[.
0%
seeesizss Bio-IT
020%20%
20%020%202 The Portal for Computational Biology
°

GIT Basics

Holger Dinkel & Grischa Toedt

December 15, 2015

Contents

1 The Benefits of Version Control 1
1.1 gitataGlance L e 2
1.1.1 gitcommands e 2

1.1.2 gitconcepts e 2

1.2 gitsettings o e e e e e e e e e e e 2
1.2.1 Setting youridentity 2

1.2.2 Checking Your Settings 3

2 A Typical git Workflow 5
2.1 Creating agit Repository Lo ool 7
2.2 Cloning a git Repository oo oo 7
2.3 Checking the Status 8
2.4 Addingfiles. L e e e e e e e e 8
2.5 Committing changes o e 9
2.6 ViewingtheHistory o 9
2.6.1 Exercise 10

2.7 Pushingchanges 10
2.7.1 Creatingasecondclone 11

2.8 Pullingchanges e 11
2.9 Solvingconflicts L e e 11
2.9.1 Manually mergingaconflict. 12

2.10 Undo local changes 13

3 Links/References 15

Chapter 1

The Benefits of Version Control

= A STORY TOLD (N FILE NAMES:

£ C:\user\researchdata

=] <
Diate Modified Size | Type
3:37 PM 5/28/2010 420 KB DAT file
4:20PM 5/28/2010 421KB DAT file
5:43 PM 5282010 420KB DAT file
717 PM 5/28/2010 1,256KB DAT file
7:20PM S5f28/2010 0KB DAT file
9:58PM 5/28/2010 I0KB DAT file
12:37 AM 5/29/2010 KB DAT file
2:40 AM 5/29/2010 OKB DAT file

Filename

& data_2010.05.28_test.dat

@ data_2010.05.28_re-test.dat

@ data_2010.05.28_re-re-test.dat
{2 data_2010.05.28_calibrate. dat
i data_2010.05.28_huh??.dat

k2 data_2010.05.28_WTF.dat

{ data_2010.05.29_asarrrgh dat
{2 data_2010.05.29_#$@*&!l.dat

i3 data_2010.05.29_crap.dat

@ data_2010.05.29_notbad.dat

& data_2010.05.29_wochooll.dat

& data_2010.05.29_USETHISONE .dat

3:22 AM
4:16 AM
4:47 AM
5.08 AM

&) analysis_graphs.xls
#) ThesisOutline! .doc

7:13 AM
720 AM

5/29/2010
5/28/2010 670 KB

(292010 1,349 KB
5/28/2010 2894 kB
5/29/2010 4535 KB
3/29/2010 Bk

437 kB

DAT file
DAT file
DAT file
DAT file
¥LE file
LoC file

B Notes_Meeting_with_ProfSmith. txt
0 UM
& 'data_2010.05.30_startingover dat

11:38 AM 5/29/2010 1673KB TXT file
2:45PM 5/29/2010 Folder
8:37 AM 5/30/2010 420KB DAT file

< >

Type: Ph.D Thesis Modified: 00 many times Copyright: Jorge Cham wiwiw, phdcomics.com

Version control is a system that records changes to a file or set of files over time so
that you can recall specific versions later. The benefits are at hand:

* Track incremental backups and recover: Every document can be backed up
automatically and restored at a second’s notice.

Track every change: Every infinitesimal change can be recorded and can be
used to revert a file to an earlier state.

Track writing experiments: Writing experiments can be sandboxed to copies
while keeping the main file intact.

Track co-authoring and collaboration: Teams can work independently on
their own files, but merge them into a latest common revision.

Track individual contributions: Good VCS systems tag changes with authors
who make them.

GIT Basics

1.1 git at a Glance

1.1.1 git commands

The git tool has many subcommands that can be invoked like git <subcommand> for
instance git status to get the status of a repository.

The most important ones (and hence the ones we’ll be focusing on) are:
init: initialize a repository

clone: clone a repository

status: get information about a repository

log: view the history and commit messages of the repository

add: add a file to the staging area

commit: commit your changes to your local repository

push: push changes to a remote repository

pull: pull changes from a remote repository

checkout: retrieve a specific version of a file

you can read more about each command by invoking the help:

git commit --help
git help commit

1.1.2 git concepts
commit

A commit is a recorded set of changes in your project’s file(s). Try to group logical sets
of changes together into one commit — don’t mix changes which are unrelated.

repository

A repository is the history of all your project’'s commits.

