
Linux Course Documentation

Holger Dinkel, Frank Thommen & Thomas Zichner

February 25, 2015

Contents

1 Introduction to the Linux Commandline 1
1.1 Why Use the Commandline . 1
1.2 General Remarks Regarding Using UNIX/Linux Systems 2

1.2.1 Absolute Paths / Relative Paths 3
1.3 General Structure of Linux Commands 3
1.4 A Journey Through the Commands . 4

1.4.1 Useful Terminal Tools & Keyboard Shortcuts 4
1.4.2 Getting Help . 6
1.4.3 Who am I, where am I . 7
1.4.4 Moving Around . 8
1.4.5 See What’s Around . 8
1.4.6 Organize Files and Folders . 10
1.4.7 View Files . 14
1.4.8 Extracting Informations from Files 15
1.4.9 Useful Filetools . 18
1.4.10 Permissions . 19
1.4.11 Remote access . 20
1.4.12 IO and Redirections . 22
1.4.13 Environment Variables . 23

2 Exercises 25
2.1 Misc. file tools . 25
2.2 Copying / Deleting Files & Folders . 25
2.3 View Files . 25
2.4 Searching . 26
2.5 Misc. terminal . 26
2.6 Permissions . 26
2.7 Remote access . 26
2.8 IO and Redirections . 27
2.9 Putting it all together . 27
2.10 Bioinformatics . 28

3 Solutions to the Exercises 29
3.1 Misc. file tools . 29
3.2 Copying / Deleting Files & Folders . 29
3.3 View Files . 30
3.4 Searching . 31
3.5 Misc. terminal . 31
3.6 Permissions . 31
3.7 Remote access . 33
3.8 IO and Redirections . 34

i

3.9 Putting it all together . 35
3.10 Bioinformatics . 35

4 More Commandline Tools 37
4.1 Commandline Tools . 37

4.1.1 GZIP . 37
4.1.2 TAR . 38
4.1.3 GREP . 39
4.1.4 SED . 39
4.1.5 AWK . 41

4.2 I/O Redirection . 42
4.3 Variables . 44

4.3.1 Setting, Exporting and Removing Variables 44
4.3.2 Listing Variables . 45
4.3.3 Variable Inheritance . 45

4.4 Hints . 46

5 I/O Redirection 49

6 Variables 51
6.1 Setting, Exporting and Removing Variables 51
6.2 Listing Variables . 52
6.3 Variable Inheritance . 52

6.3.1 Examples . 52

7 Basic Shell Scripting 55
7.1 What is a Script? . 55
7.2 Script Naming and Organization . 55
7.3 Running a Script . 55

7.3.1 Basic Structure of a Shellscript . 56
7.3.2 Readability and Documentation 56
7.3.3 Anatomy of a Shellscript . 57
7.3.4 Reporting Success or Failure - The Exit Status 58
7.3.5 Command Grouping and Sequences 59

7.4 Control Structures . 60
7.4.1 Conditional Statements . 61
7.4.2 Loops . 64

7.5 Making Scripts Flexible . 65
7.5.1 Configurable Scripts . 65
7.5.2 Defining your own Commandline Options and Arguments 67

7.6 Ensuring a Sensible Exit Status . 68
7.6.1 Why is the exit status important after all? 69

7.7 Tips and Tricks . 69
7.7.1 Combining Variables with other Strings 69
7.7.2 Filenames and Paths . 70
7.7.3 Breaking up Long Code Lines . 70
7.7.4 Script Debugging . 70
7.7.5 Command Substitution . 70
7.7.6 Create Temporary Files . 71
7.7.7 Cleaning up Temporary Files . 71

8 Solutions to the Exercises 73

ii

8.1 TAR & GZIP . 73
8.2 GREP . 74
8.3 SED . 75
8.4 AWK . 75
8.5 Quoting and Escaping . 76

9 The Benefits of Version Control 77

10 git at a Glance 79

11 git Settings 81
11.1 setting your identity . 81

11.1.1 Checking Your Settings . 81

12 A Typical git Workflow 83
12.1 Creating a git Repository . 83
12.2 Cloning a git Repository . 83
12.3 Checking the Status . 84
12.4 Adding files . 84
12.5 Committing changes . 85
12.6 Viewing the History . 85
12.7 Pushing changes . 85
12.8 Pulling changes . 86
12.9 Undo local changes . 86
12.10Using centralized workflow . 86

13 EMBL git server 87

14 Appendix 89
14.1 Links and Further Information . 89

14.1.1 Links . 89
14.1.2 Command Line Mystery Game . 90
14.1.3 Real printed paper books . 90
14.1.4 Live - CDs . 90

14.2 About Bio-IT . 91
14.2.1 Resources . 92
14.2.2 Training and Outreach . 92
14.2.3 Networking . 92
14.2.4 Biocomputing expertise at EMBL 92
14.2.5 Centers . 92

14.3 Acknowledgements . 93

Index 95

iii

iv

Chapter 1

Introduction to the Linux
Commandline

1.1 Why Use the Commandline

• It’s fast. Productivity is a word that gets tossed around a lot by so-called power
users, but the command line can really streamline your computer use, assuming
you learn to use it right.

• It’s easier to get help. The command line may not be the easiest thing to use,
but it makes life a whole lot easier for people trying to help you and for yourself
when looking for help, especially over the internet. Many times it’s as simple
as the helper posting a few commands and some instructions and the recipient
copying and pasting those commands. Anyone who has spent hours listening to
someone from tech support say something like, “OK, now click this, then this,
then select this menu command” knows how frustrating the GUI alternative can
be.

• It’s nearly universal. There are hundreds of Linux distributions out there, each
with a slightly different graphical environment. Thankfully, the various distros
do have one common element: the command line. There are distro-specific com-
mands, but the bulk of commands will work on any Linux system.

• It’s powerful. The companies behind those other operating systems try their best
to stop a user from accidentally screwing up their computer. Doing this involves
hiding a lot of the components and tools that could harm a computer away from
novices. Linux is more of an open book, which is due in part to its prominent
use of the command line.

• Many ‘modern’ bioinformatics tools (samtools, bamtools, ...) are written for the
commandline in order to be run on clusters and to be incorporated in scripts.

1

Linux Course Documentation

1.2 General Remarks Regarding Using
UNIX/Linux Systems

• Test before run. Anything written here has to be taken with a grain of salt. On
another system - be it a different Linux distribution or another UNIXoid operating
system - you might find the same command but without the support of some of
the options taught here. It is even possible, that the same option has a different
meaning on another system. With this in mind always make sure to test your
commands (specially the “dangerous” ones which remove or modify files) when
switching from one system to the other.

• The Linux/UNIX environment. The behaviour of many commands is influenced
or controlled by the so-called “environment”. This environment is the sum of all
your environment variables. Some of these environment variables will be shown
towards the end of this course.

• UPPERCASE, lowercase. Don’t forget that everything is case-sensitive.

• The Filesystem. Linux filesystems start on top at the root directory (sic!) “/”
which hierarchically broadens towards the ground. The separator between di-
rectories or directories and files in Linux is the slash (“/”).

Figure 1.1: Depending on the Linux distribution you might or might not find all of
above directories. Most important directories for you are /bin and /usr/bin (some-
times also /usr/local/bin) which contain the user software, /home which usually con-
tains the users’ homedirectories and /tmp which can be used to store temporary data
(beware: Its content is regularly removed!).

Note: The terms “directory” and “folder” are used interchangeably in this document.

2 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

1.2.1 Absolute Paths / Relative Paths

A path describes the location of a file/folder in the filesystem: It is important to un-
derstand that there are basically two ways to describe such a path: Either by using
an absolute pathname, or by using a relative pathname. The difference is that abso-
lute paths always start with a “slash /”. This “slash” denotes the so called “root” of
the filesystem (see below). Relative paths in contrast always starting with a directory
name and denote the location of a file/folder relative to the current directory.

Note: When in doubt, it’s best to use absolute filenames. Commands given with
absolute pathname are more easily repeated later, as they can be run independent of
the current working directory (unlike relative paths).

1.3 General Structure of Linux Commands

Many linux commands have options and accept arguments. Options are a set of
switch-like parameters while arguments are usually free text input (such as a file-
name).

Figure 1.2: General structure of Linux commands.

For example, in the commandline ls -l /usr/bin, ls is the command, -l is an option
and /usr/bin qualifies as an argument.

Commandline options (sometimes called commandline switches) commonly have one
of the two following forms: The short form -s (just a single character) or the long form
--string. E.g.

$ man -h
$ man --help

Short options are usually - though not always - concatenatable:

1.3. General Structure of Linux Commands 3

Linux Course Documentation

$ ls -l -A -h
$ ls -lAh

Some options require an additional argument, which is added with a blank to the
short form and with an equal sign to the long form:

$ ls -I "*.pdf"
$ ls --ignore="*.pdf"

Since Linux incorporates commands from different sources, options can be available
in one or both forms and you’ll also encounter options with no dash at all and all
kinds of mixtures:

$ tar cf file.tar -C .. file/
$ ps auxgww

1.4 A Journey Through the Commands

Please note that all examples and usage instructions below are just a glimpse of what
you can do and reflect our opinion on what’s important and what’s not. Most of these
commands support many more options and different usages. Consult the manpages
to find them.

Typographical conventions: Commands and examples are written in Courier. User
Input is written in Courier bold and placeholders are generally written in italic.

1.4.1 Useful Terminal Tools & Keyboard Shortcuts

Navigating previous commands

You can use the ↑/↓ (up/down) arrow keys to navigate previously entered command
and the ←/→ (left/right) keys to modify it before re-executing it.

Copying / Pasting using the mouse

On most Linux systems you can use the mouse to select text and then press the middle
mouse button to paste that text at the position where your cursor is. This is especially
useful for long directory or filenames.

Printing some text

To simply print some text in the console, use echo:

Usage: echo

4 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

$ echo "this is some text"
this is some text
$

It can also be used to print the content of a variable, see section Environment Variables
(page 23)...

Interrupting commands

Whenever a program gets stuck or takes too long to finish, you can interrupt it with
the shortcut CONTROL-C.

Leave the shell

To exit the shell/terminal, just type exit or press CONTROL-D.

clear - Clear the “screen”

Usage: clear

$ clear
$

In case the output of the terminal/screen gets cluttered, you can use clear to redraw
the screen...

$ cat /bin/echo
$...(garbled output here)
$ clear
$

Note: If this doesn’t work, you can use reset to perform a re-initialization of the
terminal:

reset - Reset your terminal

Usage: reset [options]

$ reset
$

1.4. A Journey Through the Commands 5

Linux Course Documentation

1.4.2 Getting Help

-h/--help option, no parameters

Many commands support a “help” option, either through -h or through --help. Other
commands will show a help page or at least a short usage overview if you provide
incorrect commandline options

man - show the manual page of a command

Usage: man command or file

$ man man
man(1)

NAME
man - format and display the on-line manual pages

SYNOPSIS
man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]

...
$

For the navigation within a manpage and how to exit the manpage, see the paragraph
regarding less (page 15).

Note: The behaviour of man is dependent of the $PAGER environment variable

apropos - list manpages containing a keyword in their description

Usage: apropos keyword

$ apropos who
...
who (1) - show who is logged on
who (1) - display who is on the system
whoami (1) - print effective userid
$

Use apropos to find candidates for specific tasks

/usr/share/doc/

The /usr/share/doc/ directory in some Linux distributions contains additional docu-
mentation of installed software packages

6 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

1.4.3 Who am I, where am I

whoami - Print your username

Linux is a multi-User Operating System supporting thousands of users on the same
machine. As usernames can differ between machines, it’s important to know your
username on any particular machine.

Usage: whoami

$ whoami
fthommen
$

hostname - Print the name of the computer

Each machine on the network has a unique name which is used to distinguish one
from another.

Usage: hostname

$ hostname
pc-teach01
$

pwd - Print the current working directory

A Linux filesystem contains countless directories with many subdirectories which
makes it easy to get lost. It is good practice to check your position within the filesystem
regularly.

Usage: pwd

$ pwd
/home/fthommen
$

date - Print current date and time

Usage: date

$ date
Tue Sep 25 19:57:50 CEST 2012
$

Note: The command time does something completely different from date and is not
used to show the current time.

1.4. A Journey Through the Commands 7

Linux Course Documentation

1.4.4 Moving Around

cd - Change the working directory

Usage: cd [new_directory]

$ pwd
/home/fthommen
$ cd /usr/bin
$ pwd
/usr/bin
$

Note: Using cd without a directory is equivalent to “cd ~” and changes into the users’s
homedirectory

Note: Please note the difference between absolute paths (starting with “/”) and rela-
tive paths (starting with a directory name)

Special directories:

• “.”: The current working directory

• “/”: The root directory of this computer

• “..”: The parent directory of the current working directory

• “~”: Your homedirectory

$ pwd
/usr
$ cd /bin
$ pwd
/bin

$ pwd
/usr
$ cd
$ pwd
/home/fthommen

1.4.5 See What’s Around

ls - List directory contents

Usage: ls [options] [file(s) or directory/ies]

$ ls
/home/fthommen
$ ls -l aa.pdf

8 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

-rw-r--r-- 1 fthommen cmueller 0 Sep 24 10:59 aa.pdf
$

Useful options:

-l Long listing with permissions, user, group and last modi-
fication date

-1 Print listing in one column only

-a Show all files (hidden, ”.” and ”..”)

