#!/bin/sh

myscript.sh

General purpose script for extracting Glycine
occurrences in a datafile.

Usage: myscript.sh datafile
Exit values: 1l: No datafile given or file
doesn’t exist

2: No Glycine found

Author: Me, myself and I
Date: Heidelberg, December 12., 2012

$hoFh 3 H H H W ¥ YR Y W W W

--- Configuration ---
GREPCMD=/bin/grep
DATAFILE=S1

—-- Check prerequisites ---

first check for $1

if [-z $DATAFILE]

then
echo “No datafile given” 1>&2 # print on STDERR
echo “USAGE: $0 datafile”
exit 1

fi

then check if the file exists

if [! -f SDATAFILE]

then
echo “Datafile $DATAFILE does not exist!” 1>&2
exit 1

fi

--- Now processing---
$GREPCMD —q Glycine $DATAFILE # Where is Glycine?

—-—- Exit ---
if [$? —eq 0]
then

exit 0
else

exit 2
fi

Group, group, group

One after the other: cmdl ; cmd?2
One or both: cmdl && cmd?2
Only one of them: cmdl || cmd?2
Cuddling (there): (cmdl ; cmd2)
Cuddling (here): {cmdl ; cmd2 }

1f conditionl
then
statements
elif conditionZ2
more statements
[..]
else

even more statements
fi

if grep -g root /etc/passwd
then
echo root user found

else
echo “No root?2?2?2”

fi

Twice the same

if [-e /etc/passwd]
then
echo /etc/passwd exists
else
echo /etc/passwd does NOT exist
fi

if test -e /etc/passwd
then
echo /etc/passwd exists
else
echo /etc/passwd does NOT exist
fi

case variliable in
patternl)
statements 1
V7
pattern?)
statements 2

[..]
*)

statements 3

case SPATH in
/opt/ | */usr/*)
echo /opt/ or /usr/ paths found in \$PATH
*)
echo ‘/opt and /usr are not contained in
SPATH'

esacC

for variable in list
do

statements
done

Twice the same again

for FILE in /tmp/*
do

echo ” * SFILE"”
done

for FILE in ~1ls /tmp"
do

echo ” * SFILE”
done

while condition
do

statements
done

until condition
do

statements
done

Manual Loop Control

while condition 1
do

if condition 2

then
_— continue

elif condition 3
~—break

fi
__do_something
done

continue here

Script Flexibility: Variables

Instead of

#!/bin/sh

echo “The directory /etc contains the following files:”
ls /etc

use

#!/bin/sh

MYDIR=/etc

echo “The directory S$SMYDIR contains the following
files:”

ls SMYDIR

Script Flexibility: Settings File

Create a settings file:

MYDIR=/etc

And source it in your script
#!/bin/sh
./settings.ini
echo “The directory S$SMYDIR contains the following

files:"”
1ls SMYDIR

Script Flexibility:
Commandline Parameters

myscript.sh -n "my title" -h 2WEr4.pdb

—J
$3
B 2
: $* %@
$1 $4
$0 $4 =4
(full path)
"$@" = "myscript.sh" "-a" "my title" "-h" "2WEr4.pdb"

Script Flexibility:
Walking through the
Commandline Parameters

50 51 o2 $3 54
myscript.sh -n "my title” -h 2WEr4 .pdb
J J J
¥ {
myscript.sh "my title" -h 2WEr4 .pdb
J J
i ¥
myscript.sh -h 2WEr4 .pdb

J

myscript.sh 2WEr4.pdb

Script Flexibility:
Applying the case statement

while ["S#" —gt 0]

do
case $1 in
-h) echo “Sorry, no help available!” # not very helpful, is it?
exit 1 # exit with error
r7
-v) VERBOSE=1 # we may use SVERBOSE later
r7
-f) shift
FILE=S1 # Aha, -f requires an
additional argument
r7
*) echo “Wrong parameter!”
exit 1 # exit with error
esac
shift

done

Script Flexibility:
Unsolved cases regarding
commandline parameters

*How to handle multiple instances of the same parameter?

*How to handle commandline arguments which are not options?

Ending a script properly:
The Exit Status

There is always an exit status: The exit status of the last
command run in the script

The exit status of the last run command is available in the §?
variable

Either you control the exit status or it controls you

Ending a script properly:
The Exit Status — miserable failure

Ran the following scripts on the cluster

#!/bin/sh
[... Lots of processing steps. One of them failed ...]

Echo “End of the script”

The jobs apparently failed (no result files were written) but there were no entries
in the error file and the cluster administrators confirmed repeatedly, that all these
scripts ran fine and successfully

WHY?

Ending a script properly:
The Exit Status — good solution

This solved the situation

#!/bin/sh
mystatus=0;

[... do something that might fail ...]
if [$? -ne 0]

then
mystatus=1
fi
[... do something else that might fail, too ...]
[$? -ne 0] && mystatus=1 # same as above. Do you understand

this?

echo "End of the script"
exit Smystatus

The exit status had controlled us, but now we are back in control

