
Intermediate Linux Course

Holger Dinkel & Frank Thommen

March 11, 2015

Contents

1 More Commandline Tools 1
1.1 Commandline Tools . 1
1.2 I/O Redirection . 6
1.3 Variables . 8
1.4 Hints . 10

2 Commandline Exercises 13
2.1 TAR & GZIP . 13
2.2 GREP . 13
2.3 SED . 14
2.4 AWK . 14
2.5 Quoting and Escaping . 14

3 Basic Shell Scripting 17
3.1 What is a Script? . 17
3.2 Script Naming and Organization . 17
3.3 Running a Script . 17
3.4 Control Structures . 22
3.5 Making Scripts Flexible . 27
3.6 Ensuring a Sensible Exit Status . 30
3.7 Tips and Tricks . 31

4 Solutions to the Exercises 35
4.1 TAR & GZIP . 35
4.2 GREP . 36
4.3 SED . 37
4.4 AWK . 37
4.5 Quoting and Escaping . 38

5 Propositions for Scripting Exercises 39
5.1 General “Unpacker” . 39
5.2 Safety Backup Creator . 40
5.3 Column Chooser (advanced) . 40

6 Appendix 43
6.1 Links and Further Information . 43
6.2 About Bio-IT . 45

i

6.3 Acknowledgements . 47

Index 49

ii

CHAPTER 1

More Commandline Tools

Here is a quick list of useful commandline tools which will be used throughout the rest of
the document. Many of these tools have quite extensive functionality and only a very limited
part can be discussed here, so the reader is encouraged to read more about these using the
links given in the in the links section...

1.1 Commandline Tools

1.1.1 GZIP

gzip is a compression/decompression tool. When used on a file (without any parameters) it
will compress it and replace the file by a compressed version with the extension ‘.gz’ attached:

ls textfile*
textfile

gzip textfile
ls textfile*
textfile.gz

To revert this / to uncompress, use the parameter -d:

ls textfile*
textfile.gz

gzip -d textfile
ls textfile*
textfile

Note: As a convenience, on most Linux systems, a shellscript named gunzip exists which
simply calls gzip -d

1.1.2 TAR

tar (tape archive) is a tool to handle archives. Initially it was created to combine multiple
files/directories to be written onto tape, it is now the standard tool to collect files for distri-
bution or archiving.

1

Intermediate Linux Course

tar stores the permissions of the files within an archive and also copies special files (such as
symlinks etc.), which makes it an ideal tool for archiving... Usually tar is used in conjunction
with a compression tool such as gzip to create a compressed archive:

Figure 1.1: source: Th0msn80 (Wikipedia)

The most common commandline switches are:

Option: Effect:
-c create an archive
-t test an archive
-x extract an archive
-z use gzip compression
-f filename filename of the archive

Note: Don’t forget to specify the target filename. It needs to follow the -f parameter.
Although you can combine options like such: tar -czf archive.tar the order matters, so
tar -cfz archive.tar will not do what you want...

Creating an archive containing two files:

tar -cf archive.tar textfile1 textfile2

Listing the contents of an archive:

tar -tf archive.tar
textfile1
textfile2

Extracting an archive:

tar -xf archive.tar

Creating and extracting a compressed archive containing two files:

tar -czf archive.tar.gz textfile1 textfile2
tar -xzf archive.tar.gz

Creating a backup (eg. before doing something dangerous?):

tar -czf /folder/containing/the/BACKUP.tgz /folder/you/want/to/backup

2 Chapter 1. More Commandline Tools

Intermediate Linux Course

1.1.3 GREP

grep finds lines matching a pattern in textfiles.

Usage: grep [options] pattern file(s)

grep -i ensembl P04637.txt

DR Ensembl; ENST00000269305; ENSP00000269305; ENSG00000141510.
DR Ensembl; ENST00000359597; ENSP00000352610; ENSG00000141510.
DR Ensembl; ENST00000419024; ENSP00000402130; ENSG00000141510.
DR Ensembl; ENST00000420246; ENSP00000391127; ENSG00000141510.
DR Ensembl; ENST00000445888; ENSP00000391478; ENSG00000141510.
DR Ensembl; ENST00000455263; ENSP00000398846; ENSG00000141510.

Useful options:

Option: Effect:
-v Print lines that do not match
-i Search case-insensitive
-l List files with matching lines, not the lines itself
-L List files without matches
-c Print count of matching lines for each file

Count the number of fasta sequences (they start with a “>”) in a file:

grep -c ’>’ twofiles.fasta
2

List all files containing the term “Ensembl”:

grep -l Ensembl *.txt
P04062.txt
P12931.txt

1.1.4 SED

sed is a Stream EDitor, it modifies text (text can be a file or a pipe) on the fly.

Usage: ‘sed command file‘,

The most common usecases are:

Usecase Command:
Substitute TEXT by REPLACEMENT: ‘s/TEXT/REPLACEMENT/’
Transliterate the characters x a, and y b: ‘y/xy/ab/’
Print lines containing PATTERN: ‘/PATTERN/p’
Delete lines containing PATTERN: ‘/PATTERN/d’

echo "This is text." | sed ’s/text/replaced stuff/’
This is replaced stuff.

1.1. Commandline Tools 3

Intermediate Linux Course

By default, text substitution are performed only once per line. You need to add a trailing ‘g’
option, to make the substitution ‘global’ (‘s/TEXT/REPLACEMENT/g’), meaning all occur-
rences in a line are substituted (not just the first in each line). Note the difference:

echo "ACCAAGCATTGGAGGAATATCGTAGGTAAA" | sed ’s/A/_/’
_CCAAGCATTGGAGGAATATCGTAGGTAAA

echo "ACCAAGCATTGGAGGAATATCGTAGGTAAA" | sed ’s/A/_/g’
_CC__GC_TTGG_GG__T_TCGT_GGT___

When used on a file, sed prints the file to standard output, replacing text as it goes along:

echo "This is text" > textfile
echo "This is even more text" >> textfile
sed ’s/text/stuff/’ textfile
This is stuff
This is even more stuff

sed can also be used to print certain lines (not replacing text) that match a pattern. For this
you leave out the leading ‘s’ and just provide a pattern: ‘/PATTERN/p’. The trailing letter
determines, what sed should do with the text that matches the pattern (‘p’: print, ‘d’: delete)

sed ’/more/p’ textfile
This is text
This is even more text
This is even more text

As sed by default prints each line, you see the line that matched the pattern, printed twice.
Use option ‘-n’ to suppress default printing of lines.

sed -n ’/more/p’ textfile
This is even more text

Delete lines matching the pattern:

sed ’/more/d’ textfile
This is text

Multiple sed statements can be applied to the same input stream by prepending each by
option ‘-e’ (edit):

sed -e ’s/text/good stuff/’ -e ’s/This/That/’ textfile
That is good stuff
That is even more good stuff

Normally, sed prints the text from a file to standard output. But you can also edit files in
place. Be careful - this will change the file! The ‘-i’ (in-place editing) won’t print the output.
As a safety measure, this option will ask for an extension that will be used to rename the
original file to. For instance, the following option ‘-i.bak’ will edit the file and rename the
original file to textfile.bak:

4 Chapter 1. More Commandline Tools

Intermediate Linux Course

sed -i.bak ’s/text/stuff/’ textfile
cat textfile
This is stuff
This is even more stuff

cat textfile.bak
This is text
This is even more text

1.1.5 AWK

awk is more than just a command, it is a complete text processing language (the name is an
abbreviation of the author’s names). Each line of the input (file or pipe) is treated as a record
and is broken into fields. Generally, awk commands are of the form:

awk condition { action }

where:

• condition is typically an expression

• action is a series of commands

If no condition is given, the action is applied to each line, otherwise just to the lines that
match the condition.

awk ’{print}’ textfile
This is text
This is even more text

awk ’/more/ {print}’ textfile
This is even more text

awk reads each line of input and automatically splits the line into columns. These columns
can be addressed via $1, $2 and so on ($0 represents the whole line). So an easy way to print
or rearrange columns of text is:

echo "Bob likes Sue" | awk ’{print $3, $2, $1}’
Sue likes Bob

echo "Master Obi-Wan has lost a planet" | awk ’{print $4,$5,$6,$1,$2,$3}’
lost a planet Master Obi-Wan has

awk splits text by default on whitespace (spaces or tabs), which might not be ideal in all
situations. To change the field separator (FS), use option ‘-F’ (remember to quote the field
separator):

echo "field1,field2,field2" | awk -F’,’ ’{print $2, $1}’
field2 field1

Note two things here: First, the field separator is not printed, and second, if you want to have
space between the output fields, you actually need to separate them by a comma or they will
be concatenated together...