-A Show almost all files (hidden, but not ”.” and ”..”)

-F Show filetypes (nothing = regular file, “/” = directory, “*” =
executable file, “@” = symbolic link)

-d Show directory information instead of directory content

-t Sort listing by modification time (most recent on top)

Figure 1.3: Elements of a long file listing (ls -l)

1.4. A Journey Through the Commands 9

Linux Course Documentation

Digression: Shell globs

Files and folders can’t only be referred to with their full name, but also with so-called
“Shell Globs”, which are a kind of simple pattern to address groups of files and folders.
Instead of explicit names you can use the following placeholders:

• ?: Any single character

• *: Any number of any character (including no character at all, but not matching
a starting ”.”)

• [...]: One of the characters included in the brackets. Use “-” to define ranges
of characters

• {word1,word2}: Each individual word is expanded

Examples:

• *.pdf: All files having the extension ”.pdf”

• ?.jpg: Jpeg file consisting of only one character

• [0-9]*.txt: All files starting with a number and having the extension ”.txt”

• *.???: All files having a three-character extension

• photo.{jpg,png}: “photo.jpg” and “photo.png”

Note: The special directory “~” mentioned above is a shell glob, too.

1.4.6 Organize Files and Folders

touch - Create a file or change last modification date of an existing file

Usage: touch file(s) or directory/ies

$ ls afile
ls: afile: No such file or directory
$ touch afile
$ ls afile
afile
$

$ ls -l aa.pdf
-rw-r--r-- 1 fthommen cmueller 0 Sep 24 10:59 aa.pdf
$ touch aa.pdf
$ ls -l aa.pdf
-rw-r--r-- 1 fthommen cmueller 0 Sep 25 22:01 aa.pdf
$

cp - Copy files and folders

Usage: cp [options] sourcefile destinationfile

10 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

$ cp /usr/bin/less /tmp/backup_of_less
$

Useful options:

-r Copy recursively

-i Interactive operation, ask before overwriting an existing
file

-p Preserve owner, permissions and timestamp

Examples:

If the last filename given is nonexisting then the first file is copied as this new filename:

$ cp /usr/bin/less /tmp/
$

If, however, the last filename given is an (existing!) directory, then the file is copied
into this directory:

$ cp /usr/bin/less /tmp/
$

This allows us to copy multiple files into the same directory at the same time:

$ cp /usr/bin/less /usr/bin/grep /usr/bin/tail /tmp/
$

To recursively copy files, we need to specify the -r option. Here, we copy a set of
exercise files from the network share into our home directory:

$ cp -r /g/bio-it/courses/LSB ~/exercises
$

rsync - intelligently copying files and folders

Usage: rsync [options] source target

$ rsync -av /etc/ root@taperobot:/etc-backup
...
$

rsync allows you to copy files or folders locally or to wherever you have ssh access. You
can have rsync have copying only newer files or only older files. If copy operation is
interrupted, you can rerun rsync and it will only copy the missing files (in contrast to
cp which will just copy everything again).

source and target can be local directories or have the form user@remotehost:directory,
in which case you’ll have to give your password for the remote host. This latter version
will copy over the network.

1.4. A Journey Through the Commands 11

Linux Course Documentation

Note: rsync is one of the few cases, where it effectively matters if a directory is written
with an ending slash (“/”) or nor: If the source is a directory and ends with a slash,
then the content of this directory will be copied into the target directory. If the source
doesn’t have an ending slash, then a directory with the same name will be created
within the target directory

Useful option combinations:

-av Verbosely copies all source files which are different (dif-
ferent size, different age) or missing from the source. Be-
ware: This will also copy files which are older on the
source side

-au Silently copies all source files which are different (differ-
ent size, different age) or missing from the source. This
combination will not overwrite newer files by older ones

This should not copy any new files, as we previously copied these already:

$ rsync -av /g/bio-it/courses/LSB/exercises/ ~/exercises/
$

rm - Remove files and directories

Usage:

rm [options] file(s)

rm -r [options] directory/ies

$ ls afile
afile
$ rm afile
$ ls afile
ls: afile: No such file or directory
$

Useful options:

-i Ask for confirmation of each removal

-r Remove recursively

-f Force the removal (no questions, no errors if a file doesn’t
exist)

Note: rm without the -i option will usually not ask you if you really want to remove
the file or directory

mv - Move and rename files and folders

Usage:

12 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

mv [options] sourcefile destinationfile

mv [options] sourcefile(s) destinationdirectory

$ ls *.txt
a.txt
$ mv a.txt b.txt
$ ls *.txt
b.txt
$

Useful options:

-i Ask for confirmation of each removal

Note: You cannot overwrite an existing directory by another one with mv

mkdir - Create a new directory

Usage: mkdir [options] directory

$ ls adir/
ls: adir/: No such file or directory
$ mkdir adir
$ ls adir
$

Useful options:

-p Create parent directories (when creating nested directo-
ries)

$ mkdir adir/bdir
mkdir: cannot create directory ’adir/bdir’: No such file or directory
$ mkdir -p adir/bdir
$

rmdir - Remove an empty directory

Usage: rmdir directory

$ rmdir adir/
$

Note: If the directory is not empty, rmdir will complain and not remove it.

1.4. A Journey Through the Commands 13

Linux Course Documentation

1.4.7 View Files

cat - Print files on terminal (concatenate)

Usage: cat [options] file(s)

$ cat P12931.fasta backup_of_P12931.fasta
...
$

Note: The command cat only makes sense for short files or for e.g. combining several
files into one. See the redirection examples later.

head - Print first lines of a textfile

head is a program on Unix and Unix-like systems used to display the beginning of a
text file or piped data.

Usage: head [options] file(s)

$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
$

Useful options:

-n NUM Print NUM lines (default is 10)

tail - Print last lines of a textfile

The tail utility displays the last few lines of a file or, by default, its standard input, to
the standard output.

Usage: tail [options] file(s)

$ tail -n 3 /etc/passwd
xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
gdm:x:42:42::/var/gdm:/sbin/nologin
sabayon:x:86:86:Sabayon user:/home/sabayon:/sbin/nologin
$

Useful options:

14 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

-n NUM Print NUM lines (default is 10)

-f “Follow” a file (print new lines as they are written to the
file)

less - View and navigate files

Usage: less [options] file(s)

$ less P12931.fasta backup_of_P12931.fasta
...
$

Note: This is the default “pager” (a program for viewing files page by page, not an old-
fashioned telecommunications device) for manpages under Linux unless you redefine
your $PAGER environment variable (page 23)

Navigation within less:

Key(s): Effect:
up, down, right, left: use cursor keys
top of document: g
bottom of document: G
search: “/” + search-term
find next match: n
find previous match: N
quit: q

1.4.8 Extracting Informations from Files

grep - Find lines matching a pattern in textfiles

grep is a command-line utility for searching plain-text data sets for lines matching a
regular expression.

Usage: grep [options] pattern file(s)

$ grep -i ensembl P04637.txt
DR Ensembl; ENST00000269305; ENSP00000269305; ENSG00000141510.
DR Ensembl; ENST00000359597; ENSP00000352610; ENSG00000141510.
DR Ensembl; ENST00000419024; ENSP00000402130; ENSG00000141510.
DR Ensembl; ENST00000420246; ENSP00000391127; ENSG00000141510.
DR Ensembl; ENST00000445888; ENSP00000391478; ENSG00000141510.
DR Ensembl; ENST00000455263; ENSP00000398846; ENSG00000141510.
$

Useful options:

-v Print lines that do not match

-i Search case-insensitive

1.4. A Journey Through the Commands 15

Linux Course Documentation

-l List files with matching lines, not the lines itself

-L List files without matches

-c Print count of matching lines for each file

-A NUM print NUM lines of trailing context (After)

-B NUM print NUM lines of leading context (Before)

-C NUM print NUM lines of output context (Context)

Examples:

• List all files in the current directory which contain the searchterm Ensembl:

$ grep -l Ensembl ./*
P04637.txt
P12931.txt

Note: You cannot combine the option -v and -l to find files which do not contain
a certain searchterm. The reason is that grep works line-based and not really file-
based... Therefore you should rather use the uppercase -L option!

• List all files in the current directory which do not contain the searchterm
Ensembl:

$ grep -L Ensembl ./*
1FMK.pdb
3A4O.pdb
...

• Count the number of occurrences (case insensitive!) of the term atom in all pdb
files:

$ grep -ic atom ./*.pdb

• Find the term ‘Homo sapiens’ in the file P04637.txt, but also print two lines
before the match:

$ grep -A2 ’Homo sapiens’ P04637.txt

• Find the term ‘Homo sapiens’ in the file P04637.txt, but also print the three lines
following the match:

$ grep -B3 ’Homo sapiens’ P04637.txt

• Find the term ‘Homo sapiens’ in the file P04637.txt, but also print the surround-
ing five lines:

$ grep -C5 ’Homo sapiens’ P04637.txt

16 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

cut - extracting columns from textfiles

cut allows to get at individual columns in structured textfiles (for instance CSV files).
By default, cut assumes the columns are TAB-separated.

Usage: cut [options] file(s)

Useful options:

-d DELIM use DELIM instead of TAB for field delimiter. Make sure
to use quotes here!

-f select only these fields; this can either be a single field,
multiple individual fields separated by comma or a range
of startfield and endfield separated by dash ‘-‘

Examples:

extract column six from the file ~/exercises/P12931.csv (which is separated
by semicolon ‘;’):

$ cut -d’;’ -f6 ~/exercises/P12931.csv
PMID
2136766
11804588
...
$

extract columns two, three, eight, nine and ten from the same file:

$ cut -d’;’ -f2,3,8-10 ~/exercises/P12931.csv
S; 12; 0.21; ; -
S; 17; 0.24; MOD_PKA_1; -
S; 17; 0.24; MOD_PKA_1; -
S; 17; 0.24; MOD_PKA_1; -
...
$

sort - sort a textfile

The sort utility is used to sort a textfile (alphabetically or numerically).

Usage: sort [options] file(s)

$ sort /etc/passwd
...
$

Useful options:

-f fold lower case to upper case characters

-n compare according to string numerical value

-b ignore leading blanks

1.4. A Journey Through the Commands 17

Linux Course Documentation

-r reverse the result of comparisons

1.4.9 Useful Filetools

file - determine the filetype

Usage: file [options] file(s)

$ file /bin/date
/bin/date: ELF 32-bit LSB executable
$ file /bin
/bin: directory
$ file SRC_HUMAN.fasta
SRC_HUMAN.fasta: ASCII text
$

Note: The command file uses certain tests and some magic to determine the type
of a file

which - find a (executable) command

Usage: which [options] command(s)

$ which date
/bin/date
$ which eclipse
/usr/bin/eclipse
$

find - search/find files in any given directory

Usage: find [starting path(s)] [search filter]

$ find /etc
/etc
/etc/printcap
/etc/protocols
/etc/xinetd.d
/etc/xinetd.d/ktalk
...
$

find is a powerful command with lots of possible search filters. Refer to the manpage
for a complete list.

Examples:

• Find by name:

18 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

$ find . -name SRC_HUMAN.fasta
./SRC_HUMAN.fasta
$

• Find by size: (List those entries in the directory /usr/bin that are bigger than
500 kBytes)

$ find /usr/bin -size +500k
/usr/bin/oparchive
/usr/bin/kiconedit
/usr/bin/opjitconv
...
$

• Find by type (d=directory, f=file, l=link)

$ find . -type d
.
./adir
$

1.4.10 Permissions

using ls -l to view entries of current directory:

$ ls -l
drwxr-xr-x 2 dinkel gibson 4096 Sep 17 10:46 adir
lrwxrwxrwx 1 dinkel gibson 15 Sep 17 10:45 H1.fasta -> H2.fasta
-rw-r--r-- 1 dinkel gibson 643 Sep 17 10:45 H2.fasta
$

Changing Permissions

Permissions are set using the chmod (change mode) command.

Usage: chmod [options] mode(s) files(s)

$ ls -l adir
drwxr-xr-x 2 dinkel gibson 4096 Sep 17 10:46 adir
$ chmod u-w,o=w adir
$ ls -l adir
dr-xr-x-w- 2 dinkel gibson 4096 Sep 17 10:46 adir
$

The mode is composed of

1.4. A Journey Through the Commands 19

Linux Course Documentation

Figure 1.4: Linux file permissions

Who What Which permission
u: user/owner +: add this permission r: read
g: group -: remove this permission w: write
o: other =: set exactly this permission x: execute
a: all

Add executable permission to the group:

$ chmod g+x file
$

Revoke this permission:

$ chmod g-x file
$

Allow all to read a directory:

$ chmod a+rx adir/
$

1.4.11 Remote access

To execute commands at a remote machine/server, you need to log in to this machine.
This is done using the ssh command (secure shell). In its simplest form, it takes just
the machinename as parameter (assuming the username on the local machine and
remote machine are identical):

20 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

$ ssh remote_server
...
$

Note: Once logged in, use hostname, whoami, etc. to determine on which machine you
are currently working and to get a feeling for your environment!

