a job will wait until resources are
available

19/03/1910

Slurm

• “Simple Linux Utility for Resource Management”

• One of the most popular HPC schedulers
• All fancy features are first developed for Slurm

• Currently running 18.08
• Regular updates for bug fixes and new features

19/03/1911

How do I connect to the cluster?

• Connect to the cluster frontend node via ssh

ssh <username>@login.cluster.embl.de

This is the frontend node

19/03/1912

Obtaining example program

•Use git to download

git clone https://git.embl.de/grp-bio-it/embl_hpc.git

19/03/1913

How do I run a program on the cluster?

• Our first job

srun hostname

job: a resource allocaton & the steps run within it (just one in above)
step: single task run by scheduler
srun submits a job step to the cluster

hostname

• Never run anything on the frontend node! (except this one time...)

19/03/1914

Training reservation

• You only need to use this during our session today

srun --reservation=training hostname

Reservaton: collecton of resources reserved for partcular users/groups/tme
period

• Isolates us from the rest of EMBL

19/03/1915

Example program

• Program should be present in the ‘exercises’ directory

• Takes two arguments
• -t Time to wait in seconds
• -m Amount of memory to use in MB

• Prints arguments to screen -> creates list -> waits -> prints memory
usage -> exits

./hpc_example -t 10 -m 100
(Remember not to run

 on the login node!)

19/03/1916

Submit example program

srun --reservation=training \
 ./hpc_example -t 10 -m 100

19/03/1917

Submitting Example program
• srun is not convenient, use sbatch to run in background

• We need to use a script - batch_job.sh

sbatch --reservation=training \
 batch_job.sh

sbatch submits a job script to the cluster
job script: simple script that combines resource requests and job steps

19/03/1918

Viewing jobs

• We can filter the list to be more specific

squeue

squeue --user=<username>
squeue --reservation=training

squeue lists current jobs

19/03/1919

Examining output

• Default output is a file based on the JobID e.g slurm-15273607.out
• You can change this

• Use srun/sbatch --output=output.txt

sbatch --output=<outputfile> \
 --reservation=training \
 ./batch_job.sh

• Append to a file with --open-mode=append

19/03/1920

Options in the batch script

• All options can also go in the script itself

• Start option lines with #SBATCH

• Note: unless you specify otherwise (using the --export=NONE option),
the current working environment is inherited by your job.

• Where possible, try to include absolute paths to executables, files,
scripts, etc in your job script

19/03/1921

Quick recap
• Don’t run things on the head node!

• Submit jobs using sbatch (and srun)

• View status of jobs with squeue

• Edit the location of output with --output=<filename>

• Options can be at command line or in script with #SBATCH

Questions?

19/03/1922

Experiment with settings

• We modify our script to accept arguments

• Submit several jobs, try using more memory

sbatch --reservation=training \
 ./batch_job.sh 20 ???

reminder: the second option controls the maximum memory that the job will use

Our node has 256GB or 256,000MB

Resource management

19/03/1924

Reserving additional resources

• Sharing resources between users is a key function of the job scheduler

• Jobs may be killed or slow down if they try to use more than their
allocated share

• Use scontrol to view the cluster configuration & default values

scontrol show partition

scontrol show confguraton of the cluster
partton: collecton of resources with common atributes (also known as a
queue)

19/03/1925

Requesting additional resources

• Sharing resources between users is a key function of the job scheduler

• Jobs may be killed or slow down if they try to use more than their
allocated share

• Try reserving an appropriate amount of memory

 #SBATCH –mem=<XXX> (alternative)

sbatch --mem=8200 \
 --reservation=training \
 ./batch_job.sh 30 8000

19/03/1926

Requesting additional resources

•Try reserving a LARGE amount of memory

• Look at the waiting jobs with squeue -t PENDING

• Only a small number of jobs will be allowed to run simultaneously

sbatch --mem=100gb \
 --reservation=training \
 ./batch_job.sh 300 5000

19/03/1927

Requesting appropriate resources
• Understanding the compute requirements of your task is key to efectve use of an
HPC cluster

• Ask for too much

• Your job will wait for a long tme unnecessarily

• Reserve resources you don’t need, keeping others from using them

• Ask for too litle

• Job may be killed without fnishing

• You start using resources you haven’t asked for, potentally slowing things
down for everyone

19/03/1928

Canceling unwanted jobs

scancel <jobID>

scancel -u <username>

• Cancel a single job

• Cancel all jobs for a user

19/03/1929

Number of cores

• Many programs offer ‘multi-threading’ or ‘multi-core’

• Make sure you request this with:

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=8 (other integers are available)

• Be aware of the default behavior of the application!