1.1. Commandline Tools 5

Intermediate Linux Course

echo "field1,field2,field2" | awk -F’,’ ’{print $1 $2 $3}’
field1field2field3

You can also combine the pattern matching and the column selection techniques, in this
example we’ll print only the third column of the lines matching the pattern ‘PDBsum’ (case
sensitive):

$ awk ’/PDBsum/ {print $3}’ P12931.txt
1A07;
1A08;
1A09;
1A1A;
...

awk really is powerful in filtering out columns, you can for instance print only certain
columns of certain lines. Here we print the third column of those lines where the second
column is ‘PDBsum’:

awk ’$2=="PDBsum;" {print $3}’ P12931.txt
1A07;
1A08;
1A09;
1A1A;
...

Note the double equal signs “==” to check for equality and note the quotes around “PDB-
sum;”. If you want to match a field, but not exactly, you can use ‘~’ instead of ‘==’:

awk ’$4~"sum" {print $3}’ P12931.txt
1A07;
1A08;
1A09;
1A1A;
...

1.2 I/O Redirection

Three IO “channels” are available by default:

• Standard input (STDIN, Number: 0): The input for your program, normally your
keyboard but can be an other program (when using pipes or IO redirection)

• Standard output (STDOUT, Number: 1): Where your program writes its regular output
to. Normally your terminal

• Standard error (STDERR, Number: 2): Where your programs normally write their
error message to. Normally your terminal

Input, output and error messages can be redirected from their default “targets” to others. If
using the file descriptor numbers (0, 1, 2) in redirections, then there must be no whitespace
between the numbers and the redirection operators.

6 Chapter 1. More Commandline Tools

Intermediate Linux Course

Hint: Redirect to /dev/null to discard the output of any command

Write the output of cmd into afile. This will overwrite afile:

$ cmd > afile

Write the output of cmd into afile. This will append to afile:

$ cmd >> afile

Discard the output of cmd

$ cmd > /dev/null

Write the output of cmd into afile (overwriting afile!) and write STDERR to the same place:

$ cmd > afile 2>&1

Append the output and error messages of cmd to afile:

$ cmd >> afile 2>&1

Same as above:

$ cmd > afile 2> afile

Append the output of cmd to afile and discard error messages:

$ cmd >> afile 2>/dev/null

Three times the same: Discard output and error messages completely:

$ cmd > /dev/null 2>&1
$ cmd > /dev/null 2>/dev/null
$ cmd >& /dev/null

Use output of cmd2 as standard input for cmd1:

$ cmd1 < cmd2

See also

• Bash One-Liners Explained, Part III: All about redirections 1

• Bash Redirections Cheat Sheet 2

• Redirection Tutorial 3

1 http://www.catonmat.net/blog/bash-one-liners-explained-part-three
2 http://www.catonmat.net/blog/bash-redirections-cheat-sheet
3 http://wiki.bash-hackers.org/howto/redirection_tutorial

1.2. I/O Redirection 7

http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial
http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial

Intermediate Linux Course

1.3 Variables

The shell knows two types of variables: “Local” shell variables and “global” exported environ-
ment variables. By convention, environment variables are written in uppercase letters.

Shell variables are only available to the current shell and not inherited when you start
an other shell or script from the commandline. Consequently, these variables will not be
available for your shellscripts.

Environment variables are passed on to shells and scripts started from your current shell.

1.3.1 Setting, Exporting and Removing Variables

Variables are set (created) by simply assigning them a value

$ MYVAR=something
$

Note: There must be no whitespace surrounding the equal sign!

To create an environment variable, export is used. You can either export while assigning a
value or in a separate step. Both of the following procedures are equivalent:

1. $ export MYGLOBALVAR=”something else”
$

2. $ MYGLOBALVAR=”something else”
$ export MYGLOBALVAR
$

Note: There is no $ in front of the variable: To reference the variable itself (not its content)
the name is used without $

Variables are removed with unset:

$ unset MYVAR
$

Note: Assigning a variable an empty value (i.e. MYVAR=) will not remove it but simply set its
value to the empty string!

1.3.2 Listing Variables

You can list all your current environment variables with env and all shell variables with set.
The list of shell variables will also contain all environment variables

8 Chapter 1. More Commandline Tools

Intermediate Linux Course

$ set | more
BASH=/bin/bash
BASH_ARGC=()
BASH_VERSION=’4.1.2(1)-release’
COLORS=/etc/DIR_COLORS.256color
COLUMNS=181
...
$

1.3.3 Variable Inheritance

Only environment variables will be available in shells and scripts started from your current
shell. However in shell commands run in subshells (i.e. commands run within round brack-
ets) also local (shell) variables of your current shell are available.

Examples

Consider the following small shellscript vartest.sh:

#!/bin/sh
echo $MYLOCALVAR
echo $MYGLOBALVAR
echo -----

We will use it in the following examples to illustrate the various variable inheritances:

1. Set the variables and run the script i.e. in a new shell:

$ export MYGLOBALVAR=”I am global”
$ MYLOCALVAR=”I am local”
$./vartest.sh
I am global

$

2. “source” the script, i.e. run it within your current shell:

$ source ./vartest.sh
I am local
I am global

$

3. Access the variables in a subshell:

$ (echo $MYGLOBALVAR; echo $MYLOCALVAR)
I am global
I am local
$

1.3. Variables 9

Intermediate Linux Course

1.4 Hints

1.4.1 Quoting

In Programming it is often necessary to “glue together” certain words. Usually, a program
or the shell splits sentences by whitespace (space or tabulators) and treats each word individ-
ually. In order to tell the computer that certain words belong together, you need to “quote”
them, using either single (‘) or double (”) quotes. The difference between these two is gen-
erally that within double quotes, variables will be expanded, while everything within single
quotes is treated as string literal. When setting a variable, it doesn’t matter which quotes you
use:

MYVAR=This is set
-bash: is: command not found

MYVAR=’This is set’
echo $MYVAR
This is set

MYVAR="This is set"
echo $MYVAR
This is set

However, it does matter, when using (expanding) the variable: Double quotes:

export MYVAR=123
echo "the variable is $MYVAR"
the variable is 123

echo "the variable is set" | sed "s/set/$MYVAR/"
the variable is 123

Single quotes:

export MYVAR=123
echo ’the variable is $MYVAR’
the variable is $MYVAR

echo "the variable is set" | sed ’s/set/$MYVAR/’
the variable is $MYVAR

Weird things can happen when parsing data/text that contains quote characters:

MYVAR=’Don’t worry. It’s ok.’; echo $MYVAR
>

you need to press Ctrl-C to abort
MYVAR="Don’t worry. It’s ok."; echo $MYVAR
Don’t worry. It’s ok.