To use a different username, you can use either:

$ ssh -l username remote_server
...
$

or

$ ssh username@remote_server
...
$

When connecting to a machine for the first time, it might display a warning:

$ ssh submaster
The authenticity of host ’submaster (10.11.4.219)’ can’t be established.
RSA key fingerprint is a4:2c:c1:a6:34:49:a3:a9:b2:c3:52:f5:37:94:69:f5.
Are you sure you want to continue connecting (yes/no)?

...
$

Type yes here. If this message appears a second time, you should contact your IT
specialist...

To disconnect from the remote machine, type:

$ exit

If setup correctly, you can even use graphical tools from the remote server on the local
machine. For this to work, you need to start the ssh session with the -X parameter:

$ ssh -X remote_server
...
$

Copying files to and from remote computers can be done using scp (secure copy). The
order of parameters is the same as in cp: first the name of the source, then the name
of the destination. Either one can be the remote part.

$ scp localfile server:/remotefile

$ scp server:/remotefile localfile

1.4. A Journey Through the Commands 21

Linux Course Documentation

An alternative username can be provided just as in ssh:

$ scp username@server:/remotefile localfile

1.4.12 IO and Redirections

Redirect

Redirect the output of one program into e.g. a file:

Inserting the current date into a new file:

$ date > file_containing_date
$

Warning: You can easily overwrite files by this!

Filtering lines containing the term “src” from FASTA files and inserting them into the
file lines_with_src.txt:

$ cd ~/exercises/
$ grep -i "src" *.fasta > lines_with_src.txt
$

Append

Append something to a file (rather than overwriting it):

$ date >> file_containing_date
$

Pipe

Use the pipe symbol (|) to feed the output of one program into the next program.
Here: use ls to show the directory contents and then use grep to only show those that
contain fasta in their name:

$ cd ~/exercises
$ ls | grep fasta
EPSINS.fasta
FYN_HUMAN.fasta
P12931.fasta
SRC_HUMAN.fasta
$

22 Chapter 1. Introduction to the Linux Commandline

Linux Course Documentation

1.4.13 Environment Variables

Environment variables are a set of dynamic named values that can affect the way
running processes will behave on a computer.

$HOME

Contains the location of the user’s home directory. Although the current user’s home
directory can also be found out through the C functions getpwuid and getuid, $HOME
is often used for convenience in various shell scripts (and other contexts).

Note: Do not change this variable unless you have a good reason and you know what
you are doing!

$PATH

$PATH contains a colon-separated (‘:’) list of directories that the shell searches for
commands that do not contain a slash in their name (commands with slashes are
interpreted as file names to execute, and the shell attempts to execute the files di-
rectly). So if the directory /usr/bin is in $PATH (which it should), then the command
/usr/bin/less can be accessed by simply typing less instead of /usr/bin/less. How
convenient!

Warning: If you ever need to change this variable, you should always append to
it, rather than overwriting it:
Overwriting (bad): export PATH=/my/new/path;
Appending (good): export PATH=$PATH:/my/new/path

$PAGER

The $PAGER variable contains the path to the program used to list the contents of files
through (such as less or more).

$PWD

The $PWD variable points to the current directory. Equivalent to the output of the
command pwd when called without arguments.

Displaying environment variables

Use echo to display individual variables set‘ or env to view all at once:

$ echo $HOME
/localhome/teach01
$ set

1.4. A Journey Through the Commands 23

Linux Course Documentation

...
$ env
...
$

Setting an environment variable

Use export followed by the variable name and the value of the variable (separated by
the equal sign) to set an environment variable:

$ export PAGER=/usr/bin/less
$

Note: An environment variable is only valid for your current session. Once you logout
of your current session, it is lost or reset.

24 Chapter 1. Introduction to the Linux Commandline

Chapter 2

Exercises

2.1 Misc. file tools

1. Which tool can be used to determine the type of a file?

2. Use it on the following files/directories and compare the results:

(a) /usr/bin/tail

(b) ~

(c) ~/exercises/SRC_HUMAN.fasta

2.2 Copying / Deleting Files & Folders

1. Navigate to your home directory

2. In your home directory, create a new directory named new_dir

3. Change into this directory, create a new empty file in there named new_file, and
make sure that the file was created.

4. Duplicate this file by copying it as a new file named another_file

5. Delete the first file new_file

6. Also delete the directory (you are currently in) ~/new_dir. Does it work?

2.3 View Files

1. Which tools can you use to see the first/last lines of the file
~/exercises/P12931.txt?

2. How to only show the first/last three lines (of the same file)?

3. How do you print the whole file on the screen?

25

Linux Course Documentation

2.4 Searching

1. Which tool can be used to search for files or directories?

2. Use it to find all directories in the ~/exercises directory

3. Search for the file named date in the /bin directory

4. List those entries in the directory /bin that are bigger than 400 kBytes

2.5 Misc. terminal

1. Which two tools can be used to redraw/empty the screen?

2.6 Permissions

1. Create a directory called testpermissions

2. Change your working directory to testpermissions

3. Create a directory called adir.

4. Use the command which date to find out where the date program is located.

5. Copy this date program into the directory adir and name it ‘mydate’.

6. Check the permissions of the copied program ‘mydate’

7. Change the permissions on ‘mydate’ to remove the executable permissions.

8. Check the permissions of the program ‘mydate’

9. Change the permissions back so that the file is executable.

10. Try running it as ./mydate or adir/mydate (depending on your current working
directory)

11. Copy a textfile from a previous exercise into adir, then change the permissions,
so you are not allowed to write to it. Test that you are still able to read the file
via cat.

12. Then change the permissions so you can’t read/cat it either. Test this by trying
to read it via cat.

13. Change your working directory to testpermissions, and then try changing the
permissions on the directory adir to non-executable.

14. What are the minimum permissions (on the directory) necessary for you to be
able to execute adir/mydate?

2.7 Remote access

1. Login to machine “submaster.embl.de” (using your own username)

26 Chapter 2. Exercises

Linux Course Documentation

2. Use exit to quit the remote shell (Beware to not exit your local shell)

3. Use clear to empty the screen after logout from the remote server

4. Use the following commands locally as well as on the remote machine to get a
feeling for the different machines:

5. Copy the file /etc/motd from machine submaster.embl.de into your local home
directory (using scp)

6. Determine the filetype and the permissions of the file that you just copied

7. Login to your neighbor’s machine (ask him for the hostname) using your own
username

2.8 IO and Redirections

1. Use date in conjunction with the redirection to insert the current date into the
(new) file current_date (in your homedirectory).

2. Inspect the file to make sure it contains (only a single line with) the date.

3. Use date again to append the current date into the same file.

4. Again, check that this file now contains two lines with dates.

5. Use grep to filter out lines containing the term “TITLE” from all PDB files in the ex-
ercises directory and use redirection to insert them into a new file pdb_titles.txt.

6. (OPTIONAL) Upon inspection of the file pdb_titles.txt, you see that it also contains
the names of the files in which the term was found.

(a) Use either the grep manpage or grep --help to find out how you can suppress
this behaviour.

(b) Redo the previous exercise such that the output file pdb_titles.txt only con-
tains lines starting with TITLE.

7. The third column of the file /etc/passwd contains user IDs (numbers)

(a) Use cut to extract just the third column of this file (remember to specify the
delimiter ‘:’)

(b) Next, use the pipe (page 22) symbol (|) and sort to sort this output numeri-
cally

2.9 Putting it all together

1. Create a new directory named myscripts in your homedirectory

2. Create an empty file named mydate in the newly created directory

3. Add the directory ~/myscripts to your PATH environment variable

4. Use echo in combination with Redirection/Append to write ‘’date” into the file
~/myscripts/mydate

2.8. IO and Redirections 27

Linux Course Documentation

5. Change the permissions of the file mydate to be executable by you (and you only)

6. Run the file mydate (it should print the current date & time). Make sure you can
run it from any directory (change to your homedirectory and just type mydate).

2.10 Bioinformatics

Let’s do some bioinformatics analysis! You can find the famous BLAST tool installed
at /g/software/bin/blastp.

1. Typing the full path is too cumbersome, so let’s append /g/software/bin to your
$PATH variable and ensure that it works by calling blastp.

2. When you run blastp -help, you notice that it has a lot of options! Use redirections
in conjunction with grep to find out which options you need to specify a input_file
and database_name.

3. Now run blastp using the following values as options:

database_name = /g/data/ncbi-blast/db/swissprot

input_file = suspect1.fasta

4. Use either less or redirection to a file to manage the amount of information that
blastp prints on your screen.

28 Chapter 2. Exercises

Chapter 3

Solutions to the Exercises

3.1 Misc. file tools

1. Which tool can be used to determine the type of a file?

$ file

2. Use it on the following files/directories and compare the results:

(a) /usr/bin/grep

$ file /usr/bin/grep
/usr/bin/grep: binary executable

(b) ~

$ file ~
/home/dinkel: directory

(c) ~/exercises/SRC_HUMAN.fasta

$ file ~/exercises/SRC_HUMAN.fasta
~/exercises/SRC_HUMAN.fasta: ASCII text

3.2 Copying / Deleting Files & Folders

1. Navigate to your home directory

$ cd ~

or just

$ cd

29

Linux Course Documentation

2. In your homedirectory, create a new directory named new_dir

$ mkdir ~/new_dir

3. Change into this directory, create a new empty file in there named new_file, and
make sure that the file was created:

$ cd ~/new_dir
$ touch new_file
$ ls new_file

4. Duplicate this file by copying it as a new file named another_file:

$ cp new_file another_file

5. Delete the first file new_file:

$ rm new_file

6. Also delete the directory (you are currently in) ~/new_dir.

$ rmdir ~/new_dir

7. Did the deletion work? If not, try to remove all files from the directory first...:

$ rm ~/new_dir/*
$ rmdir ~/new_dir

3.3 View Files

1. Which tools can you use to see the first/last lines of the file
~/exercises/P12931.txt?:

$ head ~/exercises/P12931.txt
$ tail ~/exercises/P12931.txt

2. How to only show the first/last three lines (of the same file)?:

$ head -n 3 ~/exercises/P12931.txt
$ tail -n 3 ~/exercises/P12931.txt

3. How do you print the whole file on the screen?:

$ cat ~/exercises/P12931.txt

or

30 Chapter 3. Solutions to the Exercises

Linux Course Documentation

$ less ~/exercises/P12931.txt

3.4 Searching

1. Which tool can be used to search for files or directories?

$ find

2. Use it to find all directories in the ~/exercises directory

$ find ~/exercises -type d

3. Search for the file named date in the /bin directory

$ find /bin -name date

4. List those entries in the directory /bin that are bigger than 400 kBytes

$ find /bin -size +400k

3.5 Misc. terminal

1. Which two tools can be used to redraw/empty the screen?

$ clear

or:

$ reset

3.6 Permissions

1. Create a directory called testpermissions

$ mkdir testpermissions

2. Change your working directory to testpermissions:

$ cd testpermissions

3. Create a directory called adir.

3.4. Searching 31

Linux Course Documentation

$ mkdir adir

4. Use the command which date to find out where the date program is located.:

$ which date
/bin/date

5. Copy this date program into the directory adir and name it ‘mydate’.:

$ cp /bin/date adir/mydate

6. Check the permissions of the copied program ‘mydate’

$ ls -lh adir/mydate
-r-xr-xr-x 1 dinkel staff 79K 9 Dec 13:47 mydate*

7. Change the permissions on ‘mydate’ to remove the executable permissions.:

$ chmod a-x adir/mydate

8. Check the permissions of the program ‘mydate’

$ ls -lh adir/mydate
-r--r--r-- 1 dinkel staff 79K 9 Dec 13:47 mydate*

9. Try running it as ./mydate or adir/mydate (depending on your current working
directory)

$ adir/mydate
permission denied

10. Change the permissions back so that the file is executable.

$ chmod a+x adir/mydate

11. Try running it as ./mydate or adir/mydate (depending on your current working
directory)

$ adir/mydate
Mon Dec 9 13:50:12 CET 2013

12. Copy a textfile from a previous exercise into adir, then change the permissions,
so you are not allowed to write to it. Test that you are still able to read the file
via cat

$ cp ~/exercises/SRC_HUMAN.fasta adir
$ chmod u-w adir/SRC_HUMAN.fasta

13. Then change the permissions so you can’t read/cat it either. Test this by trying
to read it via cat.

32 Chapter 3. Solutions to the Exercises

Linux Course Documentation

$ chmod u-r adir/SRC_HUMAN.fasta

14. Change your working directory to testpermissions, and then try changing the
permissions on the directory adir to non-executable.