1.2 git settings

1.2.1 Setting your identity

Before we start, we should set the user name and e-mail address. This is important
because every git commit uses this information and it’'s also incredibly useful when
looking at the history and commit log:

2 Chapter 1. The Benefits of Version Control

GIT Basics

git config —--global user.name "John Doe"
git config —--global user.email johndoe@embl.de

Other useful settings include your favorite editor, enabling color output as well as
difftool:

git config —--global core.editor nano
git config —--global color.ui auto
git config —--global merge.tool kdiff3

1.2.2 Checking Your Settings

You can use the git config -list command to list all your settings:

git config —--1list
user.name="John Doe"
user.email=johndoef@embl.de
core.editor=vim
merge.tool=meld
color.status=auto
color.branch=auto
color.interactive=auto
color.diff=auto

1.2. git settings 3

GIT Basics

4 Chapter 1. The Benefits of Version Control

Chapter 2

A Typical git Workflow

Local

workspace SEET repository

git add/mv/rm

git commit

git reset <file>

git reset <commit>

git diff HEAD

Fig. 2.1: Files are added from the workspace, which always holds the cur-
rent version of your files, to the staging area. Staged files will be stored into
the local repository in the next commit. The repository itself contains all pre-
vious versions of all files ever committed. (image courtesy of ‘research bazaar’
https:/ /raw.githubusercontent.com/resbaz/lessons/master/git/git-local.png)

https://raw.githubusercontent.com/resbaz/lessons/master/git/git-local.png

GIT Basics

Local Remote

repository

workspace staging

repository

git commit

git add/mv/rm

git commit -a

git reset <file>
git reset <commit>
git diff

git diff HEAD

git clone/pull

Fig. 2.2: Distributed workflow wusing a centralized repository.
Here, you wuse push and pull to synchronize your local reposi-
tory with a remote repository. (image courtesy of ‘research bazaar’

https://raw.githubusercontent.com/resbaz/lessons/master/git/git-remote.png)

6 Chapter 2. A Typical git Workflow

https://raw.githubusercontent.com/resbaz/lessons/master/git/git-remote.png

GIT Basics

2.1 Creating a git Repository

Turning an existing directory into a local git repository is as simple as changing into
that directory and invoking git init. However, here we want to create one repository
which we can use from multiple other folders to sync to/from, therefore in this case,
we need to initialize it as a bare repository.

Note: Normally you do not need the —bare, but it’'s essential for this exercise...

So, here we first create an empty directory in our homedirectory called repos (this is
meant to hold and serve all our repositories), and create a repository in there called
mythesis:

mkdir ~/repos
cd ~/repos
mkdir mythesis
cd mythesis

git init --bare

Note: As aresult, you should have the directory ~/repos/mythesis and there should
be a directory called .git in this directory...

2.2 Cloning a git Repository

Next, we can clone this repository into the ~/Documents/mythesis folder.:
cd ~/Documents
git clone ~/repos/mythesis

Initialized empty Git repository in /localhome/training/Desktop/mythesis/.git/
warning: You appear to have cloned an empty repository.

cd mythesis

By cloning, we not only get the exact copy as the remote side, but we automatically tell
git where we had got the data from, which allows us later to sync our changes back...

Note: You can clone from either a different folder on our computer, a remote machine
(via ssh), or a dedicated git server:

Local directory:

git clone ~/repos/mythesis

Remote directory:

git clone ssh://remote_user@remote_server/mythesis.git

2.1. Creating a git Repository 7

GIT Basics

Remote git server:

git clone git@server:user/project

2.3 Checking the Status

If you don’t know in which state the current repository is in, it's always a good idea to
check:

git status

On branch master
#

Initial commit

#

nothing to commit (create/copy files and use "git add" to track)

Here, everything is clear, not much going on (no news is good news).

Note: In fact, it's good practice, to use git status as often as possible!

2.4 Adding files

First, we’ll create a new file:
echo "My first line towards a great paper!" > paper.txt
git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)
#

paper.txt

nothing added to commit but untracked files present (use "git add" to track)

Here, git tells us that there is a file, however it's untracked, meaning git does not
know/care about it. We need to tell git first that it should keep track of it. So we’ll
add this file to the so called staging area:

git add paper.txt
git status

On branch master

8 Chapter 2. A Typical git Workflow

GIT Basics

#

Initial commit

#

Changes to be committed:

(use "git rm —--cached <file>..." to unstage)
#

new file: paper.txt

#

This tells us that the paper.txt has been added and can be committed to the repository.

