
GIT For Beginners

Holger Dinkel

April 04, 2014

Contents

1 The Benefits of Version Control 1

2 git at a Glance 3

3 git Settings 5
3.1 setting your identity . 5

3.1.1 Checking Your Settings . 5

4 A Typical git Workflow 7
4.1 Creating a git Repository . 7
4.2 Cloning a git Repository . 7
4.3 Checking the Status . 8
4.4 Adding files . 8
4.5 Committing changes . 9
4.6 Viewing the History . 9
4.7 Pushing changes . 9
4.8 Pulling changes . 10
4.9 Undo local changes . 10
4.10 Using centralized workflow . 10

5 EMBL git server 11

6 Links/References 13

7 About Bio-IT 15
7.1 Resources . 15
7.2 Training and Outreach . 15
7.3 Networking . 15
7.4 Biocomputing expertise at EMBL . 16
7.5 Centers . 16

7.5.1 Biomolecular Network Analysis . 16
7.5.2 Statistical Data Analysis . 16
7.5.3 Molecular and Cellular Imaging 16
7.5.4 Modeling . 16

8 Acknowledgements 17

Index 19

i

ii

Chapter 1

The Benefits of Version Control

Version control is a system that records changes to a file or set of files over time so
that you can recall specific versions later. The benefits are at hand:

• Track incremental backups and recover: Every document can be backed up
automatically and restored at a second’s notice.

• Track every change: Every infinitesimal change can be recorded and can be
used to revert a file to an earlier state.

• Track writing experiments: Writing experiments can be sandboxed to copies
while keeping the main file intact.

• Track co-authoring and collaboration: Teams can work independently on
their own files, but merge them into a latest common revision.

• Track individual contributions: Good VCS systems tag changes with authors
who make them.

1

GIT For Beginners

Figure 1.1: Files are added from theworking directory, which always holds the current
version of your files, to the staging area. Staged files will be stored into the repository
in the next commit. The repository itself contains all previous versions of all files ever
committed.

Figure 1.2: Distributed Workflow using a centralized repository. Here, three local
copies of one central repository allow you, Jon and Matt to work on the same files and
sync files between each other using the central server.

2 Chapter 1. The Benefits of Version Control

Chapter 2

git at a Glance

The git tool has many subcommands that can be invoked like git <subcommand> for
instance git status to get the status of a repository.

The most important ones (and hence the ones we’ll be focusing on) are:

init: initialize a repository

clone: clone a repository

status: get information about a repository

log: view the history and commit messages of the repository

add: add a file to the staging area

commit: commit your changes to your local repository

push: push changes to a remote repository

pull: pull changes from a remote repository

checkout: retrieve a specific version of a file

you can read more about each command by invoking the help:

git commit --help
git help commit

3

GIT For Beginners

4 Chapter 2. git at a Glance

Chapter 3

git Settings

3.1 setting your identity

Before we start, we should set the user name and e-mail address. This is important
because every git commit uses this information and it’s also incredibly useful when
looking at the history and commit log:

git config --global user.name "John Doe"
git config --global user.email johndoe@embl.de

Other useful settings include your favorite editor as well as difftool:

git config --global core.editor vim
git config --global merge.tool meld

3.1.1 Checking Your Settings

You can use the git config –list command to list all your settings:

git config --list
user.name="John Doe"
user.email=johndoe@embl.de
core.editor=vim
merge.tool=meld
color.status=auto
color.branch=auto
color.interactive=auto
color.diff=auto
...

5

GIT For Beginners

6 Chapter 3. git Settings

Chapter 4

A Typical git Workflow

4.1 Creating a git Repository

Turning an existing directory into a git repository is as simple as changing into
that directory and invoking git init. Here we first create an empty directory called
new_repository and create a repository in there:

mkdir new_repository
cd new_repository
git init

Note: As a result, there should be a directory called .git in this directory...