$ # no need to change directory,
$ # as we still are in the directory testpermissions
$ chmod a-x adir

15. What are the minimum permissions (on the directory) necessary for you to be
able to execute adir/mydate?

$ chmod u+rx adir

3.7 Remote access

1. Login to machine “submaster.embl.de” (using your own username)

$ ssh submaster.embl.de -l username

2. Use exit to quit the remote shell (Beware to not exit your local shell)

$ exit

3. Use clear to empty the screen after logout from the remote server:

$ clear

4. Use the following commands locally as well as on the remote machine to get a
feeling for the different machines:

A) ‘‘hostname‘‘

B) ‘‘whoami‘‘

C) ‘‘ls -la ~/‘‘

5. Copy the file /etc/motd from machine submaster.embl.de into your local home
directory (using scp):

$ scp submaster.embl.de:/etc/motd ~/

6. Determine the filetype and the permissions of the file that you just copied:

$ file ~/motd
~/motd: ASCII text

$ ls -l ~/motd

3.7. Remote access 33

Linux Course Documentation

7. Login to your neighbor’s machine (ask him for the hostname) using your own
username:

$ ssh hostname

3.8 IO and Redirections

1. Use date in conjunction with the redirection to insert the current date into the
(new) file current_date (in your homedirectory).:

$ date > ~/current_date

2. Inspect the file to make sure it contains (only a single line with) the date.

$ cat ~/current_date

1. Use date again to append the current date into the same file.

$ date >> ~/current_date

2. Again, check that this file now contains two lines with dates.

$ cat ~/current_date

3. Use grep to filter out lines containing the term “TITLE” from all PDB files in the ex-
ercises directory and use redirection to insert them into a new file pdb_titles.txt.:

$ grep TITLE ~/exercises/*.pdb > pdb_titles.txt

4. (OPTIONAL) Upon inspection of the file pdb_titles.txt, you see that it also contains
the names of the files in which the term was found.

(a) Use either the grep manpage or grep --help to find out how you can suppress
this behaviour.

$ grep -h TITLE ~/exercises/*.pdb > pdb_titles.txt

(b) Redo the previous exercise such that the output file pdb_titles.txt only con-
tains lines starting with TITLE.

$ grep -h "^TITLE" ~/exercises/*.pdb > pdb_titles.txt

5. The third column of the file /etc/passwd contains user IDs (numbers)

(a) Use cut to extract just the third column of this file (remember to specify the
delimiter ‘:’):

$ cut -f3 -d’:’ /etc/passwd

34 Chapter 3. Solutions to the Exercises

Linux Course Documentation

(b) Next, use the pipe (page 22) symbol (|) and sort to sort this output numeri-
cally:

$ cut -f3 -d’:’ /etc/passwd | sort -n

3.9 Putting it all together

1. Create a new directory named myscripts in your homedirectory:

$ mkdir ~/myscripts

2. Create an empty file named mydate in the newly created directory:

$ touch ~/myscripts/mydate

3. Add the directory ~/myscripts to your PATH environment variable:

$ export PATH=$PATH:~/myscripts

4. Use echo in combination with Redirection/Append to write ‘’date” into the file
~/myscripts/mydate:

$ echo "date" >> ~/myscripts/mydate

5. Change the permissions of the file mydate to be executable by you (and you only):

$ chmod u+x ~/myscripts/mydate
$ chmod go-x ~/myscripts/mydate

6. Run the file mydate (it should print the current date & time). Make sure you can
run it from any directory (change to your homedirectory and just type mydate).:

$ mydate

Congratulation, you’ve just created and run your first shell script!

3.10 Bioinformatics

Let’s do some bioinformatics analysis! You can find the famous BLAST tool installed
at /g/software/bin/blastp.

1. Typing the full path is too cumbersome, so let’s append /g/software/bin to your
$PATH variable and ensure that it works by calling blastp.

$ export PATH=$PATH:/g/software/bin
$ blastp

3.9. Putting it all together 35

Linux Course Documentation

2. When you run blastp -help, you notice that it has a lot of options! Use redirections
in conjunction with grep to find out which options you need to specify a input_file
and database_name.

$ blastp -help | grep input_file
[-subject subject_input_file] [-subject_loc range] [-query input_file]

$ blastp -help | grep database_name
search_strategy filename] [-task task_name] [-db database_name]

3. Now run blastp using the following values as options:

database_name = /g/data/ncbi-blast/db/swissprot

input_file = suspect1.fasta

$ blastp -db /g/data/ncbi-blast/db/swissprot -query suspect1 fasta

4. Use either less or a redirection into a file to manage the amount of information
that blastp prints on your screen.:

$ blastp -db /g/data/ncbi-blast/db/swissprot -query suspect1 fasta | less

or:

$ blastp -db /g/data/ncbi-blast/db/swissprot -query suspect1 fasta > blast_output

36 Chapter 3. Solutions to the Exercises

Chapter 4

More Commandline Tools

Here is a quick list of useful commandline tools which will be used throughout the
rest of the document. Many of these tools have quite extensive functionality and only
a very limited part can be discussed here, so the reader is encouraged to read more
about these using the links given in the in the Links section...

4.1 Commandline Tools

4.1.1 GZIP

gzip is a compression/decompression tool. When used on a file (without any parame-
ters) it will compress it and replace the file by a compressed version with the extension
‘.gz’ attached:

ls textfile*
textfile

gzip textfile
ls textfile*
textfile.gz

To revert this / to uncompress, use the parameter -d:

ls textfile*
textfile.gz

gzip -d textfile
ls textfile*
textfile

Note: As a convenience, on most Linux systems, a shellscript named gunzip exists
which simply calls gzip -d

37

Linux Course Documentation

4.1.2 TAR

tar (tape archive) is a tool to handle archives. Initially it was created to combine
multiple files/directories to be written onto tape, it is now the standard tool to collect
files for distribution or archiving.

tar stores the permissions of the files within an archive and also copies special files
(such as symlinks etc.), which makes it an ideal tool for archiving... Usually tar is used
in conjunction with a compression tool such as gzip to create a compressed archive:

Figure 4.1: source: Th0msn80 (Wikipedia)

The most common commandline switches are:
Option: Effect:
-c create an archive
-t test an archive
-x extract an archive
-z use gzip compression
-f filename filename of the archive

Note: Don’t forget to specify the target filename. It needs to follow the -f parameter.
Although you can combine options like such: tar -czf archive.tar the order matters,
so tar -cfz archive.tar will not do what you want...

Creating an archive containing two files:

tar -cf archive.tar textfile1 textfile2

Listing the contents of an archive:

tar -tf archive.tar
textfile1
textfile2

Extracting an archive:

tar -xf archive.tar

Creating and extracting a compressed archive containing two files:

tar -czf archive.tar.gz textfile1 textfile2
tar -xzf archive.tar.gz

38 Chapter 4. More Commandline Tools

Linux Course Documentation

Creating a backup (eg. before doing something dangerous?):

tar -czf /folder/containing/the/BACKUP.tgz /folder/you/want/to/backup

4.1.3 GREP

grep finds lines matching a pattern in textfiles.

Usage: grep [options] pattern file(s)

grep -i ensembl P04637.txt

DR Ensembl; ENST00000269305; ENSP00000269305; ENSG00000141510.
DR Ensembl; ENST00000359597; ENSP00000352610; ENSG00000141510.
DR Ensembl; ENST00000419024; ENSP00000402130; ENSG00000141510.
DR Ensembl; ENST00000420246; ENSP00000391127; ENSG00000141510.
DR Ensembl; ENST00000445888; ENSP00000391478; ENSG00000141510.
DR Ensembl; ENST00000455263; ENSP00000398846; ENSG00000141510.

Useful options:

Option: Effect:
-v Print lines that do not match
-i Search case-insensitive
-l List files with matching lines, not the lines itself
-L List files without matches
-c Print count of matching lines for each file

Count the number of fasta sequences (they start with a “>”) in a file:

grep -c ’>’ twofiles.fasta
2

List all files containing the term “Ensembl”:

grep -l Ensembl *.txt
P04062.txt
P12931.txt

4.1.4 SED

sed is a Stream EDitor, it modifies text (text can be a file or a pipe) on the fly.

Usage: ‘sed command file‘,

The most common usecases are:
Usecase Command:
Substitute TEXT by REPLACEMENT: ‘s/TEXT/REPLACEMENT/’
Transliterate the characters x a, and y b: ‘y/xy/ab/’
Print lines containing PATTERN: ‘/PATTERN/p’
Delete lines containing PATTERN: ‘/PATTERN/d’

4.1. Commandline Tools 39

Linux Course Documentation

echo "This is text." | sed ’s/text/replaced stuff/’
This is replaced stuff.

By default, text substitution are performed only once per line. You need to add a trail-
ing ‘g’ option, to make the substitution ‘global’ (‘s/TEXT/REPLACEMENT/g’), meaning
all occurrences in a line are substituted (not just the first in each line). Note the dif-
ference:

echo "ACCAAGCATTGGAGGAATATCGTAGGTAAA" | sed ’s/A/_/’
_CCAAGCATTGGAGGAATATCGTAGGTAAA

echo "ACCAAGCATTGGAGGAATATCGTAGGTAAA" | sed ’s/A/_/g’
_CC__GC_TTGG_GG__T_TCGT_GGT___

When used on a file, sed prints the file to standard output, replacing text as it goes
along:

echo "This is text" > textfile
echo "This is even more text" >> textfile
sed ’s/text/stuff/’ textfile
This is stuff
This is even more stuff

sed can also be used to print certain lines (not replacing text) that match a pattern.
For this you leave out the leading ‘s’ and just provide a pattern: ‘/PATTERN/p’. The
trailing letter determines, what sed should do with the text that matches the pattern
(‘p’: print, ‘d’: delete)

sed ’/more/p’ textfile
This is text
This is even more text
This is even more text

As sed by default prints each line, you see the line that matched the pattern, printed
twice. Use option ‘-n’ to suppress default printing of lines.

sed -n ’/more/p’ textfile
This is even more text

Delete lines matching the pattern:

sed ’/more/d’ textfile
This is text

Multiple sed statements can be applied to the same input stream by prepending each
by option ‘-e’ (edit):

sed -e ’s/text/good stuff/’ -e ’s/This/That/’ textfile
That is good stuff
That is even more good stuff

40 Chapter 4. More Commandline Tools

Linux Course Documentation

Normally, sed prints the text from a file to standard output. But you can also edit files
in place. Be careful - this will change the file! The ‘-i’ (in-place editing) won’t print the
output. As a safety measure, this option will ask for an extension that will be used to
rename the original file to. For instance, the following option ‘-i.bak’ will edit the file
and rename the original file to textfile.bak:

sed -i.bak ’s/text/stuff/’ textfile
cat textfile
This is stuff
This is even more stuff

cat textfile.bak
This is text
This is even more text

4.1.5 AWK

awk is more than just a command, it is a complete text processing language (the name
is an abbreviation of the author’s names). Each line of the input (file or pipe) is treated
as a record and is broken into fields. Generally, awk commands are of the form:

awk condition { action }

where:

• condition is typically an expression

• action is a series of commands

If no condition is given, the action is applied to each line, otherwise just to the lines
that match the condition.

awk ’{print}’ textfile
This is text
This is even more text

awk ’/more/ {print}’ textfile
This is even more text

awk reads each line of input and automatically splits the line into columns. These
columns can be addressed via $1, $2 and so on ($0 represents the whole line). So an
easy way to print or rearrange columns of text is:

echo "Bob likes Sue" | awk ’{print $3, $2, $1}’
Sue likes Bob

echo "Master Obi-Wan has lost a planet" | awk ’{print $4,$5,$6,$1,$2,$3}’
lost a planet Master Obi-Wan has

awk splits text by default on whitespace (spaces or tabs), which might not be ideal in
all situations. To change the field separator (FS), use option ‘-F’ (remember to quote
the field separator):

4.1. Commandline Tools 41

Linux Course Documentation

echo "field1,field2,field2" | awk -F’,’ ’{print $2, $1}’
field2 field1

Note two things here: First, the field separator is not printed, and second, if you want
to have space between the output fields, you actually need to separate them by a
comma or they will be concatenated together...

echo "field1,field2,field2" | awk -F’,’ ’{print $1 $2 $3}’
field1field2field3

You can also combine the pattern matching and the column selection techniques,
in this example we’ll print only the third column of the lines matching the pattern
‘PDBsum’ (case sensitive):

$ awk ’/PDBsum/ {print $3}’ P12931.txt
1A07;
1A08;
1A09;
1A1A;
...

awk really is powerful in filtering out columns, you can for instance print only certain
columns of certain lines. Here we print the third column of those lines where the
second column is ‘PDBsum’:

awk ’$2=="PDBsum;" {print $3}’ P12931.txt
1A07;
1A08;
1A09;
1A1A;
...

Note the double equal signs “==” to check for equality and note the quotes around
“PDBsum;”. If you want to match a field, but not exactly, you can use ‘~’ instead of
‘==’:

awk ’$4~"sum" {print $3}’ P12931.txt
1A07;
1A08;
1A09;
1A1A;
...

4.2 I/O Redirection

Three IO “channels” are available by default:

• Standard input (STDIN, Number: 0): The input for your program, normally
your keyboard but can be an other program (when using pipes or IO redirection)

42 Chapter 4. More Commandline Tools

Linux Course Documentation

• Standard output (STDOUT, Number: 1): Where your program writes its regular
output to. Normally your terminal

• Standard error (STDERR, Number: 2): Where your programs normally write
their error message to. Normally your terminal

Input, output and error messages can be redirected from their default “targets” to
others. If using the file descriptor numbers (0, 1, 2) in redirections, then there must
be no whitespace between the numbers and the redirection operators.