2.5 Committing changes

It might be a bit confusing at first to find out that git add does not add a file to the
repository. You need to commit the file/changes to do that:

git commit -m "message describing the changes you made"

Note: You MUST provide a commit message! git will ignore your attempt to commit
if the message is empty. If you do not provide the -m parameter, git will open an editor

in which you should write your commit message (can be multiple lines of text). Once
you save/quit your editor, git will continue to commit...

After succesfully committing, we can check the status again:

git status

On branch master
nothing to commit, working directory clean

2.6 Viewing the History

You can use git log to view the history of a repository. All previous commits including
details such as Name & Email-address of the committer, Date & Time of the commit
as well as the actual commit message are shown:

git log
commit <some hash value identifying this commit>
Author: <your name and email address>

Date: <the actual date of the commit>

message describing the changes you made

2.5. Committing changes 9

GIT Basics

2.6.1 Exercise

Repeat the add/commit procedures you just learned. Add more files, use an editor to
add more content to the paper.txt file, commit your changes providing a meaningful
commit message.

2.7 Pushing changes

In order to exchange/synchronize your changes with a remote repository, you use git
push/git pull:

Local
repository

workspace staging

git add/mv/rm

git commit

git commit -a

git reset <file>

git reset <commit>
git diff

git diff HEAD

|

To push all committed changes, simply type:

git push

Note: git “knows” from which location you had cloned this repository and will try to
push to exactly that location (using the protocol you used to clone: ssh, git, etc)...

Warning: If you get a warning message, read it carefully! The most common error
you get when trying to push are changes on the remote end which you first need to
merge into your local repository before you are allowed to push your own...

10 Chapter 2. A Typical git Workflow

GIT Basics

2.7.1 Creating a second clone

In order to simulate contrubting to our repository from another computer, we will again
checkout the repository, but this time in a different folder named mythesis-work:

cd ~/Documents
git clone ~/repos/mythesis mythesis-work

cd ~/Documents/mythesis—-work

This repository should contain all the changes you've pushed so far. Now we want to
improve our paper.txt document. Use an editor to add more lines to this file:

echo "This line was contributed from work..." >> paper.txt

Again, add, commit, and push your changes.

2.8 Pulling changes

To update your local repository with changes from others, you need to pull these
changes. In a centralized workflow you actually must pull changes that other people
have contributed, before you can submit your own.

git pull

Warning: Ideally, changes from others don't conflict with yours, but whenever
someone else has edited the same lines in the same files as you, you will receive
an error message about a merge conflict. You will need to resolve this conflict
manually, then add each resolved file (git add) and commit.

So we go back to the directory ~/Documents/mythesis and (after checking the status)
try to get the changes we’ve done in the mythesis-work directory:

cd ~/Documents/mythesis
git status

git pull

Aﬁéo—merging paper.txt

CONFLICT (content): Merge conflict in paper.txt
Automatic merge failed; fix conflicts and then commit the result.

2.9 Solving conflicts

When working collaboratively on a project, it is unavoidable that the same file gets
changed by different contributors. This causes a conflict and needs to be dealt with.

2.8. Pulling changes 11

GIT Basics

Hint: It helps minimizing conflicts if you push/pull often!

To solve a merge conflict, you can either:
* manually merge the two files (see below)
* discard the remote file: git checkout —ours conflicted_file.txt
¢ discard the local file: git checkout —theirs conflicted_file.txt

2.9.1 Manually merging a conflict

To create a conflict, we change the same line in the file paper.txt in both directories
(mythesis and mythesis-work) without pulling each others changes in between. Once
we pull, git will tell us that a conflict has occurred.:

Automatic merge failed; fix conflicts and then commit the result.

When git encounters conflicts in files, it adds special markers <<<<<<<, =======,
>>>>>>> into this file wrapping both conflicting changes. It is up to you to decide
which of these changes to keep.:

content of the file

<< HEAD:paper.txt
your home changes

your changes introduced at work
>>>>>>> 000000000000000000000000000000000000:paper.txt

rest of the file

Make sure to delete the lines that where introduced by git (otherwise you won't be able
to commit changes. If you only wanted to keep your changes than you would delete
everything except your changes:

content of the file
your home changes

rest of the file

Now, you need to add this file again to the staging area and commit to finish this
conflicting merge. Use git status to see the status of the repository.