Expanding and Escaping

You already learned how to expand a variable such that its value is used instead of its name:

10 Chapter 1. More Commandline Tools

Intermediate Linux Course

export MYVAR=123
echo "the variable is $MYVAR"
the variable is 123

“Escaping” a variable is the opposite, ensuring that the literal variable name is used instead
of its value:

export MYVAR=123

echo "the \$MYVAR variable is $MYVAR"
the $MYVAR variable is 123

Note: The “escape character” is usually the backslash “\”.

1.4. Hints 11

Intermediate Linux Course

12 Chapter 1. More Commandline Tools

CHAPTER 2

Commandline Exercises

2.1 TAR & GZIP

1. Use gzip to compress the file P12931.txt

2. Decompress the resulting file P12931.txt.gz (revert previous command)

3. Use tar to create an archive containing all fasta files in the current directory into an
archive called “fastafiles.tar”

4. Use gzip to compress the archive “fastafiles.tar”

5. How can you achieve the two previous steps “using tar to create archive” and “gzip the
archive” in one command?

6. Test (list the contents of) the compressed archive “fastafiles.tar.gz”

7. Download the compressed PDB file for entry 1Y57 from rcsb.org (eg. wget
"http://www.rcsb.org/pdb/files/1Y57.pdb.gz") and decompress it.

2.2 GREP

1. Which of the DNA files ENST0* contains “TATATCTAA” as part of the sequence?

2. List only the names of the DNA files ENST0* that contain “CAACAAA” as part of the
sequence.

3. Considering the previous example, would you consider grep a suitable tool to perform
motif searches? Why not? Try to find the pattern “CAACAAA” by manual inspection
of the first three lines of each sequence.

4. Count the number of ATOMs in the file 1Y57.pdb.

5. Does this number agree with the annotated number of atoms? The PDB file has a com-
ment which tells you how many atoms there are annotated in this file. This comment
can be found by searching for the term “protein atoms” (use quotes and case insensitive
search here!).

13

Intermediate Linux Course

2.3 SED

1. Use sed to print only those lines that contain “version” in the files P05480.txt and
P04062.txt

2. Use sed to change the text “sequence version 3” to “sequence version 4” in the files
P05480.txt and P04062.txt (without actually changing the files, just printing)

3. Use sed to update the text “sequence version 3” to “sequence version 4” in the files
P05480.txt and P04062.txt (this time, make the changes directly in the files)

4. Replace (transliterate) all occurrences of “r” by “l” and “l” by “r” (at the same time) in
the file PROTEINS.txt (so that “structural” becomes “stluctular”)

2.4 AWK

1. Use awk to print only those lines that contain “version” in the files P12931.txt and
P05480.txt and think about how this procedure is different to sed.

2. For all FASTA files that begin with “P” (“P*.fasta”) print only the second item of the
header (split on “|”) eg. for “>sp|P12931|SRC_HUMAN Proto-oncogene”, print only
“P12931”

3. The file “P12931.csv” contains phosphorylation sites in the pro-
tein P12931. (If the file “P12931.csv” does not exist, use wget
http://phospho.elm.eu.org/byAccession/P12931.csv to download it).

(a) Column three of this file lists the amino acid position of the phosphorylation site.
You are only interested in position 17 of the protein. Try to use “grep” to filter out
all these lines containing “17”.

(b) Now use awk to show all lines containing “17”.

(c) Next try show only those lines where column three equals 17 (Hint: The file is
semicolon-separated...).

(d) Finally print the PMIDs (column 6) of all lines that contain “17” in column 3.

2.5 Quoting and Escaping

1. Familiarize yourself with quoting and escaping.

1. Run the following commands to see the difference between single and double
quotes when expanding variables:

$ echo "$HOSTNAME"
...
$ echo ’$HOSTNAME’

2. Next, use ssh to login to a different machine to run the same command there,
again using both quoting methods:

14 Chapter 2. Commandline Exercises

Intermediate Linux Course

$ ssh pc-atcteach01 ’echo $HOSTNAME’
...
$ ssh pc-atcteach01 "echo $HOSTNAME"

2. Closely inspect the results; is that what you were expecting? Discuss this with your
neighbour.

2.5. Quoting and Escaping 15

Intermediate Linux Course

16 Chapter 2. Commandline Exercises

CHAPTER 3

Basic Shell Scripting

3.1 What is a Script?

A script is nothing else than a number of shell command place together in a file. The simplest
script is maybe just a complex oneliner that you don’t want to type each time again. More
complex scripts are seasoned with control elements (conditions and loops) which allow for a
sophisticated command flow. scripts might allow for configuration and customization, thus
allowing one script to be flexibly used in several different environments. Whatever you do in
a script, you can also do on the commandline. This is also the first way to test your scripts
step by step!

3.2 Script Naming and Organization

It is good practice - though not technically required - to give your scripts an extension which
specifies their type. I.e. “.sh” for Bourne Shell and Bourne Again Shell scripts, “.csh” for
C-Shell scripts. Sometimes “.bash” for Bourne Again Shell scripts is used.

We recommend to either store all scripts in one location (e.g. ~/bin) and add this location to
your $PATH variable (see Variables (page 8)) or to store the scripts together with the files that
are processed by the script.

Hint: If you use scripts to process data, then the scripts should probably be archived together
with the data files!

3.3 Running a Script

There are basically three ways to run a script:

1. the location to your script is not in your $PATH variable, then you have to specify the full
path to the script:

$ /here/is/my/script.sh
[...]
$

2. the location to the script is in the $PATH variable, then you can simply type its name:

17

Intermediate Linux Course

$ script.sh
[...]
$

In both situations, the script will need to have execute permissions to be run. If
for some reason you can only read but not execute the script, then it can still be
run in the following way:

3. specifying the interpreter (i.e. the program required to run the script). For shellscripts
this is the appropriate shell). The full path (relative or absolute) to the script has to
be provided in this case, no matter whether the script location is already contained in
$PATH or not:

$ /bin/sh /here/is/my/script.sh
[...]
$

3.3.1 Basic Structure of a Shellscript

Shellscripts have the following general structure:

• A line starting with “#!” which defines the interpreter. This line is called the shebang
line and must be the first line in a script.

• A section where the configuration takes place, e.g. paths, options and commands are
defined and it is made sure, that all prerequisites are met.

• A section where the actual processing is done. This includes error handling.

• A controlled exit sequence, which includes cleaning up all temporary files and returning
a sensible exit status.

This is merely a recommendation to keep your scripts well structured. None of these sections
are mandatory.

3.3.2 Readability and Documentation

Make your script easily readable. Use comments and whitespace and avoid super compact
but hard to understand commandlines. Always take into account that not only the shell,
but also human beings will probably have to read and understand your script. (see Breaking
up long lines (page 31)) Even if your script is very simple - document it! This helps others
understand what you did, but - most importantly - it helps you remember what you did,
when you have to reuse the script in the future.

Documentation is done either by writing comments into the script or by creating a special
documentation file (README.txt or similar). Documenting in the script can be done in several
ways:

• A preamble in the script, outlining the purpose, parameters and variables of the script
as well as some information about authorship and perhaps changes.

• Within the script as blocks of text or “End of line” comments.

18 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

To write comments, use the hash sign (“ #”). Everything after a “#” is ignored when executing
a script.

3.3.3 Anatomy of a Shellscript

Let’s have a look at the following script, breaking it down into individual parts. First, the full
script:

You can see from this example, that very often the actual computation is only a small part of
the code. The rest of the scripts deal with prerequisites, error handling, user dialogue, exit
status etc. etc.