Hint: Redirect to /dev/null to discard the output of any command

Write the output of cmd into afile. This will overwrite afile:

$ cmd > afile

Write the output of cmd into afile. This will append to afile:

$ cmd >> afile

Discard the output of cmd

$ cmd > /dev/null

Write the output of cmd into afile (overwriting afile!) and write STDERR to the same
place:

$ cmd > afile 2>&1

Append the output and error messages of cmd to afile:

$ cmd >> afile 2>&1

Same as above:

$ cmd > afile 2> afile

Append the output of cmd to afile and discard error messages:

$ cmd >> afile 2>/dev/null

Three times the same: Discard output and error messages completely:

$ cmd > /dev/null 2>&1
$ cmd > /dev/null 2>/dev/null
$ cmd >& /dev/null

Use output of cmd2 as standard input for cmd1:

$ cmd1 < cmd2

4.2. I/O Redirection 43

Linux Course Documentation

See also

• Bash One-Liners Explained, Part III: All about redirections 1

• Bash Redirections Cheat Sheet 2

• Redirection Tutorial 3

4.3 Variables

The shell knows two types of variables: “Local” shell variables and “global” exported
environment variables. By convention, environment variables are written in uppercase
letters.

Shell variables are only available to the current shell and not inherited when you
start an other shell or script from the commandline. Consequently, these variables
will not be available for your shellscripts.

Environment variables are passed on to shells and scripts started from your current
shell.

4.3.1 Setting, Exporting and Removing Variables

Variables are set (created) by simply assigning them a value

$ MYVAR=something
$

Note: There must be no whitespace surrounding the equal sign!

To create an environment variable, export is used. You can either export while assign-
ing a value or in a separate step. Both of the following procedures are equivalent:

1. $ export MYGLOBALVAR=”something else”
$

2. $ MYGLOBALVAR=”something else”
$ export MYGLOBALVAR
$

Note: There is no $ in front of the variable: To reference the variable itself (not its
content) the name is used without $

Variables are removed with unset:

1 http://www.catonmat.net/blog/bash-one-liners-explained-part-three
2 http://www.catonmat.net/blog/bash-redirections-cheat-sheet
3 http://wiki.bash-hackers.org/howto/redirection_tutorial

44 Chapter 4. More Commandline Tools

http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial
http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial

Linux Course Documentation

$ unset MYVAR
$

Note: Assigning a variable an empty value (i.e. MYVAR=) will not remove it but simply
set its value to the empty string!

4.3.2 Listing Variables

You can list all your current environment variables with env and all shell variables
with set. The list of shell variables will also contain all environment variables

$ set | more
BASH=/bin/bash
BASH_ARGC=()
BASH_VERSION=’4.1.2(1)-release’
COLORS=/etc/DIR_COLORS.256color
COLUMNS=181
...
$

4.3.3 Variable Inheritance

Only environment variables will be available in shells and scripts started from your
current shell. However in shell commands run in subshells (i.e. commands run within
round brackets) also local (shell) variables of your current shell are available.

Examples

Consider the following small shellscript vartest.sh :

#!/bin/sh
echo $MYLOCALVAR
echo $MYGLOBALVAR
echo -----

We will use it in the following examples to illustrate the various variable inheritances:

1. Set the variables and run the script i.e. in a new shell:

$ export MYGLOBALVAR=”I am global”
$ MYLOCALVAR=”I am local”
$./vartest.sh
I am global

$

2. “source” the script, i.e. run it within your current shell:

4.3. Variables 45

Linux Course Documentation

$./vartest.sh
I am local
I am global

$

3. Access the variables in a subshell:

$ (echo $MYGLOBALVAR; echo $MYLOCALVAR)
I am global
I am local
$

4.4 Hints

In Programming it is often necessary to “glue together” certain words. Usually, a pro-
gram or the shell splits sentences by whitespace (space or tabulators) and treats each
word individually. In order to tell the computer that certain words belong together,
you need to “quote” them, using either single (‘) or double (”) quotes. The difference
between these two is generally that within double quotes, variables will be expanded,
while everything within single quotes is treated as string literal. When setting a vari-
able, it doesn’t matter which quotes you use:

MYVAR=This is set
-bash: is: command not found

MYVAR=’This is set’
echo $MYVAR
This is set

MYVAR="This is set"
echo $MYVAR
This is set

However, it does matter, when using (expanding) the variable: Double quotes:

export MYVAR=123
echo "the variable is $MYVAR"
the variable is 123

echo "the variable is set" | sed "s/set/$MYVAR/"
the variable is 123

Single quotes:

export MYVAR=123
echo ’the variable is $MYVAR’
the variable is $MYVAR

echo "the variable is set" | sed ’s/set/$MYVAR/’
the variable is $MYVAR

Weird things can happen when parsing data/text that contains quote characters:

46 Chapter 4. More Commandline Tools

Linux Course Documentation

MYVAR=’Don’t worry. It’s ok.’; echo $MYVAR
>

you need to press Ctrl-C to abort
MYVAR="Don’t worry. It’s ok."; echo $MYVAR
Don’t worry. It’s ok.

You already learned how to expand a variable such that its value is used instead of
its name:

export MYVAR=123
echo "the variable is $MYVAR"
the variable is 123

“Escaping” a variable is the opposite, ensuring that the literal variable name is used
instead of its value:

export MYVAR=123

echo "the \$MYVAR variable is $MYVAR"
the $MYVAR variable is 123

Note: The “escape character” is usually the backslash “\”.

4.4. Hints 47

Linux Course Documentation

48 Chapter 4. More Commandline Tools

Chapter 5

I/O Redirection

Three IO “channels” are available by default:

• Standard input (STDIN, Number: 0): The input for your program, normally
your keyboard but can be an other program (when using pipes or IO redirection)

• Standard output (STDOUT, Number: 1): Where your program writes its regular
output to. Normally your terminal

• Standard error (STDERR, Number: 2): Where your programs normally write
their error message to. Normally your terminal

Input, output and error messages can be redirected from their default “targets” to
others. If using the file descriptor numbers (0, 1, 2) in redirections, then there must
be no whitespace between the numbers and the redirection operators.

Hint: Redirect to /dev/null to discard the output of any command

Write the output of cmd into afile. This will overwrite afile:

$ cmd > afile

Write the output of cmd into afile. This will append to afile:

$ cmd >> afile

Discard the output of cmd

$ cmd > /dev/null

Write the output of cmd into afile (overwriting afile!) and write STDERR to the same
place:

$ cmd > afile 2>&1

Append the output and error messages of cmd to afile:

$ cmd >> afile 2>&1

49

Linux Course Documentation

Same as above:

$ cmd > afile 2> afile

Append the output of cmd to afile and discard error messages:

$ cmd >> afile 2>/dev/null

Three times the same: Discard output and error messages completely:

$ cmd > /dev/null 2>&1
$ cmd > /dev/null 2>/dev/null
$ cmd >& /dev/null

Use output of cmd2 as standard input for cmd1:

$ cmd1 < cmd2

See also

• Bash One-Liners Explained, Part III: All about redirections 1

• Bash Redirections Cheat Sheet 2

• Redirection Tutorial 3

1 http://www.catonmat.net/blog/bash-one-liners-explained-part-three
2 http://www.catonmat.net/blog/bash-redirections-cheat-sheet
3 http://wiki.bash-hackers.org/howto/redirection_tutorial

50 Chapter 5. I/O Redirection

http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial
http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.catonmat.net/blog/bash-redirections-cheat-sheet
http://wiki.bash-hackers.org/howto/redirection_tutorial

Chapter 6

Variables

The shell knows two types of variables: “Local” shell variables and “global” exported
environment variables. By convention, environment variables are written in uppercase
letters.

Shell variables are only available to the current shell and not inherited when you
start an other shell or script from the commandline. Consequently, these variables
will not be available for your shellscripts.

Environment variables are passed on to shells and scripts started from your current
shell.

6.1 Setting, Exporting and Removing Variables

Variables are set (created) by simply assigning them a value

$ MYVAR=something
$

Note: There must be no whitespace surrounding the equal sign!

To create an environment variable, export is used. You can either export while assign-
ing a value or in a separate step. Both of the following procedures are equivalent:

1. $ export MYGLOBALVAR=”something else”
$

2. $ MYGLOBALVAR=”something else”
$ export MYGLOBALVAR
$

Note: There is no $ in front of the variable: To reference the variable itself (not its
content) the name is used without $

Variables are removed with unset:

51

Linux Course Documentation

$ unset MYVAR
$

Note: Assigning a variable an empty value (i.e. MYVAR=) will not remove it but simply
set its value to the empty string!

6.2 Listing Variables

You can list all your current environment variables with env and all shell variables
with set. The list of shell variables will also contain all environment variables

$ set | more
BASH=/bin/bash
BASH_ARGC=()
BASH_VERSION=’4.1.2(1)-release’
COLORS=/etc/DIR_COLORS.256color
COLUMNS=181
...
$

6.3 Variable Inheritance

Only environment variables will be available in shells and scripts started from your
current shell. However in shell commands run in subshells (i.e. commands run within
round brackets) also local (shell) variables of your current shell are available.

6.3.1 Examples

Consider the following small shellscript vartest.sh :

#!/bin/sh
echo $MYLOCALVAR
echo $MYGLOBALVAR
echo -----

We will use it in the following examples to illustrate the various variable inheritances:

1. Set the variables and run the script i.e. in a new shell:

$ export MYGLOBALVAR=”I am global”
$ MYLOCALVAR=”I am local”
$./vartest.sh
I am global

$

52 Chapter 6. Variables

Linux Course Documentation

2. “source” the script, i.e. run it within your current shell:

$./vartest.sh
I am local
I am global

$

3. Access the variables in a subshell:

$ (echo $MYGLOBALVAR; echo $MYLOCALVAR)
I am global
I am local
$

6.3. Variable Inheritance 53

Linux Course Documentation

54 Chapter 6. Variables

Chapter 7

Basic Shell Scripting

7.1 What is a Script?

A script is nothing else than a number of shell command place together in a file. The
simplest script is maybe just a complex oneliner that you don’t want to type each time
again. More complex scripts are seasoned with control elements (conditions and loops)
which allow for a sophisticated command flow. scripts might allow for configuration
and customization, thus allowing one script to be flexibly used in several different
environments. Whatever you do in a script, you can also do on the commandline.
This is also the first way to test your scripts step by step!

7.2 Script Naming and Organization

It is good practice - though not technically required - to give your scripts an extension
which specifies their type. I.e. “.sh” for Bourne Shell and Bourne Again Shell scripts,
“.csh” for C-Shell scripts. Sometimes “.bash” for Bourne Again Shell scripts is used.

We recommend to either store all scripts in one location (e.g. ~/bin) and add this
location to your $PATH variable or to store the scripts together with the files that are
processed by the script.

Hint: If you use scripts to process data, then the scripts should probably be archived
together with the data files!

7.3 Running a Script

There are basically three ways to run a script:

1. the location to your script is not in your $PATH variable, then you have to specify
the full path to the script:

55

Linux Course Documentation

$ /here/is/my/script.sh
[...]
$

2. the location to the script is in the $PATH variable, then you can simply type its
name:

$ script.sh
[...]
$

In both situations, the script will need to have execute permissions to be
run. If for some reason you can only read but not execute the script, then
it can still be run in the following way:

3. specifying the interpreter (i.e. the program required to run the script). For
shellscripts this is the appropriate shell). The full path (relative or absolute) to
the script has to be provided in this case, no matter whether the script location
is already contained in $PATH or not:

$ /bin/sh /here/is/my/script.sh
[...]
$

7.3.1 Basic Structure of a Shellscript

Shellscripts have the following general structure:

• A line starting with “#!” which defines the interpreter. This line is called the
shebang line and must be the first line in a script.

• A section where the configuration takes place, e.g. paths, options and commands
are defined and it is made sure, that all prerequisites are met.

• A section where the actual processing is done. This includes error handling.

• A controlled exit sequence, which includes cleaning up all temporary files and
returning a sensible exit status.

This is merely a recommendation to keep your scripts well structured. None of these
sections are mandatory.

7.3.2 Readability and Documentation

Make your script easily readable. Use comments and whitespace and avoid super
compact but hard to understand commandlines. Always take into account that not
only the shell, but also human beings will probably have to read and understand
your script. (see Breaking up long lines (page 70)) Even if your script is very simple -
document it! This helps others understand what you did, but - most important - it
helps you remember what you did, when you have to reuse the script in the future.

56 Chapter 7. Basic Shell Scripting

Linux Course Documentation

Documentation is done either by writing comments into the script or by creating a
special documentation file (README.txt or similar). Documenting in the script can be
done in several ways:

• A preamble in the script, outlining the purpose, parameters and variables of the
script as well as some information about authorship and perhaps changes.

• Within the script as blocks of text or “End of line” comments.

To write a comments use the hash sign (“ #”). Everything after a “#” is ignored when
executing a script.

7.3.3 Anatomy of a Shellscript

Let’s have a look at the following script, breaking it down into individual parts. First,
the full script:

7.3. Running a Script 57

Linux Course Documentation

You can see from this example, that very often the actual computation is only a small
part of the code. The rest of the scripts deal with prerequisites, error handling, user
dialogue, exit status etc. etc.

7.3.4 Reporting Success or Failure - The Exit Status

Commands report their success or failure by their exit status. An exit status of 0 (zero)
indicates success(!), while any exit status greater then 0 indicates an error. Some
commands report more than one error status. Refer to the respective manpages to
see the meanings of the different exit stati. The exit status of a script is usually the exit
status of the last executed command, which is reported by the environment variable
$?:

58 Chapter 7. Basic Shell Scripting

Linux Course Documentation

$?: The exit status of the last run command

See Ensuring a Sensible Exit Status (page 68) about how to control the exit status of
your script.