19/03/1930

Setting a time limit

• Default time limit is 5 minutes

• Define a time limit with:

 #SBATCH --time=<DD-HH:MM:SS>

sbatch --time=00-00:00:30 \
 --reservation=training \
 batch_job.sh 60 500

19/03/1931

Time limits

• Providing a run time matters –

•SLURM tries to slot short jobs into gaps

•If every request has the same time, it can’t do this

24 hours24 hours
24 hours

24 hours

24 hours

24 hours
Resources

Time

19/03/1932

Time limits

• Default time limit is 20 minutes (will be 5 minutes soon)

• Providing a run time matters –

•SLURM tries to slot short jobs into gaps

•If every request has the same time, it can’t do this

24 hours6
24 hours

12

12

24 hours
Resources

Time

19/03/1933

Time limits

• Default time limit is 20 minutes (will be 5 minutes soon)

• Providing a run time matters –

•SLURM tries to slot short jobs into gaps

•If every request has the same time, it can’t do this

24 hours

6

24 hours

12

12 24 hours
Resources

Time

19/03/1934

Resources summary

• Balance between asking for enough to run your job, but not too much

• Unfortunately, determining the right amount is hard

• Try running a few realistic tests

• Read manuals – often they have some guidelines

• If it’s your software, maybe you can work from the code

• Use seff to report efficiency of a finished job

seff <jobid>

19/03/1935

Resources summary emails

• In June 2018, usage summary emails were introduced for cluster users

• Every month, users receive a summary of their usage from
slurm@embl.de

• This message includes information on the efficiency of the user’s jobs, in
terms of CPU and memory used vs requested

mailto:slurm@embl.de

Troubleshooting
CC-BY 2.0 https://www.flickr.com/photos/gaetanlee/298160434/

https://www.flickr.com/photos/gaetanlee/298160434/

19/03/1937

Job reporting
• You can get email notfcaton of jobs fnishing & details about their executon

• Use the --mail-user=user@mail.com opton

• Report emails contain a lot of informaton

• resource usage

• efficiency of this usage vs what you requested

sbatch --mail-user=<first.last>@embl.de \
 --mail-type=ALL \
 --reservation=training \
 batch_job.sh 20 500

19/03/1938

Why is my job not running?
● Slurm can tell you a reason:

● Many possible reasons:

– Resources

– Priority

– Various limits

scontrol show job <jobid>

19/03/1939

Why did my job fail?
• Use the sacct command to see information about recently-finished jobs

• Many possible exit codes:

• Completed is the expected one

• Failed

• Timeout

• Cancelled

• ...

sacct
sacct -j <jobid>

More complex jobs

19/03/1941

Batch scripts

• Batch scripts can have more than one step

• Try modifying batch_job.sh to run the example program twice, with
different parameters

19/03/1942

Using software
• Most commonly-used sofware is provided centrally, as modules

• To use this sofware, you frst need to load the corresponding module

module load BWA
bwa index genome.fasta

module load add a specifc sofware module to your working environment
module: package of pre-installed sofware, dependency-aware, optmized for
hardware and environment

19/03/1943

Using software
• Look at what modules are available with module avail, and search for
something specifc with module spider <software>

module avail
module spider samtools

module avail lists all modules (sofware & versions) available on the
system
module spider search for all available modules (versions) for a partcular
program

19/03/1944

Data Movement
• Always try to move data as close to compute as possible

• Nodes have >250GB of local $TMPDIR, use it:

• --tmp=50gb (select only nodes with at least 50GB of free space)

• --gres=tmp:50gb (declare your job will use 50GB of $TMPDIR)

• Copy your data to $TMPDIR as frst step in your job

• Copy your results from $TMPDIR as last step of your job

• If you need more, copy your data to /scratch

• Visible from all nodes

• Each job gets a dedicated $SCRATCHDIR

Real world example

19/03/1946

E.coli sequence alignment
• Look at exercises/bwa/bwa_batch.sh

• Multi-step job with data movement, software loading and resource
requirements

19/03/1947

Conclusions
• Head node is for job submission only

• Remember the cluster is shared between all EMBL users

• Understanding the requirements of your jobs is key

• This can be hard :(

• Doesn’t need to be super precise, reasonable estmates are fne

19/03/1948

Where to find help
• Training like this one and the one tomorrow

• Wiki: https://wiki.embl.de/cluster/

• chat.embl.org #cluster

• itsupport@embl.de

• clusterNG mailing list

• Meetings as needed
• When there are new things to announce and explain

• Bio-IT drop-in sessions and meetings, Coding Club

https://bio-it.embl.de/

https://wiki.embl.de/cluster/
mailto:itsupport@embl.de

Some More Advanced Things

19/03/1950

Parallelisation/GPU/job dependencies
•If we have tme to cover this stuf…

sacct
sacct -u username

Backup slides

19/03/1953

Slurm commands
•srun – run a single job step

•sbatch – submit a job script

•scancel – kill a running job

•squeue – reports the state of jobs in the queue

•sinfo – reports the state of queues and nodes

•sacct – query accounting database for info on finished
jobs

19/03/1954

Software environments
•Base OS: CentOS 7.4

•Environment modules used to enable specific software in
your shell

•Software organized around toolchains

•Toolchains based on free, open source components: foss

•Two toolchains per year, we use components from H2 each
year:
•foss/2015b (gcc 4.9)
•foss/2016b (gcc 5.4, OpenBLAS 0.2.18, FFTW 3.3.5)
•foss/2017b (gcc 6.4, OpenBLAS 0.2.20, FFTW 3.3.6)
•