12 Chapter 2. A Typical git Workflow

GIT Basics

2.10 Undo local changes

One of the great features of using version control is that you can revert (undo) changes
easily. If you want to undo all changes in a local file, you simply checkout the latest
version of this file:

git checkout —-- <filename>

Warning: You will loose all changes you made since the last commit!

If you want to checkout a specific version (revision) of a file, you need to specify the
hash or name of the revision:

git checkout revision_name <filename>

2.10. Undo local changes 13

GIT Basics

14 Chapter 2. A Typical git Workflow

Chapter 3

Links/References

the git program itself:
git for Windows !, or for Mac 2
Tools:
* SourceTree (a graphical user interface for git) 3
 DiffMerge (a graphical merge tool) 4
¢ Kdiff3 (another graphical merge tool) 5
* githug - a game to learn git ©
References:
e Try Git 7

A Visual Git Reference 8

* A visual guide to version control °

¢ Version control for scientific research 10

Software Carpentry’s introduction to git !
Scientific Articles About Git:
¢ Git can facilitate greater reproducibility & increased transparency in science

* Improving the reuse of computational models through version control 3

1 http://www.git-scm.com/download /wi

2 http:/ /www.git-scm.com/download /mac

3 http://www.sourcetreeapp.com/download/

4 http://www.sourcegear.com/diffmerge/

5 http:/ /kdiff3.sourceforge.net/

8 https://github.com/gazler/githug

7 http:/ /try.github.io/levels/1/challenges/1

8 http://marklodato.github.io/visual-git-guide /index-en.html

9 http:/ /betterexplained.com/articles/a-visual-guide-to-version-control
10 http://blogs.biomedcentral.com/bmcblog/2013/02 /28 /version-control-for-scientific-research /
1 https://github.com/swcarpentry/bc/blob/master/intermediate/git/01-conversational-git.md
12 http:/ /www.ncbi.nlm.nih.gov/pubmed /23448176
13 http:/ /www.ncbi.nlm.nih.gov/pubmed/23335018

http://www.git-scm.com/download/win
http://www.git-scm.com/download/mac
http://www.sourcetreeapp.com/download/
http://www.sourcegear.com/diffmerge/
http://kdiff3.sourceforge.net/
https://github.com/gazler/githug
http://try.github.io/levels/1/challenges/1
http://marklodato.github.io/visual-git-guide/index-en.html
http://betterexplained.com/articles/a-visual-guide-to-version-control
http://blogs.biomedcentral.com/bmcblog/2013/02/28/version-control-for-scientific-research/
https://github.com/swcarpentry/bc/blob/master/intermediate/git/01-conversational-git.md
http://www.ncbi.nlm.nih.gov/pubmed/23448176
http://www.ncbi.nlm.nih.gov/pubmed/23335018
http://www.git-scm.com/download/wi
http://www.git-scm.com/download/mac
http://www.sourcetreeapp.com/download/
http://www.sourcegear.com/diffmerge/
http://kdiff3.sourceforge.net/
https://github.com/gazler/githug
http://try.github.io/levels/1/challenges/1
http://marklodato.github.io/visual-git-guide/index-en.html
http://betterexplained.com/articles/a-visual-guide-to-version-control
http://blogs.biomedcentral.com/bmcblog/2013/02/28/version-control-for-scientific-research/
https://github.com/swcarpentry/bc/blob/master/intermediate/git/01-conversational-git.md
http://www.ncbi.nlm.nih.gov/pubmed/23448176
http://www.ncbi.nlm.nih.gov/pubmed/23335018

GIT Basics

"FINAL doc

| 7
FINAL _rev.6.COMMENTS.d FINAL _rev.8.commentss.
Alrev oc CORRECTIONG. doc

JORSE CHAM B2012

B)
FINAL _rev.18.comments?. FLNAL_rev.zz.wmmén‘l'sH‘?.
corrections?.MORE.30.doC corrections. 0. £@$%WUYDID

WwWW.PHDCOMICS.COM

16

Chapter 3. Links/References

	The Benefits of Version Control
	git at a Glance
	git commands
	git concepts

	git settings
	Setting your identity
	Checking Your Settings

	A Typical git Workflow
	Creating a git Repository
	Cloning a git Repository
	Checking the Status
	Adding files
	Committing changes
	Viewing the History
	Exercise

	Pushing changes
	Creating a second clone

	Pulling changes
	Solving conflicts
	Manually merging a conflict

	Undo local changes

	Links/References