7.3.5 Command Grouping and Sequences

Commands can be concatenated to be executed one after the other unconditionally or
based on the success of the respective previous command:

cmd1; cmd2 – Execute commands in sequence

Example: Create a directory and change into it:

$ pwd
/home/fthommen
$ mkdir a; cd a
$ pwd
/home/fthommen/a
$

cmd1 && cmd2 – Execute cmd2 only if cmd1 was successful:

Example: Create a directory and, if successful, change into it:

$ pwd
/home/fthommen
$ mkdir a && cd a
$ pwd
/home/fthommen/a
$

Example: Confirm that /etc exists:

$ cd /etc && echo "/etc exists"
/etc/exists
$

cmd1 || cmd2 – Execute cmd2 only if cmd1 was not successful:

Example: Create a directory and, if not successful, print an error message:

$ mkdir /bin/a || echo "Could not create directory a"
mkdir: cannot create directory ‘/bin/a’: Permission denied
Could not create directory a
$

Example: Warn if a directory doesn’t exist:

$ cd /etc || echo "/etc is missing!"
$ cd /nowhere >&/dev/null || echo "/nowhere does not exist"
/nowhere does not exist
$

7.3. Running a Script 59

Linux Course Documentation

Example: Create a directory and, if successful, change into it, if not successful,
print an error message:

$ mkdir /bin/a && cd a || echo "Could not create directory a"
mkdir: cannot create directory ‘/bin/a’: Permission denied
Could not create directory a
$
$ mkdir ~/bin/a && cd a || echo "Could not create directory a"
$ pwd
/home/fthommen/a
$

(cmds) – Group commands to create one single output stream: The commands are
run in a subshell (i.e. a new shell is opened to run them)

Example: Change into /etc and list content. You are still in the same directory
as you were before:

$ pwd
/home/fthommen
$ (cd /etc; ls)
[... directory listing here ...]
$ pwd
/home/fthommen
$

{ cmds; } – Group commands to create one single output stream: The commands are
run in the current (!) shell.

Note: The opening “{” must be followed by a blank and the last command must
be succeeded by a semicolon (‘;‘‘)

Example: Change into /etc and list its content. You are still in /etc after the
bracketed expression (compare to the example above):

$ pwd
/home/fthommen
$ { cd /etc; ls; }
[... directory listing here ...]
$ pwd
/etc
$

7.4 Control Structures

The following syntax elements will be described for sh/bash and for csh/tcsh. How-
ever since this course is mainly about sh/bash, examples will only be given for
sh/bash. Some notes about csh/tcsh specialities might be given in the text. This
is only a selection of the most useful or most common elements. There are much
more in the manpages. All shells offer myriads of possibilities which cannot possibly

60 Chapter 7. Basic Shell Scripting

Linux Course Documentation

be demonstrated in this course. Some of the described features might be specific to
bash and not be available in a classical Bourne Shell on other systems.

7.4.1 Conditional Statements

if - then - else

if - then - else is the most basic conditional statement: Do something depending
on certain conditions. Its basic syntax is:

sh/bash csh/tcsh

if condition1
then

commands
elif condition2

more commands
[...]
else

even more commands
fi

if (condition) then
commands

else if (condition2) then
more commands

[...]
else

even more commands
endif

Conditions can be either the exit status of a command or the evaluation of a logical
or arithmetic expression:

1. Evaluating the exit status of a command: Simply use the command as condition.
For example:

if grep -q root /etc/passwd
then
echo root user found

else
echo No root user found

fi

Note: In csh/tcsh
1. To evaluate the exit status of a command in it must be placed within

curly brackets with blanks separating the brackets from the command:
if ({ grep -q root /etc/passwd }) then [...]

2. Redirection of commands in conditions does not work

Hint: Redirect the output of the command to be evaluated to /dev/null if
you are only interested in the exit status and if the command doesn’t have
a “quiet” option.

2. Evaluating of conditions or comparisons:

Conditions and comparisons are evaluated using a special command test
which is usually written as “[” (no joke!). As “[” is a command, it must be

7.4. Control Structures 61

Linux Course Documentation

followed by a blank. As a speciality the “[” command must be ended with
“‘‘]‘‘” (note the preceding blank here)

Note: In csh/tcsh the test (or [) command is not needed. Conditions and
comparisons are directly placed within the round braces.

sh/bash csh/tcsh
File condition

-e file file exists -e file
-f file file exists and is a regular file -f file
-d file file exists and is a directory -d file
-r file file exists and is readable -r file
-w file file exists and is writeable -w file
-x file file exists and is executable -x file
-s file file exists and has a size > 0

file exists and has zero size -z file
String Comparison

-n s1 String s1 has non-zero length
-z s1 String s1 has zero length
s1 = s2 Strings s1 and s2 are identical s1 == s2
s1 != s2 Strings s1 and s2 differ s1 != s2
string String string is not null

Integer Comparison
n1 -eq n2 n1 equals n2 n1 == n2
n1 -ge n2 n1 is greater than or equal to n2 n1 >= n2
n1 -gt n2 n1 is greater than n2 n1 > n2
n1 -le n2 n1 is less than or equal to n2 n1 <= n2
n1 -lt n2 n1 is less than n2 n1 < n2
n1 -ne n2 n1 it not equal to n2 n1 != n2

Combination of conditions
! cond True if condition cond is not true ! cond
cond1 -a
cond2

True if conditions cond1 and cond2 are
both true

cond1 &&
cond2

cond1 -o
cond2

True if conditions cond1 or cond2 is true cond1 ||
cond2

Examples: Test for the existence of /etc/passwd:

if [-e /etc/passwd]
then
echo /etc/passwd exists

else
echo /etc/passwd does NOT exist

fi

or:

if test -e /etc/passwd
then
echo /etc/passwd exists

else
echo /etc/passwd does NOT exist

62 Chapter 7. Basic Shell Scripting

Linux Course Documentation

fi

Note: Bash supports an additional way of evaluating conditional expres-
sions with [[expression]]. This syntax element allows for more readable
expression combination and handles empty variables better. However it is
not backwards compatible with the original Bourne Shell. See the bash
manpage for more information

case

The case statement implements a more compact and better readable form of if - elif -
elif - elif etc. Use this if your variable (you can only check for variables with case) can
have a distinct number of valid values. A typical usage of case will follow later.

The basic syntax is:

sh/bash csh/tcsh

case variable in
pattern1)

commands
;;

pattern2)
commands
;;

*)
commands
;;

esac

switch (variable)
case pattern1:

commands
breasksw

case pattern2:
commands
breaksw

default:
commands

endsw

Note: for the patterns “*”, “?” and “[...]” can be used

Note: The “*)” (sh/bash) and “default:” (csh/tcsh) patterns are “catch-all” patterns
which match everything not matched above. It is often used to detect invalid values
of variable.

Note: Multiple patterns can be handled by separating them with “|” in sh/bash or
by successive case statements in csh/tcsh.

Example: Check if /opt/ or /usr/ paths are contained in $PATH:

case $PATH in

/opt/ | */usr/*)
echo /opt/ or /usr/ paths found in \$PATH
;;

*)
echo ’/opt and /usr are not contained in $PATH’
;;

7.4. Control Structures 63

Linux Course Documentation

esac

7.4.2 Loops

for / foreach

The for and foreach statements respectively will loop through a list of given values and
run the given statements for reach run:

sh/bash csh/tcsh

for variable in list
do

commands
done

foreach variable (list)
commands

end

list is a list of strings, separated by whitespaces

Examples: List all files in /tmp in a bulleted list:

for FILE in /tmp/*
do
echo " * $FILE"

done
or
for FILE in ‘ls /tmp‘
do
echo " * $FILE"

done

while / until

The while and until loops execute your commands while (or until respectively) a cer-
tain condition is met:

sh/bash csh/tcsh

while condition
do

commands
done

until condition
do

commands
done

while (condition)
commands

end

The conditions are constructed the same way as those used in if statements.

Note: The until statement is not available in csh/tcsh.

64 Chapter 7. Basic Shell Scripting

Linux Course Documentation

“Manual” loop control

Instead of (or additionally to) the built-in loop control in for/foreach, while and until
loops, you can control exiting and continuing them with break and continue: break
“breaks out” of the innermost loop (loops can be nested!) and continues after the end
of the loop. continue skips the rest of the current (innermost) loop and starts the next
iteration

Figure 7.1: Loop control
Symbol

Regular loop cycle
break due to condition_2
continue due to condition_3

7.5 Making Scripts Flexible

Scripts are most useful, if they can be reused. Copying scripts and changing them
to fit the new situation is time-consuming and error-prone. Additionally if you add
an improvement to the current script, then all previous versions will stay without
it. Having one script with the possibility to configure it, is usually the better way.
Customization of scripts can be achieved by either using variables or by adding the
possibility to use your own commandline options and arguments.

7.5.1 Configurable Scripts

Any value - be it paths, commands or options - that is specific to individual applica-
tions or your script, should not be “hardcoded” (i.e. used literally within the script)
but assigned to variables:

7.5. Making Scripts Flexible 65

Linux Course Documentation

Using Variables

Any value - be it paths, commands or options - that is specific to individual applica-
tions or your script, should not be hardcoded (i.e. used literally within the script).
Instead you should use variables to refer to them:

Bad example: You have to change two instances of the path each time you want to
list an other directory:

#!/bin/sh

echo "The directory /etc contains the following files:"
ls /etc

Good example: The path is now in a variable and only one instance has to be changed
each time (less work, less errors):

#!/bin/sh

MYDIR=/etc

echo "The directory $MYDIR contains the following files:"
ls $MYDIR

Of course, you’ll still have to modify the script each time you want to list the content
of an other directory. A more flexible way of customization would be to use a settings
file.

Using a Settings File

Instead of having your configurable section within the script, it can be “outsourced” to
its own file. This file is basically a shellscript which is run within the primary script.
To run commands from a file within the current environment, the commands source
(bash, csh/tcsh) or . (dot) (sh/bash) are used:

The settings file, e.g. settings.ini:

MYDIR=/etc

The script:

#!/bin/sh

. ./settings.ini

echo "The directory $MYDIR contains the following files:"
ls $MYDIR

66 Chapter 7. Basic Shell Scripting

Linux Course Documentation

7.5.2 Defining your own Commandline Options and Argu-
ments

The best way to configure a script is to allow for your own commandline options and
arguments. Commandline arguments are available the script as so-called positional
parameters $1, $2, $3: etc. $0: contains the name of the script. The variables impor-
tant when dealing with commandline parameters are:

$0: path to the script. Either the path as you specified it or the full path if the script
was executed through $PATH

$1, $2, $3, etc: Positional parameters (i.e. commandline arguments)

$#: Current number of positional parameters

$*: All positional parameters. If used within double quotes (“$*”), then it will expand
to the list of all positional parameters, where the complete list is quoted

$@: All positional parameters. If used within double quotes (“$@”), then it will ex-
pand to the list of all positional parameters, where each parameter is individually
quoted

If you run the script

#!/bin/sh
echo The script is $0
echo The first commandline option is $1
echo The second commandline option is $2

with two arguments, you’ll get the following output:

7.5. Making Scripts Flexible 67

Linux Course Documentation

$./script.sh ABC DEF
The script is ./script.sh
The first commandline option is ABC
The second commandline option is DEF
$

In many cases you’ll not know how many parameters are given on the commandline.
In these cases you can use shift to loop through them. shift removes $1 and moves
all other positional parameters one position to the right: $2 becomes $1, $3 becomes
$2 etc.:

With the help of “$#”, “shift”, “case” and the positional parameters we can now check
all the commandline parameters:

while ["$#" -gt 0]
do

case $1 in
-h) echo "Sorry, no help available!" # not very helpful, is it?

exit 1 # exit with error
;;

-v) VERBOSE=1 # we may use $VERBOSE later
;;

-f) shift
FILE=$1 # Aha, -f requires an

additional argument
;;

*) echo "Wrong parameter!"
exit 1 # exit with error

esac
shift

done

7.6 Ensuring a Sensible Exit Status

If you don’t provide your own exit status, then the script will return the exit sta-
tus of the last executed command (See Reporting Success or Failure - The Exit Status
(page 58)). In many cases this might be what you want, but very often it isn’t. Con-
sider the following script which is a real example from real life and happened to me
personally:

68 Chapter 7. Basic Shell Scripting

Linux Course Documentation

#!/bin/sh

[... do something that fails ...]

echo "End of the script"

This script will always succeed, as the echo command hardly ever fails. You will -
from the exit status of the script - never be able to detect that something went wrong.
Instead in such cases you should manually handle the exit codes of the commands
that are run within the script.

With it’s help we can keep track of the exit stati of all our important processing steps
and finally return a sensible value:

#!/bin/sh
mystatus=0;

[... do something that might fail ...]
if [$? -ne 0]
then

mystatus=1
fi

[... do something else that might fail, too ...]
[$? -ne 0] && mystatus=1 # same as above. Do you understand

this?

echo "End of the script"
exit $mystatus

7.6.1 Why is the exit status important after all?

First when you use your script within other scripts, you’ll probably need to be able to
check, if it has succeeded. There might be other ways (e.g. checking outputfiles for
certain strings, checking directly the textual output of the script etc.), but these ways
are usually cumbersome and require lots of coding. Exit values are easy to check.
Second: Other tools and systems might also use the exit status of your script. E.g.
the cluster system uses your job’s exit status to assess, if it has run successfully or
not. Returning success even in case of failure will result in lots of complications in
case a problem occurs. It took me several days to realize the bug above.