4.2 Cloning a git Repository

Instead of creating a new directory, we can clone a repository. That origin reposi-
tory can reside in a different folder on our computer, on a remote machine, or on a
dedicated git server:

Local directory:

git clone ../other_directory

Remote directory:

git clone ssh://user@server/project.git

Remote git server:

git clone git@server:user/project
git clone git@git.embl.de:dinkel/linuxcommandline

7

GIT For Beginners

4.3 Checking the Status

If you don’t know in which state the current repository is in, it’s always a good idea to
check:

git status

On branch master
#
Initial commit
#
nothing to commit (create/copy files and use "git add" to track)

4.4 Adding files

First, we’ll create a new file:

echo "First entry in first file!" > file1.txt

git status

On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
file1.txt
nothing added to commit but untracked files present (use "git add" to track)

Now we’ll add this file to the so called staging area:

git add file1.txt

git status

On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: file1.txt
#

This tells us that the file1.txt has been added and can be committed to the repository.

8 Chapter 4. A Typical git Workflow

GIT For Beginners

4.5 Committing changes

It might be a bit confusing at first to find out that git add does not add a file to the
repository. You need to commit the file/changes to do that:

git commit -m "message describing the changes you made"

Note: You MUST provide a commit message! git will ignore your attempt to commit
if the message is empty. If you do not provide the -m parameter, git will open an editor
in which you should write your commit message (can be multiple lines of text). Once
you save/quit your editor, git will continue to commit...

After succesfully committing, we can check the status again:

git status

On branch master
nothing to commit, working directory clean

4.6 Viewing the History

You can use git log to view the history of a repository. All previous commits including
details such as Name & Email-address of the committer, Date & Time of the commit
as well as the actual commit message are shown:

git log

commit <some hash value identifying this commit>
Author: <your name and email address>
Date: <the actual date of the commit>

message describing the changes you made

4.7 Pushing changes

If we had cloned this repository from a remote location, we probably want our changes
to be propagated to that repository as well. To push all committed changes, simply
type:

git push

Note: git “knows” from which location you had cloned this repository and will try to
push to exactly that location (using the protocol you used to clone: ssh, git, etc)...

4.5. Committing changes 9

GIT For Beginners

Warning: If you get a warning message, you probably ‘just’ need to pull others
changes before you are allowed to push your own...

4.8 Pulling changes

To update your local repository with changes from others, you need to pull these
changes. In a centralized workflow you actually must pull changes that other people
have contributed, before you can submit your own.

git pull

Warning: Ideally, changes from others don’t conflict with yours, but whenever
someone else has edited the same lines in the same files as you, you will receive
an error message about a merge conflict. You will need to resolve this conflict
manually, then add each resolved file (git add) and commit.

4.9 Undo local changes

One of the great features of using version control is that you can revert (undo) changes
easily. If you want to undo all changes in a local file, you simply checkout the latest
version of this file:

git checkout -- <filename>

Warning: You will loose all changes you made since the last commit!

4.10 Using centralized workflow

When you want to use one central repository, to which everybody can push/pull, you
should initialize this repo like so: git init –bare. Basically what this does is create a
repository which all the files from the .git directory in the working directory. This also
means that you should never add/edit/delete files in this directory. Rather clone this
directory in another folder/computer, edit files there and commit/push (see below)...

10 Chapter 4. A Typical git Workflow

Chapter 5

EMBL git server

As part of the Bio-IT initiative, EMBL provides a central git server which can be used
as a centralized resource to share and exchange data/code with collaborators:

http://git.embl.de/

The following rules apply:

• Repositories on the EMBL Git server are only granted to EMBL staff members.

• External users can be added as cooperators on a project, but the projects them-
selves have to be lead by someone with an active EMBL contract.

• Should the project leader leave EMBL, then the project has to be transferred to
someone else or the complete repository will be removed.

• Repositories are always installed as sub-repositories of the project
leader/repository responsible.

• By default, repositories are installed with only basic access permissions for the
repository owner. He/she is then in charge of setting appropriate access permis-
sions as described on the Howto page.