19/03/1955

Environment Modules
•Used with Lmod

•Provided by EasyBuild
•Repeatable software builds
•Hardware optimized builds
•Currently building for Nehalem,
•SandyBridge, Haswell and Skylake
•Large community
•Road map towards containers

19/03/1956

Queues
•Default queue: htc
•Default run time 5 min, max runtime 20 days
•Default: 1 cpu, 2GB of memory
•Be sure to ask slurm for resources you need
•cpu, memory, time

•Hw specific:
•gpu

Backfill scheduling

19/03/1957

19/03/1958

For more information
•www.vi-hps.org

•

•

•

•www.prace-ri.eu

http://www.vi-hps.org/

19/03/1959

Exercise: login
•Use ssh to login to login.cluster.embl.de

19/03/1960

Exercise: slurm resources
•View partitions: sinfo -l

•View node info: sinfo -Nl
•View node features: sinfo -No “%N %f”

•View reservations: sinfo -T

19/03/1961

Slurm node states
•Idle

•Mixed

•Allocated

•Draining

•Drained

•Down

•Unknown

•

19/03/1962

Exercise: modules
•List available modules: module avail
•

•Search available modules: module spider <modulename>
•

•Detailed description of a module: module whatis <modulename>
•

•Help for a specific module: module help <modulename>

19/03/1963

Exercise: toolchains
•Run gcc -v and observe the version

•module spider foss
•module load foss
•Run gcc -v again and observe the version

•module list
•module purge
•module list

19/03/1964

Exercise: dependencies
•module load snakemake
•module list
•module load matplotlib/2.0.0-foss-2016b-
Python-2.7.12
•module list
•snakemake -h
•What happens?

How to handle that

19/03/1965

Merit by Markus Fritz

19/03/1966

Exercise: job environment
•module purge
•module load foss
•srun -t 01:00 gcc -v

19/03/1968

Exercise: default resources
•srun -t 05:00 --pty -E $SHELL
•

•grep Cpus.*list /proc/self/status

•

•cat /sys/fs/cgroup/memory/slurm/uid_$(id
-u)/job_$SLURM_JOBID/memory.limit_in_bytes

•

•exit

19/03/1969

Exercise: asking for resources
•srun -t 05:00 -N 1 -n 1 -c 4 --mem=500 --pty
-E $SHELL
•

•srun grep Cpus.*list /proc/self/status

•

•srun cat /sys/fs/cgroup/memory/slurm/uid_$(id
-u)/job_$SLURM_JOBID/memory.limit_in_bytes

•

•exit

19/03/1970

Exercise: asking for resources
•srun -t 05:00 -N 1 -n 200 –pty -E $SHELL
•

•

19/03/1972

Exercise: asking for features
•srun -t 05:00 -n 1 -c 4 -C HT --pty -E
$SHELL
•grep Cpus.*list /proc/self/status

•exit

•srun -t 05:00 -n 1 -c 4 -C noHT --pty -E
$SHELL
•grep Cpus.*list /proc/self/status

•exit

•srun -t 01:00 -C avx512 --pty -E $SHELL

•hostname
•exit
•

19/03/1974

Data movement
•Your work is highly data intensive

•Data and compute should be as close as possible to
achieve best performance

•Slurm provides per-job $TMPDIR and $SCRATCHDIR

•Nodes have at least 250GB of fast TMPDIR, use it!

•If you can’t, use $SCRATCHDIR

•

•Use /g shares only as a source of input data and a place to
store results

19/03/1975

Example: Data movement
•This job script
illustrates a
method of copying
input to many
nodes

#!/bin/bash
#SBATCH -t 03:00
#SBATCH -N 4
#SBATCH -n 4
#SBATCH --ntasks-per-node=1
#SBATCH –tmp=50G
#SBATCH --gres=tmp:50G

#copy source data to node local tmp
sbcast /g/somewhere/project/input_data $TMPDIR/

module load …
#do stuff …

#wrap up
srun -N $SLURM_NNODES cp $TMPDIR/results /g/somewhere/project/output_results