3.3. Running a Script 19

Intermediate Linux Course

3.3.4 Reporting Success or Failure - The Exit Status

Commands report their success or failure by their exit status. An exit status of 0 (zero)
indicates success(!), while any exit status greater then 0 indicates an error. Some commands
report more than one error status. Refer to the respective manpages to see the meanings of
the different exit stati. The exit status of a script is usually the exit status of the last executed
command, which is reported by the environment variable $?:

Example: Displaying the exit status of the (successfully run) pwd command:

$ pwd
/home/fthommen
$ echo $?
0
$

Example: Displaying the exit status of the (unsuccessfully run) touch command:

$ touch /afile
touch: cannot touch ‘/afile’: Permission denied
$ echo $?
1
$

See Ensuring a Sensible Exit Status (page 30) about how to control the exit status of your script.

3.3.5 Command Grouping and Sequences

Commands can be concatenated to be executed one after the other unconditionally or based
on the success of the respective previous command:

cmd1; cmd2 – Execute commands in sequence

Example: Create a directory and change into it:

$ pwd
/home/fthommen
$ mkdir a; cd a
$ pwd
/home/fthommen/a
$

cmd1 && cmd2 – Execute cmd2 only if cmd1 was successful:

Example: Create a directory and, if successful, change into it:

$ pwd
/home/fthommen
$ mkdir a && cd a
$ pwd
/home/fthommen/a
$

Example: Confirm that /etc exists:

20 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

$ cd /etc && echo "/etc exists"
/etc/exists
$

cmd1 || cmd2 – Execute cmd2 only if cmd1 was not successful:

Example: Create a directory and, if not successful, print an error message:

$ mkdir /bin/a || echo "Could not create directory a"
mkdir: cannot create directory ‘/bin/a’: Permission denied
Could not create directory a
$

Example: Warn if a directory doesn’t exist:

$ cd /etc || echo "/etc is missing!"
$ cd /nowhere >&/dev/null || echo "/nowhere does not exist"
/nowhere does not exist
$

Example: Create a directory and, if successful, change into it, if not successful, print an
error message:

$ mkdir /bin/a && cd a || echo "Could not create directory a"
mkdir: cannot create directory ‘/bin/a’: Permission denied
Could not create directory a
$
$ mkdir ~/bin/a && cd a || echo "Could not create directory a"
$ pwd
/home/fthommen/a
$

(cmds) – Group commands to create one single output stream: The commands are run in a
subshell (i.e. a new shell is opened to run them):

Example: Change into /etc and list content. You are still in the same directory as you
were before:

$ pwd
/home/fthommen
$ (cd /etc; ls)
[... directory listing here ...]
$ pwd
/home/fthommen
$

{ cmds; } – Group commands to create one single output stream: The commands are run in
the current (!) shell.

Note: The opening “{” must be followed by a blank and the last command must be
succeeded by a semicolon (‘;‘‘)

3.3. Running a Script 21

Intermediate Linux Course

Example: Change into /etc and list its content. You are still in /etc after the bracketed
expression (compare to the example above):

$ pwd
/home/fthommen
$ { cd /etc; ls; }
[... directory listing here ...]
$ pwd
/etc
$

3.4 Control Structures

The following syntax elements will be described for sh/bash and for csh/tcsh. However since
this course is mainly about sh/bash, examples will only be given for sh/bash. Some notes
about csh/tcsh specialities might be given in the text. This is only a selection of the most
useful or most common elements. There are much more in the manpages. All shells offer
myriads of possibilities which cannot possibly be demonstrated in this course. Some of the
described features might be specific to bash and not be available in a classical Bourne Shell
on other systems.

3.4.1 Conditional Statements

if - then - else

if - then - else is the most basic conditional statement: Do something depending on cer-
tain conditions. Its basic syntax is:

sh/bash csh/tcsh

if condition1
then

commands
elif condition2

more commands
[...]
else

even more commands
fi

if (condition) then
commands

else if (condition2) then
more commands

[...]
else

even more commands
endif

Conditions can be either the exit status of a command or the evaluation of a logical or
arithmetic expression:

1. Evaluating the exit status of a command: Simply use the command as condition. For
example:

if grep -q root /etc/passwd
then
echo root user found

else

22 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

echo No root user found
fi

Note: In csh/tcsh

1. To evaluate the exit status of a command in it must be placed within curly
brackets with blanks separating the brackets from the command: if ({ grep
-q root /etc/passwd }) then [...]

2. Redirection of commands in conditions does not work

Hint: Redirect the output of the command to be evaluated to /dev/null if you
are only interested in the exit status and if the command doesn’t have a “quiet”
option.

2. Evaluating of conditions or comparisons:

Conditions and comparisons are evaluated using a special command test which
is usually written as “[” (no joke!). As “[” is a command, it must be followed
by a blank. As a speciality the “[” command must be ended with “]” (note the
preceding blank here)

Note: In csh/tcsh the test (or [) command is not needed. Conditions and
comparisons are directly placed within the round braces.

3.4. Control Structures 23

Intermediate Linux Course

sh/bash csh/tcsh
File condition

-e file file exists -e file
-f file file exists and is a regular file -f file
-d file file exists and is a directory -d file
-r file file exists and is readable -r file
-w file file exists and is writeable -w file
-x file file exists and is executable -x file
-s file file exists and has a size > 0

file exists and has zero size -z file
String Comparison

-n s1 String s1 has non-zero length
-z s1 String s1 has zero length
s1 = s2 Strings s1 and s2 are identical s1 == s2
s1 != s2 Strings s1 and s2 differ s1 != s2
string String string is not null

Integer Comparison
n1 -eq n2 n1 equals n2 n1 == n2
n1 -ge n2 n1 is greater than or equal to n2 n1 >= n2
n1 -gt n2 n1 is greater than n2 n1 > n2
n1 -le n2 n1 is less than or equal to n2 n1 <= n2
n1 -lt n2 n1 is less than n2 n1 < n2
n1 -ne n2 n1 it not equal to n2 n1 != n2

Combination of conditions
! cond True if condition cond is not true ! cond
cond1 -a
cond2

True if conditions cond1 and cond2 are both
true

cond1 &&
cond2

cond1 -o
cond2

True if conditions cond1 or cond2 is true cond1 || cond2

Examples: Test for the existence of /etc/passwd:

if [-e /etc/passwd]
then
echo /etc/passwd exists

else
echo /etc/passwd does NOT exist

fi

or:

if test -e /etc/passwd
then
echo /etc/passwd exists

else
echo /etc/passwd does NOT exist

fi

Note: Bash supports an additional way of evaluating conditional expressions
with [[expression]]. This syntax element allows for more readable expression
combination and handles empty variables better. However it is not backwards
compatible with the original Bourne Shell. See the bash manpage for more infor-

24 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

mation

case

The case statement implements a more compact and better readable form of if - elif - elif - elif
etc. Use this if your variable (you can only check for variables with case) can have a distinct
number of valid values. A typical usage of case will follow later.

The basic syntax is:

sh/bash csh/tcsh

case variable in
pattern1)

commands
;;

pattern2)
commands
;;

*)
commands
;;

esac

switch (variable)
case pattern1:

commands
breasksw

case pattern2:
commands
breaksw

default:
commands

endsw

Note: for the patterns “*”, “?” and “[...]” can be used

Note: The “*)” (sh/bash) and “default:” (csh/tcsh) patterns are “catch-all” patterns which
match everything not matched above. It is often used to detect invalid values of variable.

Note: Multiple patterns can be handled by separating them with “|” in sh/bash or by
successive case statements in csh/tcsh.