Basically, to use this server, you need to provide your full name, your EMBL email
address and username, the name and a short description of the repository/project,
along with your SSH public key to the admin and he will set things up so you are able
to access your repository:

git clone git@git.embl.de:your_username/your_repository

Note: It’s important to mention that the username for accessing the git.embl.de
server is always git, not your username!

An SSH key can be generated using the command ssh-keygen (Windows users might
want to use putty) like so:

ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (/home/username/.ssh/id_rsa):
Created directory ’/home/username/.ssh’.

11

http://git.embl.de/
http://git.embl.de/howto.html
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

GIT For Beginners

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/username/.ssh/id_rsa.
Your public key has been saved in /home/username/.ssh/id_rsa.pub.
The key fingerprint is: 2d:14:f5:d8:... username@hostname

This creates two files, in this case /home/username/.ssh/id_rsa and
/home/username/.ssh/id_rsa.pub. The former is your private key and should
never be handed out to anybody, while the latter one (ending in .pub) should be
distributed to any server on which you intend to use it...

12 Chapter 5. EMBL git server

Chapter 6

Links/References

the git program itself:

• git for Windows 1

• git for Mac 2

Tools:

• SourceTree (a graphical user interface for git) 3

• DiffMerge (a graphical merge tool) 4

• Kdiff3 (another graphical merge tool) 5

References:

• Try Git 6

• A Visual Git Reference 7

• A visual guide to version control 8

• Version control for scientific research 9

• Software Carpentry’s introduction to git 10

Scientific Articles About Git:

• Git can facilitate greater reproducibility and increased transparency in science
11

• Improving the reuse of computational models through version control 12

1 http://www.git-scm.com/download/wi
2 http://www.git-scm.com/download/mac
3 http://www.sourcetreeapp.com/download/
4 http://www.sourcegear.com/diffmerge/
5 http://kdiff3.sourceforge.net/
6 http://try.github.io/levels/1/challenges/1
7 http://marklodato.github.io/visual-git-guide/index-en.html
8 http://betterexplained.com/articles/a-visual-guide-to-version-control
9 http://blogs.biomedcentral.com/bmcblog/2013/02/28/version-control-for-scientific-research/

10 https://github.com/swcarpentry/bc/blob/master/intermediate/git/01-conversational-git.md
11 http://www.ncbi.nlm.nih.gov/pubmed/23448176
12 http://www.ncbi.nlm.nih.gov/pubmed/23335018

13

http://www.git-scm.com/download/wi
http://www.git-scm.com/download/mac
http://www.sourcetreeapp.com/download/
http://www.sourcegear.com/diffmerge/
http://kdiff3.sourceforge.net/
http://try.github.io/levels/1/challenges/1
http://marklodato.github.io/visual-git-guide/index-en.html
http://betterexplained.com/articles/a-visual-guide-to-version-control
http://blogs.biomedcentral.com/bmcblog/2013/02/28/version-control-for-scientific-research/
https://github.com/swcarpentry/bc/blob/master/intermediate/git/01-conversational-git.md
http://www.ncbi.nlm.nih.gov/pubmed/23448176
http://www.ncbi.nlm.nih.gov/pubmed/23335018
http://www.git-scm.com/download/wi
http://www.git-scm.com/download/mac
http://www.sourcetreeapp.com/download/
http://www.sourcegear.com/diffmerge/
http://kdiff3.sourceforge.net/
http://try.github.io/levels/1/challenges/1
http://marklodato.github.io/visual-git-guide/index-en.html
http://betterexplained.com/articles/a-visual-guide-to-version-control
http://blogs.biomedcentral.com/bmcblog/2013/02/28/version-control-for-scientific-research/
https://github.com/swcarpentry/bc/blob/master/intermediate/git/01-conversational-git.md
http://www.ncbi.nlm.nih.gov/pubmed/23448176
http://www.ncbi.nlm.nih.gov/pubmed/23335018

GIT For Beginners

14 Chapter 6. Links/References

Chapter 7

About Bio-IT

Bio-IT is a community project aiming to develop and strengthen the bioinformatics
user community at EMBL Heidelberg. It is made up of members across the different
EMBL Heidelberg units and core facilities. The project works to achieve these aims,
firstly, by providing a forum for discussing and sharing information and ideas on
computational biology and bioinformatics, focused on the Bio-IT portal. Secondly, we
organise and participate in a range of different networking and social activites aiming
to strengthen ties across the community.