19/03/1976

OpenMP
•Shared memory parallelism

•A method to parallelize within the same node

•Obeys 10+ environment variables

•Slurm sets OMP_NUM_THREADS based on cpus
requested by job

19/03/1977

Exercise: OpenMP
•Prepare this job
script

•Use sbatch to
submit it

•Vary number of
cores per task

•Observe “Number
of threads” and
“Best rate Triad”
differences

#!/bin/bash
#SBATCH -t 00:01:00
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -c 1 #vary this 1..128

module load STREAM
stream_1Kx10M

19/03/1981

Exercise: notifications
•Slurm can send
you emails

•They include
some job
efficiency statistics

•Useful to tune
your exact
resource request

#!/bin/bash
#SBATCH -t 00:01:10
#SBATCH -N 1 -n 1
#SBATCH -J stress
#SBATCH --mail-type BEGIN,END,FAIL
#SBATCH --mail-user=your.mail@embl.de

#do something
module load stress

cd $TMPDIR
stress -t 60 -c 1 -i 1 -m 1 -d 1

19/03/1982

Exercise: GPU
•Slurm implements gpu as
“generic resource” (gres)

•You can ask for some
number of them

•Use constraint to select
specific gpu model

•Check wiki for exact gpu
hardware available

#!/bin/bash
#SBATCH -p gpu
#SBATCH -n 7
#SBATCH --mem=50G
#SBATCH -C gpu=1080Ti
#SBATCH --gres=gpu:1080Ti:2

#run relion on 7 cpu cores and 2 gpus
module load RELION

#do relion stuff ...

19/03/1983

Why is my job queued?
•Your job sits in the queue in state PENDING

•Use scontrol show job [job id] to understand
why

•

•

•

•

•See man squeue to understand State and Reason fields

JobId=828772 JobName=CL3d_round2K2.sh
 UserId=dauden(21588) GroupId=cmueller(574) MCS_label=N/A
 Priority=3209 Nice=0 Account=cmueller QOS=normal
 JobState=PENDING Reason=Resources Dependency=(null)
 ...

Job states
•Pending

•Running

•Completed

•Cancelled

•Failed

•Suspended

•Many more, see man squeue

19/03/1985

Exercise: why did my job fail?
•Submit such job script

•Use sacct -j [jobid] to determine
exit code and failing step

•Anything non-zero is a problem

•Standard ones defined in
/usr/include/sysexits.h

•Bash has a couple of its own

•Every software can implement its
own ...

#!/bin/bash
#SBATCH -t 00:01:00
#SBATCH -N 1
#SBATCH -n 1

#do something that fails …
exit 1

19/03/1986

Best practices: Slurm
•Use your local machine or short small interactive job to
experiment and test

•Use srun to run single commands from your scripts or
external workflow managers (such as snakemake)

•Use sbatch and job scripts for everything where you want
to preserve information about environment used (module
load statements)

•Use notifications to fine tune your cpu, memory and
runtime requests

19/03/1987

Best practices: R
•While capable of using multiple threads via OpenMP, no
performance benefit has been seen

•Recommend to use it with -N 1 -c 1

•If possible, try parallelizing it with MPI (at least three
ways to do that)

•

•Explore alternatives (like Julia)

19/03/1988

Best practices: GPU
•Gpu2-5 offer 28 cores and 8 GPUs

•Slurm knows which GPU is closest to which core

•If software knows about OpenMP or MPI, try to use 3-4
cores per GPU, otherwise use 1

•Best job throughput achieved with 7 cores per 2 gpus

19/03/1989

How to approach parallelization
•Single operation over large dataset
•Think of splitting it into smaller chunks and do them at the
same time

•If you’re doing things in loops, look for independent data
•Typically “for [all elements of an array] do ...”

•Figure out a way to execute these loop steps in parallel
•Use some form of shared memory model
•Parallel loop constructs
•Independent workers
•Use some tool that helps you with that

19/03/1990

One of the options: Jug
•Demo by Renato Alves

19/03/1991

Conclusion
•To achieve best performance:
•Put data and compute as close together as possible
•Use memory instead of filesystem
•Identify independent data and implement some
parallelism on it

19/03/1992

Q & A

19/03/1993

Thanks

	Title
	Slide83
	Slide 3
	page2
	Slide66
	Slide67
	page29
	Slide82
	page6
	Slide69
	Slide70
	Slide 12
	Slide71
	Slide 14
	Slide72
	Slide73
	Slide 17
	Slide 18
	Slide74
	Slide 20
	Slide 21
	Slide75
	Slide 23
	Slide76
	Slide77
	Slide78
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide79
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide87
	Slide86
	Slide88
	Slide89
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide90
	Slide94
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide93
	Slide 51
	Slide 52
	page17
	page18
	page19
	page27
	page28
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page40
	page41
	page42
	page44
	page46
	page47
	page48
	page49
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61
	page62
	page63
	page64
	page65