7.7 Tips and Tricks

7.7.1 Combining Variables with other Strings

When combining variables with other strings, then in some situations the variable
name must be placed in curly brackets (“{}”):

7.7. Tips and Tricks 69

Linux Course Documentation

$ A=Heidel
$ echo $Aberg

$ echo ${A}berg
Heidelberg
$

7.7.2 Filenames and Paths

If possible, try to avoid any special characters (blanks, semicolons (”;”), colons (”:”),
backslashes (“”) etc.) in file and directory names. All these special characters can
lead to problems in scripted processing. Instead, stick to alphanumeric characters
(a-z, 0-9), dots (”.”), dashes (“-”) and underscores (“_”). Additionally sticking to lower-
case characters helps avoiding mistypes and makes the automatic filename expansion
easier.

7.7.3 Breaking up Long Code Lines

Code lines can become pretty long and unreadable, wrapping onto the next line etc.
You can use the escape character (backslash, “\”) to break them up and enhance
readability of your script. The escape character must immediately be followed by a
newline (no intermediate blanks or other is allowed):

$ bsub -o output.log -e error.log -q clngnew -M 150000 -R "select[(mem > 15000)]" /g/software/bin/pymol-1.4 -r -p < pymol.pml

becomes:

$ bsub -o output.log \
-e error.log \
-q clngnew \
-M 150000 \
-R "select[(mem > 15000)]" \

/g/software/bin/pymol-1.4 -r -p < pymol.pml

Which is way better to read and to maintain

7.7.4 Script Debugging

sh/bash and csh/tcsh have both an option “-x” which helps debugging a script by
echoing each command before executing it. This option can be set and unset during
runtime with set -x / set +x (sh/bash) and set echo / unset echo (csh/tcsh).

7.7.5 Command Substitution

You can use the output of a command and assign it to a variable or use it right away
as text string, by using the command substitution operator “‘” (backticks, backquotes)

70 Chapter 7. Basic Shell Scripting

Linux Course Documentation

or “$(...)”. The backtick operator works in all shells, while $(...) only works in bash.

Three variants for the same (print out who you are in English text):

$ ME=‘whoami‘
$ echo I am $ME
I am fthommen
$

$ ME=$(whoami)
$ echo I am $ME
I am fthommen
$

$ echo I am ‘whoami‘
I am fthommen
$

7.7.6 Create Temporary Files

You can create temporary files with mktemp. By default it will create a new file in
/tmp and print its name:

$ mktemp
/tmp/tmp.Yaafh19370
$

7.7.7 Cleaning up Temporary Files

It is considered good practice and sometimes even important, to clean up temporary
data before ending a script. A simple way - which will not cover all cases, though -
could be to store all created temporary files in a variable and remove them all before
exiting the script:

#! /bin/sh
ALL_TEMPFILES="" # store a list of all temporary files here

TEMPFILE1=‘mktemp‘
ALL_TEMPFILES="$ALL_TEMPFILES $TEMPFILE1"

TEMPFILE2=‘mktemp‘
ALL_TEMPFILES="$ALL_TEMPFILES $TEMPFILE2"

[... process, process, process ...]

rm -f $ALL_TEMPFILES
exit

7.7. Tips and Tricks 71

Linux Course Documentation

72 Chapter 7. Basic Shell Scripting

Chapter 8

Solutions to the Exercises

8.1 TAR & GZIP

1. Use gzip to compress the file P12931.txt

$ gzip P12931.txt

2. Decompress the resulting file P12931.txt.gz (revert previous command)

$ gunzip P12931.txt.gz

or

$ gzip -d P12931.txt.gz

3. Use tar to create an archive containing all fasta files in the current directory into
an archive called “fastafiles.tar”

$ tar -c -f fastafiles.tar *.fasta

4. Use gzip to compress the archive “fastafiles.tar”

$ gzip fastafiles.tar

5. How can you achieve the two previous steps “using tar to create archive” and
“gzip the archive” in one command?

$ tar -c -z -f fastafiles.tar.gz *.fasta

Note: Note the -z

6. Test (list the contents of) the compressed archive “fastafiles.tar.gz”

$ tar -tf fastafiles.tar.gz

73

Linux Course Documentation

7. Download the compressed PDB file for entry 1Y57 from rcsb.org (eg. wget
"http://www.rcsb.org/pdb/files/1Y57.pdb.gz") and decompress it.

$ wget "http://www.rcsb.org/pdb/files/1Y57.pdb.gz"
$ gunzip 1Y57.pdb.gz

8.2 GREP

1. Which of the DNA files ENST0* contains “TATATCTAA” as part of the sequence?

$ grep "TATATCTAA" ENST0*

ENST00000380152.fasta:ACGGAAGAATGTGAGAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA
ENST00000544455.fasta:ACGGAAGAATGTGAGAAAAATAAGCAGGACACAATTACAACTAAAAAATATATCTAA

2. List only the names of the DNA files ENST0* that contain “CAACAAA” as part of
the sequence.

$ grep "CAACAAA" ENST0*

ENST00000380152.fasta
ENST00000544455.fasta

3. Considering the previous example, would you consider grep a suitable tool to
perform motif searches? Why not? Try to find the pattern “CAACAAA” by manual
inspection of the first two lines of each sequence.

Note: Answer: When using grep as a motif searching tool, you need to keep in mind
that grep (like sed and awk) is line-oriented, meaning that by default it only searches
for a given motif in a single line. In the given example, upon manual inspection you will
find the given motif also in the file ENST00000530893.fasta, which grep missed. You
would need to think about how to do multi-line searches (eg. Removing line-breaks
etc.)

4. Count the number of ATOMs in the file 1Y57.pdb.

5. Does this number agree with the annotated number of atoms (Search the RE-
MARKs for “protein atoms”)

$ grep -c "ATOM" 1Y57.pdb
3632
$ grep -i "protein atoms" 1Y57.pdb
REMARK 3 PROTEIN ATOMS : 3600

This means there are 3600 atoms annotated in this PDB file, however we counted
3632. This is because grep also counted any occurrence of “ATOM” within REMARKS.
We can avoid this by either filtering out the remarks:

$ grep -v REMARK 1Y57.pdb | grep -c ATOM
3600

74 Chapter 8. Solutions to the Exercises

Linux Course Documentation

...or by telling grep to only count those lines that start with “ATOM”:

$ grep -c ATOM 1Y57.pdb
3600

8.3 SED

1. Use sed to print only those lines that contain “version” in the files P05480.txt
and P04062.txt

$ sed ’/version/p’ P05480.txt P04062.txt

2. Use sed to change the text “sequence version 3” to “sequence version 4” in the files
P05480.txt and P04062.txt (without actually changing the files, just printing)

$ sed ’s/sequence version 3/sequence version 4/’ P05480.txt P04062.txt

3. Use sed to update the text “sequence version 3” to “sequence version 4” in the
files P05480.txt and P04062.txt (this time, make the changes directly in the files)

$ sed -i.bak ’s/sequence version 3/sequence version 4/’ P05480.txt P04062.txt

4. Replace (transliterate) all occurrences of “r” by “l” and “l” by “r” (at the same time)
in the file PROTEINS.txt (so that “structural” becomes “stluctular”)

$ sed ’y/rRlL/lLrR/’ PROTEINS.txt

8.4 AWK

1. Use awk to print only those lines that contain “version” in the files P12931.txt
and P05480.txt and think about how this procedure is different to sed.

$ awk ’/version/ {print}’ P12931.txt P05480.txt

This is very similar to sed, you also have to use the slashes “/” to define the search
pattern. However the sed notation is a little more concise...

2. For all FASTA files that begin with “P” (“P*.fasta”) print only the second item of the
header (split on “|”) eg. for “>sp|P12931|SRC_HUMAN Proto-oncogene”, print
only “P12931”

$ awk -F’|’ ’/>/ {print $2}’ P*.fasta

3. The file “P12931.csv” contains phosphorylation sites in the pro-
tein P12931. (If the file “P12931.csv” does not exist, use wget
http://phospho.elm.eu.org/byAccession/P12931.csv to download it).

8.3. SED 75

Linux Course Documentation

(a) Column three of this file lists the amino acid position of the phosphorylation
site. You are only interested in position 17 of the protein. Try to use “grep”
to filter out all these lines containing “17”.

$ grep 17 P12931.csv

(b) Now use awk to show all lines containing “17”.

$ awk ’/17/ {print}’ P12931.csv

(c) Next try show only those lines where column three equals 17 (Hint: The file
is semicolon-separated...).

$ awk -F’;’ ’$3==17 {print}’ P12931.csv

(d) Finally print the PMIDs (column 6) of all lines that contain “17” in column
3.

$ awk -F’;’ ’$3==17 {print $6}’ P12931.csv

8.5 Quoting and Escaping

1. Familiarize yourself with quoting and escaping.

1. Run the following commands to see the difference between single and
double quotes when expanding variables:

$ echo "$HOSTNAME"
...
$ echo ’$HOSTNAME’

2. Next, use ssh to login to a different machine to run the same command
there, again using both quoting methods:

$ ssh pc-atcteach01 ’echo $HOSTNAME’
...
$ ssh pc-atcteach01 "echo $HOSTNAME"

2. Closely inspect the results; is that what you were expecting? Discuss this with
your neighbour.

76 Chapter 8. Solutions to the Exercises

Chapter 9

The Benefits of Version Control

Version control is a system that records changes to a file or set of files over time so
that you can recall specific versions later. The benefits are at hand:

• Track incremental backups and recover: Every document can be backed up
automatically and restored at a second’s notice.

• Track every change: Every infinitesimal change can be recorded and can be
used to revert a file to an earlier state.

• Track writing experiments: Writing experiments can be sandboxed to copies
while keeping the main file intact.

• Track co-authoring and collaboration: Teams can work independently on
their own files, but merge them into a latest common revision.

• Track individual contributions: Good VCS systems tag changes with authors
who make them.

77

Linux Course Documentation

Figure 9.1: Files are added from the working directory, which always holds the current
version of your files, to the staging area. Staged files will be stored into the repository
in the next commit. The repository itself contains all previous versions of all files ever
committed.

Figure 9.2: Distributed Workflow using a centralized repository. Here, three local
copies of one central repository allow you, Jon and Matt to work on the same files and
sync files between each other using the central server.

78 Chapter 9. The Benefits of Version Control

Chapter 10

git at a Glance

The git tool has many subcommands that can be invoked like git <subcommand> for
instance git status to get the status of a repository.

The most important ones (and hence the ones we’ll be focusing on) are:

init: initialize a repository

clone: clone a repository

status: get information about a repository

log: view the history and commit messages of the repository

add: add a file to the staging area

commit: commit your changes to your local repository

push: push changes to a remote repository

pull: pull changes from a remote repository

checkout: retrieve a specific version of a file

you can read more about each command by invoking the help:

git commit --help
git help commit

79

Linux Course Documentation

80 Chapter 10. git at a Glance

Chapter 11

git Settings

11.1 setting your identity

Before we start, we should set the user name and e-mail address. This is important
because every git commit uses this information and it’s also incredibly useful when
looking at the history and commit log:

git config --global user.name "John Doe"
git config --global user.email johndoe@embl.de

Other useful settings include your favorite editor as well as difftool:

git config --global core.editor vim
git config --global merge.tool meld

11.1.1 Checking Your Settings

You can use the git config –list command to list all your settings:

git config --list
user.name="John Doe"
user.email=johndoe@embl.de
core.editor=vim
merge.tool=meld
color.status=auto
color.branch=auto
color.interactive=auto
color.diff=auto
...

81

Linux Course Documentation

82 Chapter 11. git Settings

Chapter 12

A Typical git Workflow

12.1 Creating a git Repository

Turning an existing directory into a git repository is as simple as changing into
that directory and invoking git init. Here we first create an empty directory called
new_repository and create a repository in there:

mkdir new_repository
cd new_repository
git init

Note: As a result, there should be a directory called .git in this directory...

12.2 Cloning a git Repository

Instead of creating a new directory, we can clone a repository. That origin reposi-
tory can reside in a different folder on our computer, on a remote machine, or on a
dedicated git server:

Local directory:

git clone ../other_directory

Remote directory:

git clone ssh://user@server/project.git

Remote git server:

git clone git@server:user/project
git clone git@git.embl.de:dinkel/linuxcommandline

83

Linux Course Documentation

12.3 Checking the Status

If you don’t know in which state the current repository is in, it’s always a good idea to
check:

git status

On branch master
#
Initial commit
#
nothing to commit (create/copy files and use "git add" to track)

12.4 Adding files

First, we’ll create a new file:

echo "First entry in first file!" > file1.txt

git status

On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
file1.txt
nothing added to commit but untracked files present (use "git add" to track)

Now we’ll add this file to the so called staging area:

git add file1.txt

git status

On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: file1.txt
#

This tells us that the file1.txt has been added and can be committed to the repository.