Example: Check if /opt/ or /usr/ paths are contained in $PATH:

case $PATH in

/opt/ | */usr/*)
echo /opt/ or /usr/ paths found in \$PATH
;;

*)
echo ’/opt and /usr are not contained in $PATH’
;;

esac

3.4.2 Loops

for / foreach

The for and foreach statements respectively will loop through a list of given values and run
the given statements for reach run:

3.4. Control Structures 25

Intermediate Linux Course

sh/bash csh/tcsh

for variable in list
do

commands
done

foreach variable (list)
commands

end

list is a list of strings, separated by whitespaces

Examples: List all files in /tmp in a bulleted list:

for FILE in /tmp/*
do
echo " * $FILE"

done
or
for FILE in ‘ls /tmp‘
do
echo " * $FILE"

done

while / until

The while and until loops execute your commands while (or until respectively) a certain
condition is met:

sh/bash csh/tcsh

while condition
do

commands
done

until condition
do

commands
done

while (condition)
commands

end

The conditions are constructed the same way as those used in if statements.

Note: The until statement is not available in csh/tcsh.

“Manual” loop control

Instead of (or additionally to) the built-in loop control in for/foreach, while and until loops,
you can control exiting and continuing them with break and continue: break “breaks out” of
the innermost loop (loops can be nested!) and continues after the end of the loop. continue
skips the rest of the current (innermost) loop and starts the next iteration

26 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

Figure 3.1: Loop control
Symbol

Regular loop cycle
break due to condition_2
continue due to condition_3

3.5 Making Scripts Flexible

Scripts are most useful, if they can be reused. Copying scripts and changing them to fit the
new situation is time-consuming and error-prone. Additionally if you add an improvement to
the current script, then all previous versions will stay without it. Having one script with the
possibility to configure it, is usually the better way. Customization of scripts can be achieved
by either using variables or by adding the possibility to use your own commandline options
and arguments.

3.5.1 Configurable Scripts

Any value - be it paths, commands or options - that is specific to individual applications or
your script, should not be “hardcoded” (i.e. used literally within the script) but assigned to
variables:

Using Variables

Any value - be it paths, commands or options - that is specific to individual applications or
your script, should not be hardcoded (i.e. used literally within the script). Instead you should
use variables to refer to them:

Bad example: You have to change two instances of the path each time you want to list an
other directory:

#!/bin/sh

echo "The directory /etc contains the following files:"
ls /etc

3.5. Making Scripts Flexible 27

Intermediate Linux Course

Good example: The path is now in a variable and only one instance has to be changed each
time (less work, less errors):

#!/bin/sh

MYDIR=/etc

echo "The directory $MYDIR contains the following files:"
ls $MYDIR

Of course, you’ll still have to modify the script each time you want to list the content of an
other directory. A more flexible way of customization would be to use a settings file.

Using a Settings File

Instead of having your configurable section within the script, it can be “outsourced” to its
own file. This file is basically a shellscript which is run within the primary script. To run
commands from a file within the current environment, the commands source (bash, csh/tcsh)
or . (dot) (sh/bash) are used:

The settings file, e.g. settings.ini:

MYDIR=/etc

The script:

#!/bin/sh

. ./settings.ini

echo "The directory $MYDIR contains the following files:"
ls $MYDIR

3.5.2 Defining your own Commandline Options and Arguments

The best way to configure a script is to allow for your own commandline options and argu-
ments. Commandline arguments are available the script as so-called positional parameters
$1, $2, $3: etc. $0: contains the name of the script. The variables important when dealing
with commandline parameters are:

$0: path to the script. Either the path as you specified it or the full path if the script was
executed through $PATH

$1, $2, $3, etc: Positional parameters (i.e. commandline arguments)

$#: Current number of positional parameters

$*: All positional parameters. If used within double quotes (“$*”), then it will expand to the
list of all positional parameters, where the complete list is quoted

$@: All positional parameters. If used within double quotes (“$@”), then it will expand to the
list of all positional parameters, where each parameter is individually quoted

28 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

If you run the script

#!/bin/sh
echo The script is $0
echo The first commandline option is $1
echo The second commandline option is $2

with two arguments, you’ll get the following output:

$./script.sh ABC DEF
The script is ./script.sh
The first commandline option is ABC
The second commandline option is DEF
$

In many cases you’ll not know how many parameters are given on the commandline. In
these cases you can use shift to loop through them. shift removes $1 and moves all other
positional parameters one position to the right: $2 becomes $1, $3 becomes $2 etc.:

3.5. Making Scripts Flexible 29

Intermediate Linux Course

With the help of “$#”, “shift”, “case” and the positional parameters we can now check all the
commandline parameters:

while ["$#" -gt 0]
do

case $1 in
-h) echo "Sorry, no help available!" # not very helpful, is it?

exit 1 # exit with error
;;

-v) VERBOSE=1 # we may use $VERBOSE later
;;

-f) shift
FILE=$1 # Aha, -f requires an

additional argument
;;

*) echo "Wrong parameter!"
exit 1 # exit with error

esac
shift

done

3.6 Ensuring a Sensible Exit Status

If you don’t provide your own exit status, then the script will return the exit status of the last
executed command (See Reporting Success or Failure - The Exit Status (page 20)). In many cases
this might be what you want, but very often it isn’t. Consider the following script which is a
real example from real life and happened to me personally:

#!/bin/sh

[... do something that fails ...]

echo "End of the script"

This script will always succeed, as the echo command hardly ever fails. You will - from the
exit status of the script - never be able to detect that something went wrong. Instead in such
cases you should manually handle the exit codes of the commands that are run within the
script.

With it’s help we can keep track of the exit stati of all our important processing steps and
finally return a sensible value:

#!/bin/sh
mystatus=0;

[... do something that might fail ...]
if [$? -ne 0]
then

mystatus=1
fi

30 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

[... do something else that might fail, too ...]
[$? -ne 0] && mystatus=1 # same as above. Do you understand

this?

echo "End of the script"
exit $mystatus

3.6.1 Why is the exit status important after all?

First when you use your script within other scripts, you’ll probably need to be able to check,
if it has succeeded. There might be other ways (e.g. checking outputfiles for certain strings,
checking directly the textual output of the script etc.), but these ways are usually cumbersome
and require lots of coding. Exit values are easy to check. Second: Other tools and systems
might also use the exit status of your script. E.g. the cluster system uses your job’s exit status
to assess, if it has run successfully or not. Returning success even in case of failure will result
in lots of complications in case a problem occurs. It took me several days to realize the bug
above.

3.7 Tips and Tricks

3.7.1 Combining Variables with other Strings

When combining variables with other strings, then in some situations the variable name must
be placed in curly brackets (“{}”):

$ A=Heidel
$ echo $Aberg

$ echo ${A}berg
Heidelberg
$

3.7.2 Filenames and Paths

If possible, try to avoid any special characters (blanks, semicolons (”;”), colons (”:”), back-
slashes (“”) etc.) in file and directory names. All these special characters can lead to problems
in scripted processing. Instead, stick to alphanumeric characters (a-z, 0-9), dots (”.”), dashes
(“-”) and underscores (“_”). Additionally sticking to lowercase characters helps avoiding
mistypes and makes the automatic filename expansion easier.

3.7.3 Breaking up Long Code Lines

Code lines can become pretty long and unreadable, wrapping onto the next line etc. You can
use the escape character (backslash, “\”) to break them up and enhance readability of your
script. The escape character must immediately be followed by a newline (no intermediate
blanks or other is allowed):

3.7. Tips and Tricks 31

Intermediate Linux Course

$ bsub -o output.log -e error.log -q clngnew -M 150000 -R "select[(mem > 15000)]" /g/software/bin/pymol-1.4 -r -p < pymol.pml

becomes:

$ bsub -o output.log \
-e error.log \
-q clngnew \
-M 150000 \
-R "select[(mem > 15000)]" \

/g/software/bin/pymol-1.4 -r -p < pymol.pml

Which is way better to read and to maintain

3.7.4 Script Debugging

sh/bash and csh/tcsh have both an option “-x” which helps debugging a script by echoing
each command before executing it. This option can be set and unset during runtime with set
-x / set +x (sh/bash) and set echo / unset echo (csh/tcsh).