7.1 Resources

A list of biocomputing-related resources associated with the project, in the top-left
“Resources” menu, including, for example there is help provided for installing software
on Linux computers at EMBL, instructions on using the Git versions control system
server provided by EMBL, and various other kinds of information.

7.2 Training and Outreach

The “Training and Outreach” menu provides information on events (courses and con-
ferences), both internal to EMBL and organised elsewhere by other organisations, that
are related to biocomputing and bioinformatics

7.3 Networking

Several different kinds of networking events for the Bio-IT community are being organ-
ised, including beer sessions for the EMBL community, and within-Heidelberg events
for the larger Heidelberg biocomputing community.

15

http://bio-it.embl.de

GIT For Beginners

7.4 Biocomputing expertise at EMBL

You can use the Bio-IT portal to search for people working at EMBL who have experi-
ence working with data or tools you might be interested in.

If you’ve not yet got a page up on the portal describing your own expertise, please
do so. If you need any help doing this, you can read about this in the portal’s FAQ
section, or get in touch with one of the site administrators.

7.5 Centers

EMBL Centres are ‘horizontal’, cross-departmental structures that promote innovative
research projects across disciplines. All the EMBL Centres listed below have a strong
computational component.

7.5.1 Biomolecular Network Analysis

The CBNA disseminates expertise, know-how and guidance in network integration
and analysis throughout EMBL.

7.5.2 Statistical Data Analysis

The CSDA helps EMBL scientists to use adequate statistical methods for their specific
technological or biological applications.

7.5.3 Molecular and Cellular Imaging

The CMCI makes your life in image processing/analysis easier and more fun.

7.5.4 Modeling

The Centre for Biological Modeling (CBM) aims to support people to adopt mathemat-
ical modeling techniques into their everyday research.

16 Chapter 7. About Bio-IT

http://www.embl.de/research/interdisciplinary_research/centres/index.html
http://bio-it.embl.de/cbna
http://bio-it.embl.de/statistical-data-analysis
http://bio-it.embl.de/molecular-and-cellular-imaging
http://bio-it.embl.de/biological-modeling
http://bio-it.embl.de/cbna
http://bio-it.embl.de/statistical-data-analysis
http://bio-it.embl.de/molecular-and-cellular-imaging
http://bio-it.embl.de/biological-modeling

Chapter 8

Acknowledgements

Handouts provided by EMBL Heidelberg Photolab (Many thanks to Udo Ringeisen)

The git server at git.embl.de is maintained by Frank Thommen.

EMBL Logo © EMBL Heidelberg

License: CC BY-SA 3.0

17

http://www.embl.de
http://www.embl.de
http://creativecommons.org/licenses/by-sa/3.0/

GIT For Beginners

18 Chapter 8. Acknowledgements

Index

C
clone . 7

I
init . 7

19

	The Benefits of Version Control
	git at a Glance
	git Settings
	setting your identity
	Checking Your Settings

	A Typical git Workflow
	Creating a git Repository
	Cloning a git Repository
	Checking the Status
	Adding files
	Committing changes
	Viewing the History
	Pushing changes
	Pulling changes
	Undo local changes
	Using centralized workflow

	EMBL git server
	Links/References
	About Bio-IT
	Resources
	Training and Outreach
	Networking
	Biocomputing expertise at EMBL
	Centers
	Biomolecular Network Analysis
	Statistical Data Analysis
	Molecular and Cellular Imaging
	Modeling

	Acknowledgements
	Index