3.7.5 Command Substitution

You can use the output of a command and assign it to a variable or use it right away as text
string, by using the command substitution operator “‘” (backticks, backquotes) or “$(...)”.
The backtick operator works in all shells, while $(...) only works in bash.

Three variants for the same (print out who you are in English text):

$ ME=‘whoami‘
$ echo I am $ME
I am fthommen
$

$ ME=$(whoami)
$ echo I am $ME
I am fthommen
$

$ echo I am ‘whoami‘
I am fthommen
$

3.7.6 Create Temporary Files

You can create temporary files with mktemp. By default it will create a new file in /tmp and
print its name:

$ mktemp
/tmp/tmp.Yaafh19370
$

32 Chapter 3. Basic Shell Scripting

Intermediate Linux Course

3.7.7 Cleaning up Temporary Files

It is considered good practice and sometimes even important, to clean up temporary data
before ending a script. A simple way - which will not cover all cases, though - could be to
store all created temporary files in a variable and remove them all before exiting the script:

#! /bin/sh
ALL_TEMPFILES="" # store a list of all temporary files here

TEMPFILE1=‘mktemp‘
ALL_TEMPFILES="$ALL_TEMPFILES $TEMPFILE1"

TEMPFILE2=‘mktemp‘
ALL_TEMPFILES="$ALL_TEMPFILES $TEMPFILE2"

[... process, process, process ...]

rm -f $ALL_TEMPFILES
exit

3.7. Tips and Tricks 33

Intermediate Linux Course

34 Chapter 3. Basic Shell Scripting

CHAPTER 4

Solutions to the Exercises

4.1 TAR & GZIP

1. Use gzip to compress the file P12931.txt

$ gzip P12931.txt

2. Decompress the resulting file P12931.txt.gz (revert previous command)

$ gunzip P12931.txt.gz

or

$ gzip -d P12931.txt.gz

3. Use tar to create an archive containing all fasta files in the current directory into an
archive called “fastafiles.tar”

$ tar -c -f fastafiles.tar *.fasta

4. Use gzip to compress the archive “fastafiles.tar”

$ gzip fastafiles.tar

5. How can you achieve the two previous steps “using tar to create archive” and “gzip the
archive” in one command?

$ tar -c -z -f fastafiles.tar.gz *.fasta

Note: Note the -z

6. Test (list the contents of) the compressed archive “fastafiles.tar.gz”

$ tar -tf fastafiles.tar.gz

7. Download the compressed PDB file for entry 1Y57 from rcsb.org (eg. wget
"http://www.rcsb.org/pdb/files/1Y57.pdb.gz") and decompress it.

35

Intermediate Linux Course

$ wget "http://www.rcsb.org/pdb/files/1Y57.pdb.gz"
$ gunzip 1Y57.pdb.gz

4.2 GREP

1. Which of the DNA files ENST0* contains “TATATCTAA” as part of the sequence?

$ grep "TATATCTAA" ENST0*
ENST00000380152.fasta:ACGGAAGAATGTGAGAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA
ENST00000544455.fasta:ACGGAAGAATGTGAGAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA

2. List only the names of the DNA files ENST0* that contain “CAACAAA” as part of the
sequence.

$ grep -l "CAACAAA" ENST0*
ENST00000380152.fasta
ENST00000544455.fasta

3. Considering the previous example, would you consider grep a suitable tool to perform
motif searches? Why not? Try to find the pattern “CAACAAA” by manual inspection
of the first three lines of each sequence.

Note: Answer: When using grep as a motif searching tool, you need to keep in mind that
grep (like sed and awk) is line-oriented, meaning that by default it only searches for a given
motif in a single line. In the given example, upon manual inspection you will find the given
motif also in the file ENST00000530893.fasta (spanning multiple lines), which grep missed.
You would need to think about how to do multi-line searches (eg. Removing line-breaks etc.)

4. Count the number of ‘ATOM’s in the file 1Y57.pdb

$ grep -c ATOM 1Y57.pdb
3632

5. Does this number agree with the annotated number of atoms? The PDB file has a com-
ment which tells you how many atoms there are annotated in this file. This comment
can be found by searching for the term “protein atoms” (use quotes and case insensitive
search here!).

$ grep -i "protein atoms" 1Y57.pdb
REMARK 3 PROTEIN ATOMS : 3600

This tells us that there are 3600 atoms annotated in this PDB file, however we initially
counted 3632. This is because grep also counted any occurrence of “ATOM” within
REMARKS. We can avoid this by either filtering out the remarks:

$ grep -v REMARK 1Y57.pdb | grep -c ATOM
3600

36 Chapter 4. Solutions to the Exercises

Intermediate Linux Course

...or by telling grep to only count those lines that start with “ATOM”:

$ grep -c ^ATOM 1Y57.pdb
3600

4.3 SED

1. Use sed to print only those lines that contain “version” in the files P05480.txt and
P04062.txt

$ sed "/version/p" P05480.txt P04062.txt

2. Use sed to change the text “sequence version 3” to “sequence version 4” in the files
P05480.txt and P04062.txt (without actually changing the files, just printing)

$ sed "s/sequence version 3/sequence version 4/" P05480.txt P04062.txt

3. Use sed to update the text “sequence version 3” to “sequence version 4” in the files
P05480.txt and P04062.txt (this time, make the changes directly in the files)

$ sed -i.bak "s/sequence version 3/sequence version 4/" P05480.txt P04062.txt

4. Replace (transliterate) all occurrences of “r” by “l” and “l” by “r” (at the same time) in
the file PROTEINS.txt (so that “structural” becomes “stluctular”)

$ sed "y/rRlL/lLrR/" PROTEINS.txt

4.4 AWK

1. Use awk to print only those lines that contain “version” in the files P12931.txt and
P05480.txt and think about how this procedure is different to sed.

$ awk "/version/ {print}" P12931.txt P05480.txt

This is very similar to sed, you also have to use the slashes “/” to define the search pattern.
However the sed notation is a little more concise...

2. For all FASTA files that begin with “P” (“P*.fasta”) print only the second item of the
header (split on “|”) eg. for “>sp|P12931|SRC_HUMAN Proto-oncogene”, print only
“P12931”

$ awk -F"|" ’/>/ {print $2}’ P*.fasta

3. The file “P12931.csv” contains phosphorylation sites in the pro-
tein P12931. (If the file “P12931.csv” does not exist, use wget
http://phospho.elm.eu.org/byAccession/P12931.csv to download it).

4.3. SED 37

Intermediate Linux Course

(a) Column three of this file lists the amino acid position of the phosphorylation site.
You are only interested in position 17 of the protein. Try to use “grep” to filter out
all these lines containing “17”.

$ grep 17 P12931.csv

(b) Now use awk to show all lines containing “17”.

$ awk "/17/ {print}" P12931.csv

(c) Next try show only those lines where column three equals 17 (Hint: The file is
semicolon-separated...).

$ awk -F";" ’$3==17 {print}’ P12931.csv

(d) Finally print the PMIDs (column 6) of all lines that contain “17” in column 3.

$ awk -F’;’ ’$3==17 {print $6}’ P12931.csv

4.5 Quoting and Escaping

1. Familiarize yourself with quoting and escaping.

1. Run the following commands to see the difference between single and double
quotes when expanding variables:

$ echo "$HOSTNAME"
...
$ echo ’$HOSTNAME’

2. Next, use ssh to login to a different machine to run the same command there,
again using both quoting methods:

$ ssh pc-atcteach01 ’echo $HOSTNAME’
...
$ ssh pc-atcteach01 "echo $HOSTNAME"

2. Closely inspect the results; is that what you were expecting? Discuss this with your
neighbour.

38 Chapter 4. Solutions to the Exercises

CHAPTER 5

Propositions for Scripting Exercises

Here are some ideas (not elaborated propositions) for some useful scripts which you might
want to implement. Extend them to your liking. Thanks to Grischa Toedt & Chrysoula
Pantzartzi for the ideas.

5.1 General “Unpacker”

Purpose: Unpack a file or a number of files according to their packing or compression format
(tar, gzip, zip, bzip, xz, see http://en.wikipedia.org/wiki/List_of_archive_formats for
more ideas). This script can be used as a general wrapper around the various compres-
sion and packing tools with an uniform set of options

Usage Example:

$ ls -F
archive.tar.gz text.txt zuppfile
$ unpack *
archive.tar.gz is a gzip compressed tarfile ... uncompressed and unpacked
text.txt is not compressed or packed ... skipping
zuppfile is a zip compressed archive ... uncompressed and unpacked
$

Required tools and commands: file, tar, gzip/gunzip, zip/unzip, bzip2/bunzip2, xz, etc.

Things to consider:

• The type of a file is not necessarily deductible from its extension

• What if the file doesn’t have an extension at all?

• Depending on the tool and how the file has been archived, the unpack-
ing/uncompressing can result in files being created in a subdirectory or directly in
the current working directory. Is this what one wants/expects?

• What if the destination directory already exists?

• Some tools preserve the original archive, others don’t

Extendibility:

• Add option to keep/remove the original archives.

• Add option to unpack files in a separate directory.

39

http://en.wikipedia.org/wiki/List_of_archive_formats

Intermediate Linux Course

• Add option to unpack files in directories named after the archive names. Check
for already existing target directories!

5.2 Safety Backup Creator

Purpose: Create a backup copy of a directory/file in a defined location. E.g. as a safety
copy/fallback before applying changes to a dataset etc.

Usage Example:

$ backup.sh datadir
datadir contains 12 files and is 12 MB in size
Copying datadir to /home/fthommen/safety_backups/datadir_20-MAY-2014 ... done
$ backup.sh datadir2
datadir contains 154 files and is 3 TB in size
Sorry, /home/fthommen/safety_backups/datadir2_20-MAY-2014 already exists ... aborting
$

Required tools and commands: cp, rsync, du, ls, date

Things to consider:

• Already existing safety backups should not be overwritten!

• Do you or don’t you want to keep the full original path in some form? (dirname,
basename)

Extendibility:

• Add option to pack/compress the data

5.3 Column Chooser (advanced)

Purpose: Write a script, which takes a textfile with columnar layout and a header line and
prints out only columns with the named headers of a textfile with columnar layout

Datafile:

NAME FIRSTNAME BIRTHDATE STREET NO
Meier Daniel 30-MAY-1990 Meyerhofstrasse 12
Mueller Andreas 29-FEB-1960 Bahnhofstr. 1b
Schmid Ariane 1-DEC-1990 Bahnhofstrasse 13
vonMyra Nikolaus 15-MAR-270 Dezemberstrasse 6

Usage Example:

$ columnchooser.sh FIRSTNAME NO
Daniela 12
Andreas 1b
Ariane 13
Nikolaus 6
$ columnchooser.sh CITY

40 Chapter 5. Propositions for Scripting Exercises

Intermediate Linux Course

Sorry, no column “CITY” found
$

Required tools and commands: awk, eval

Extendibility:

• Add options to define alternate column separators (awk -F)

• Add option to customize the concatenation of the printed fields

5.3. Column Chooser (advanced) 41

Intermediate Linux Course

42 Chapter 5. Propositions for Scripting Exercises

CHAPTER 6

Appendix

6.1 Links and Further Information

6.1.1 Links

• A full 500 page book about the Linux commandline for free(!): LinuxCommand.org 1

• Another nice introduction: “A beginner’s guide to UNIX/Linux” 2

• The “commandline starter” chapter of an O’Reilly book: Learning Debian GNU/Linux -
Issuing Linux Commands 3

• A nice introduction to Linux/UNIX file permissions: “chmod Tutorial” 4

• Linux Cheatsheets 5

• BioPieces 6 are a collection of bioinformatics tools that can be pieced together in a very
easy and flexible manner to perform both simple and complex tasks.

• Google shell style guide 7

• Useful bash one-liners for bioinformatics 8

• Interactive explanation of your commandline: Explain Shell 9

• Bash One-Liners Explained, Part III: All about redirections 10

• Bash Redirections Cheat Sheet 11

• Redirection Tutorial 12

1 http://linuxcommand.org/
2 http://www.mn.uio.no/astro/english/services/it/help/basic-services/linux/guide.html
3 http://www.oreilly.com/openbook/debian/book/ch04_01.html
4 http://www.catcode.com/teachmod/
5 http://www.cheat-sheets.org/#Linux
6 http://code.google.com/p/biopieces
7 https://code.google.com/p/google-styleguide
8 https://github.com/stephenturner/oneliners
9 http://www.explainshell.com

10 http://www.catonmat.net/blog/bash-one-liners-explained-part-three
11 http://www.catonmat.net/blog/bash-redirections-cheat-sheet
12 http://wiki.bash-hackers.org/howto/redirection_tutorial

43

http://linuxcommand.org/
http://www.mn.uio.no/astro/english/services/it/help/basic-services/linux/guide.html
http://www.oreilly.com/openbook/debian/book/ch04_01.html
http://www.oreilly.com/openbook/debian/book/ch04_01.html
http://www.catcode.com/teachmod/
http://www.cheat-sheets.org/#Linux
http://code.google.com/p/biopieces
https://code.google.com/p/google-styleguide
https://github.com/stephenturner/oneliners
http://www.explainshell.com
http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial
http://linuxcommand.org/
http://www.mn.uio.no/astro/english/services/it/help/basic-services/linux/guide.html
http://www.oreilly.com/openbook/debian/book/ch04_01.html
http://www.catcode.com/teachmod/
http://www.cheat-sheets.org/#Linux
http://code.google.com/p/biopieces
https://code.google.com/p/google-styleguide
https://github.com/stephenturner/oneliners
http://www.explainshell.com
http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial

Intermediate Linux Course

6.1.2 Command Line Mystery Game

CLMystery 13 is a game that you play on the commandline: There’s been a murder in Terminal
City, and TCPD needs your help to solve this crime by using commandline tools only!

To play the game, get the files from github and read the instructions:

wget https://github.com/veltman/clmystery/archive/master.zip
unzip master.zip
cd clmystery-master/
cat instructions

6.1.3 Recommended Reading: Real printed paper books

• Dietz, M., “Praxiskurs Unix-Shell”, O’Reilly (highly recommended!, German language
only)

• Herold, H., “awk & sed”, Addison-Wesley

• Robbins, A., “sed & awk Pocket Reference”, O’Reilly

• Robbins, A. and Beebe, N., “Classic Shell Scripting”, O’Reilly

• Siever, E. et al., “Linux in a Nutshell”, O’Reilly

6.1.4 Live - CDs

A Live-CD is a complete bootable computer operating system which runs in the computer’s
memory, rather than loading from the hard disk drive. It allows users to experience and
evaluate an operating system without installing it or making any changes to the existing
operating system on the computer.

Just download an ISO-Image, burn it onto a CD/DVD and insert it into your DVD-Drive to
boot your computer with Linux!

Fedora Live CD

This Live CD contains everything the Fedora 14 Linux operating system has to offer and it’s
everything you need to try out Fedora - you don’t have to erase anything on your current
system to try it out, and it won’t put your files at risk. Take Fedora for a test drive, and if
you like it, you can install Fedora directly to your hard drive straight from the Live Media
desktop.

Knoppix

Knoppix 15 is an operating system based on Debian designed to be run directly from a CD
/ DVD or a USB flash drive, one of the first of its kind for any operating system. When
starting a program, it is loaded from the removable medium and decompressed into a RAM

13 https://github.com/veltman/clmystery
14 http://fedoraproject.org/wiki/FedoraLiveCD
15 http://knopper.net/knoppix

44 Chapter 6. Appendix

https://github.com/veltman/clmystery
http://fedoraproject.org/wiki/FedoraLiveCD
http://knopper.net/knoppix
https://github.com/veltman/clmystery
http://fedoraproject.org/wiki/FedoraLiveCD
http://knopper.net/knoppix

Intermediate Linux Course

drive. The decompression is transparent and on-the-fly. More than 1000 software packages
are included on the CD edition and more than 2600 are included on the DVD edition. Up to
9 gigabytes can be stored on the DVD in compressed form.

BioKnoppix

Bioknoppix 16 is a customized distribution of Knoppix Linux Live CD. With this distribution
you just boot from the CD and you have a fully functional Linux OS with open source appli-
cations targeted for the molecular biologist. Beside using RAM, Bioknoppix doesn’t touch the
host computer, being ideal for demonstrations, molecular biology students, workshops, etc.

Vigyaan

Vigyaan 17 is an electronic workbench for bioinformatics, computational biology and compu-
tational chemistry. It has been designed to meet the needs of both beginners and experts.

BioSlax

BioSLAX 18 is a live CD/DVD suite of bioinformatics tools that has been released by the
resource team of the BioInformatics Center (BIC), National University of Singapore (NUS).

6.2 About Bio-IT

Bio-IT is a community project aiming to develop and strengthen the bioinformatics user com-
munity at EMBL Heidelberg. It is made up of members across the different EMBL Heidelberg
units and core facilities. The project works to achieve these aims, firstly, by providing a forum
for discussing and sharing information and ideas on computational biology and bioinformat-
ics, focused on the Bio-IT portal. Secondly, we organise and participate in a range of different
networking and social activities aiming to strengthen ties across the community.

6.2.1 Resources

A list of biocomputing-related resources associated with the project, including, for example
help provided for installing software on Linux computers at EMBL, instructions on using the
Git versions control system server provided by EMBL, and various other kinds of information.

6.2.2 Training and Outreach

Bio-IT provides information on events (courses and conferences), both internal to EMBL and
organised elsewhere by other organisations, that are related to biocomputing and bioinfor-
matics.

16 http://bioknoppix.hpcf.upr.edu
17 http://www.vigyaancd.org
18 http://www.bioslax.com

6.2. About Bio-IT 45

http://bioknoppix.hpcf.upr.edu
http://www.vigyaancd.org
http://www.bioslax.com
http://bio-it.embl.de
http://bioknoppix.hpcf.upr.edu
http://www.vigyaancd.org
http://www.bioslax.com

Intermediate Linux Course

6.2.3 Networking

Several different kinds of networking events for the Bio-IT community are being organised,
including beer sessions for the EMBL community, and within-Heidelberg events for the larger
Heidelberg biocomputing community.

6.2.4 Biocomputing expertise at EMBL

You can use the Bio-IT portal to search for people working at EMBL who have experience
working with data or tools you might be interested in.

If you’ve not yet got a page up on the portal describing your own expertise, please do so. If
you need any help doing this, you can read about this in the portal’s FAQ section, or get in
touch with one of the site administrators.

6.2.5 Centers

EMBL Centres are ‘horizontal’, cross-departmental structures that promote innovative re-
search projects across disciplines. All the EMBL Centres listed below have a strong computa-
tional component.

Biomolecular Network Analysis

The CBNA disseminates expertise, know-how and guidance in network integration and anal-
ysis throughout EMBL.

Statistical Data Analysis

The CSDA helps EMBL scientists to use adequate statistical methods for their specific tech-
nological or biological applications.

Molecular and Cellular Imaging

The CMCI makes your life in image processing/analysis easier and more fun.

Modeling

The Centre for Biological Modeling (CBM) aims to support people to adopt mathematical
modeling techniques into their everyday research.

46 Chapter 6. Appendix

http://www.embl.de/research/interdisciplinary_research/centres/index.html
http://bio-it.embl.de/cbna
http://bio-it.embl.de/statistical-data-analysis
http://bio-it.embl.de/molecular-and-cellular-imaging
http://bio-it.embl.de/biological-modeling
http://bio-it.embl.de/cbna
http://bio-it.embl.de/statistical-data-analysis
http://bio-it.embl.de/molecular-and-cellular-imaging
http://bio-it.embl.de/biological-modeling

Intermediate Linux Course

6.3 Acknowledgements

Handouts provided by EMBL Heidelberg Photolab (Many thanks to Udo Ringeisen)

EMBL Logo © EMBL Heidelberg

Graphic of the Linux Filesystem taken from the SuSE 9.2 manual © Novell Inc.

All other graphics © Frank Thommen, EMBL Heidelberg, 2012

License: CC BY-SA 3.0

Special thanks go to contributors / helping hands (alphabetical order):

• Christian Arnold

• Jean-Karim Hériché

• Yan Ping Yuan

• Bora Uyar

• Thomas Zichner

6.3. Acknowledgements 47

http://www.embl.de
http://www.embl.de
http://www.novell.com/documentation/suse92/pdfdoc/user92-screen/user92-screen.pdf
http://www.novell.com
http://creativecommons.org/licenses/by-sa/3.0/

Intermediate Linux Course

48 Chapter 6. Appendix

Index

Symbols
[. 23
. 19
$? . 20
] . 23

A
awk. 5, 41

B
backquote . 32
backtick . 32
break. .26
breaksw . 25
bunzip2 . 39
bzip2 . 39

C
case . 25, 30
command substitution . 32
comment . 19
continue . 26
cp . 40

D
date . 40
du . 40

E
elif . 25
env . 8
escape. .11
escape character . 31
eval . 41
exit status . 20, 30

F
file . 39
for . 25
foreach . 25

G
grep . 3
gunzip . 39
gzip . 1, 13, 35, 39

H
hash sign. 19

I
if - then - else . 22
interpreter . 18

L
ls . 1, 40

P
pattern . 25
positional parameters . 28

Q
quoting . 10

R
rsync . 40

S
sed . 3
set . 8, 32
shebang line . 18
shift . 29, 30
special variables: $? . 20

T
tar . 1, 13, 35, 39
test . 23

U
unset . 32
until . 26
unzip . 39

49

Intermediate Linux Course

V
variables

environment variables8
shell variables . 8

W
while .26

X
xz . 39

Z
zip . 39

50 Index

	More Commandline Tools
	Commandline Tools
	I/O Redirection
	Variables
	Hints

	Commandline Exercises
	TAR & GZIP
	GREP
	SED
	AWK
	Quoting and Escaping

	Basic Shell Scripting
	What is a Script?
	Script Naming and Organization
	Running a Script
	Control Structures
	Making Scripts Flexible
	Ensuring a Sensible Exit Status
	Tips and Tricks

	Solutions to the Exercises
	TAR & GZIP
	GREP
	SED
	AWK
	Quoting and Escaping

	Propositions for Scripting Exercises
	General ``Unpacker''
	Safety Backup Creator
	Column Chooser (advanced)

	Appendix
	Links and Further Information
	About Bio-IT
	Acknowledgements

	Index