84 Chapter 12. A Typical git Workflow

Linux Course Documentation

12.5 Committing changes

It might be a bit confusing at first to find out that git add does not add a file to the
repository. You need to commit the file/changes to do that:

git commit -m "message describing the changes you made"

Note: You MUST provide a commit message! git will ignore your attempt to commit
if the message is empty. If you do not provide the -m parameter, git will open an editor
in which you should write your commit message (can be multiple lines of text). Once
you save/quit your editor, git will continue to commit...

After succesfully committing, we can check the status again:

git status

On branch master
nothing to commit, working directory clean

12.6 Viewing the History

You can use git log to view the history of a repository. All previous commits including
details such as Name & Email-address of the committer, Date & Time of the commit
as well as the actual commit message are shown:

git log

commit <some hash value identifying this commit>
Author: <your name and email address>
Date: <the actual date of the commit>

message describing the changes you made

12.7 Pushing changes

If we had cloned this repository from a remote location, we probably want our changes
to be propagated to that repository as well. To push all committed changes, simply
type:

git push

Note: git “knows” from which location you had cloned this repository and will try to
push to exactly that location (using the protocol you used to clone: ssh, git, etc)...

12.5. Committing changes 85

Linux Course Documentation

Warning: If you get a warning message, you probably ‘just’ need to pull others
changes before you are allowed to push your own...

12.8 Pulling changes

To update your local repository with changes from others, you need to pull these
changes. In a centralized workflow you actually must pull changes that other people
have contributed, before you can submit your own.

git pull

Warning: Ideally, changes from others don’t conflict with yours, but whenever
someone else has edited the same lines in the same files as you, you will receive
an error message about a merge conflict. You will need to resolve this conflict
manually, then add each resolved file (git add) and commit.

12.9 Undo local changes

One of the great features of using version control is that you can revert (undo) changes
easily. If you want to undo all changes in a local file, you simply checkout the latest
version of this file:

git checkout -- <filename>

Warning: You will loose all changes you made since the last commit!

12.10 Using centralized workflow

When you want to use one central repository, to which everybody can push/pull, you
should initialize this repo like so: git init –bare. Basically what this does is create a
repository which all the files from the .git directory in the working directory. This also
means that you should never add/edit/delete files in this directory. Rather clone this
directory in another folder/computer, edit files there and commit/push (see below)...

86 Chapter 12. A Typical git Workflow

Chapter 13

EMBL git server

As part of the Bio-IT initiative, EMBL provides a central git server which can be used
as a centralized resource to share and exchange data/code with collaborators:

http://git.embl.de/

The following rules apply:

• Repositories on the EMBL Git server are only granted to EMBL staff members.

• External users can be added as cooperators on a project, but the projects them-
selves have to be lead by someone with an active EMBL contract.

• Should the project leader leave EMBL, then the project has to be transferred to
someone else or the complete repository will be removed.

• Repositories are always installed as sub-repositories of the project
leader/repository responsible.

• By default, repositories are installed with only basic access permissions for the
repository owner. He/she is then in charge of setting appropriate access permis-
sions as described on the Howto page.

Basically, to use this server, you need to provide your full name, your EMBL email
address and username, the name and a short description of the repository/project,
along with your SSH public key to the admin and he will set things up so you are able
to access your repository:

git clone git@git.embl.de:your_username/your_repository

Note: It’s important to mention that the username for accessing the git.embl.de
server is always git, not your username!

An SSH key can be generated using the command ssh-keygen (Windows users might
want to use putty) like so:

ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (/home/username/.ssh/id_rsa):
Created directory ’/home/username/.ssh’.

87

http://git.embl.de/
http://git.embl.de/howto.html
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Linux Course Documentation

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/username/.ssh/id_rsa.
Your public key has been saved in /home/username/.ssh/id_rsa.pub.
The key fingerprint is: 2d:14:f5:d8:... username@hostname

This creates two files, in this case /home/username/.ssh/id_rsa and
/home/username/.ssh/id_rsa.pub. The former is your private key and should
never be handed out to anybody, while the latter one (ending in .pub) should be
distributed to any server on which you intend to use it...

88 Chapter 13. EMBL git server

Chapter 14

Appendix

14.1 Links and Further Information

14.1.1 Links

• A full 500 page book about the Linux commandline for free(!): LinuxCom-
mand.org 1

• Another nice introduction: “A beginner’s guide to UNIX/Linux” 2

• The “commandline starter” chapter of an O’Reilly book: Learning Debian
GNU/Linux - Issuing Linux Commands 3

• A nice introduction to Linux/UNIX file permissions: “chmod Tutorial” 4

• Linux Cheatsheets 5

• For the technically interested: Linux Filesystem Hierarchy Standard 6 and Linux
Standard Base 7

• Unix commands applied to bioinformatics 8

• BioPieces 9 are a collection of bioinformatics tools that can be pieced together in
a very easy and flexible manner to perform both simple and complex tasks.

• Google shell style guide 10

• Useful bash one-liners for bioinformatics 11

• Interactive explanation of your commandline: Explain Shell 12

1 http://linuxcommand.org/
2 http://www.mn.uio.no/astro/english/services/it/help/basic-services/linux/guide.html
3 http://oreilly.com/openbook/debian/book/ch04_01.html
4 http://www.catcode.com/teachmod/
5 http://www.cheat-sheets.org/#linux
6 http://www.pathname.com/fhs/
7 http://www.linuxfoundation.org/collaborate/workgroups/lsb
8 http://rous.mit.edu/index.php/Unix_commands_applied_to_bioinformatics
9 http://code.google.com/p/biopieces

10 https://code.google.com/p/google-styleguide
11 https://github.com/stephenturner/oneliners
12 http://www.explainshell.com

89

http://linuxcommand.org/
http://linuxcommand.org/
http://www.mn.uio.no/astro/english/services/it/help/basic-services/linux/guide.html
http://oreilly.com/openbook/debian/book/ch04_01.html
http://oreilly.com/openbook/debian/book/ch04_01.html
http://www.catcode.com/teachmod/
http://www.cheat-sheets.org/#linux
http://www.pathname.com/fhs/
http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://rous.mit.edu/index.php/Unix_commands_applied_to_bioinformatics
http://code.google.com/p/biopieces
https://code.google.com/p/google-styleguide
https://github.com/stephenturner/oneliners
http://www.explainshell.com
http://linuxcommand.org/
http://www.mn.uio.no/astro/english/services/it/help/basic-services/linux/guide.html
http://oreilly.com/openbook/debian/book/ch04_01.html
http://www.catcode.com/teachmod/
http://www.cheat-sheets.org/#linux
http://www.pathname.com/fhs/
http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://rous.mit.edu/index.php/Unix_commands_applied_to_bioinformatics
http://code.google.com/p/biopieces
https://code.google.com/p/google-styleguide
https://github.com/stephenturner/oneliners
http://www.explainshell.com

Linux Course Documentation

14.1.2 Command Line Mystery Game

CLMystery 13 is a game that you play on the commandline: There’s been a murder in
Terminal City, and TCPD needs your help to solve this crime by using commandline
tools only!

To play the game, get the files from github and read the instructions:

wget https://github.com/veltman/clmystery/archive/master.zip
unzip master.zip
cd clmystery-master/
cat instructions

14.1.3 Real printed paper books

• Dietz, M., “Praxiskurs Unix-Shell”, O’Reilly (highly recommended!, German lan-
guage only)

• Herold, H., “awk & sed”, Addison-Wesley

• Robbins, A., “sed & awk Pocket Reference”, O’Reilly

• Robbins, A. and Beebe, N., “Classic Shell Scripting”, O’Reilly

• Siever, E. et al., “Linux in a Nutshell”, O’Reilly

14.1.4 Live - CDs

A Live-CD is a complete bootable computer operating system which runs in the com-
puter’s memory, rather than loading from the hard disk drive. It allows users to expe-
rience and evaluate an operating system without installing it or making any changes
to the existing operating system on the computer.

Just download an ISO-Image, burn it onto a CD/DVD and insert it into your DVD-
Drive to boot your computer with Linux!

Fedora Live CD

This Live CD contains everything the Fedora 14 Linux operating system has to offer
and it’s everything you need to try out Fedora - you don’t have to erase anything on
your current system to try it out, and it won’t put your files at risk. Take Fedora for a
test drive, and if you like it, you can install Fedora directly to your hard drive straight
from the Live Media desktop.

13 https://github.com/veltman/clmystery
14 http://fedoraproject.org/wiki/FedoraLiveCD

90 Chapter 14. Appendix

https://github.com/veltman/clmystery
http://fedoraproject.org/wiki/FedoraLiveCD
https://github.com/veltman/clmystery
http://fedoraproject.org/wiki/FedoraLiveCD

Linux Course Documentation

Knoppix

Knoppix 15 is an operating system based on Debian designed to be run directly from
a CD / DVD or a USB flash drive, one of the first of its kind for any operating system.
When starting a program, it is loaded from the removable medium and decompressed
into a RAM drive. The decompression is transparent and on-the-fly. More than 1000
software packages are included on the CD edition and more than 2600 are included
on the DVD edition. Up to 9 gigabytes can be stored on the DVD in compressed form.

BioKnoppix

Bioknoppix 16 is a customized distribution of Knoppix Linux Live CD. With this dis-
tribution you just boot from the CD and you have a fully functional Linux OS with
open source applications targeted for the molecular biologist. Beside using RAM, Bio-
knoppix doesn’t touch the host computer, being ideal for demonstrations, molecular
biology students, workshops, etc.

Vigyaan

Vigyaan 17 is an electronic workbench for bioinformatics, computational biology and
computational chemistry. It has been designed to meet the needs of both beginners
and experts.

BioSlax

BioSLAX 18 is a live CD/DVD suite of bioinformatics tools that has been released by
the resource team of the BioInformatics Center (BIC), National University of Singapore
(NUS).

14.2 About Bio-IT

Bio-IT is a community project aiming to develop and strengthen the bioinformatics
user community at EMBL Heidelberg. It is made up of members across the different
EMBL Heidelberg units and core facilities. The project works to achieve these aims,
firstly, by providing a forum for discussing and sharing information and ideas on
computational biology and bioinformatics, focused on the Bio-IT portal. Secondly, we
organise and participate in a range of different networking and social activities aiming
to strengthen ties across the community.

15 http://knopper.net/knoppix
16 http://bioknoppix.hpcf.upr.edu
17 http://www.vigyaancd.org
18 http://www.bioslax.com

14.2. About Bio-IT 91

http://knopper.net/knoppix
http://bioknoppix.hpcf.upr.edu
http://www.vigyaancd.org
http://www.bioslax.com
http://bio-it.embl.de
http://knopper.net/knoppix
http://bioknoppix.hpcf.upr.edu
http://www.vigyaancd.org
http://www.bioslax.com

Linux Course Documentation

14.2.1 Resources

A list of biocomputing-related resources associated with the project, including, for ex-
ample help provided for installing software on Linux computers at EMBL, instructions
on using the Git versions control system server provided by EMBL, and various other
kinds of information.

14.2.2 Training and Outreach

Bio-IT provides information on events (courses and conferences), both internal to
EMBL and organised elsewhere by other organisations, that are related to biocom-
puting and bioinformatics.

14.2.3 Networking

Several different kinds of networking events for the Bio-IT community are being organ-
ised, including beer sessions for the EMBL community, and within-Heidelberg events
for the larger Heidelberg biocomputing community.

14.2.4 Biocomputing expertise at EMBL

You can use the Bio-IT portal to search for people working at EMBL who have experi-
ence working with data or tools you might be interested in.

If you’ve not yet got a page up on the portal describing your own expertise, please
do so. If you need any help doing this, you can read about this in the portal’s FAQ
section, or get in touch with one of the site administrators.

14.2.5 Centers

EMBL Centres are ‘horizontal’, cross-departmental structures that promote innovative
research projects across disciplines. All the EMBL Centres listed below have a strong
computational component.

Biomolecular Network Analysis

The CBNA disseminates expertise, know-how and guidance in network integration
and analysis throughout EMBL.

92 Chapter 14. Appendix

http://www.embl.de/research/interdisciplinary_research/centres/index.html
http://bio-it.embl.de/cbna
http://bio-it.embl.de/statistical-data-analysis
http://bio-it.embl.de/molecular-and-cellular-imaging
http://bio-it.embl.de/biological-modeling
http://bio-it.embl.de/cbna

Linux Course Documentation

Statistical Data Analysis

The CSDA helps EMBL scientists to use adequate statistical methods for their specific
technological or biological applications.

Molecular and Cellular Imaging

The CMCI makes your life in image processing/analysis easier and more fun.

Modeling

The Centre for Biological Modeling (CBM) aims to support people to adopt mathemat-
ical modeling techniques into their everyday research.

14.3 Acknowledgements

Handouts provided by EMBL Heidelberg Photolab (Many thanks to Udo Ringeisen)

EMBL Logo © EMBL Heidelberg

Graphic of the Linux Filesystem (page 2) taken from the SuSE 9.2 manual © Novell
Inc.

All other graphics © Frank Thommen, EMBL Heidelberg, 2012

License: CC BY-SA 3.0

Special thanks go to contributors / helping hands (alphabetical order):

• Christian Arnold

• Jean-Karim Hériché

• Jan Ping Yuan

• Bora Uyar

• Thomas Zichner

14.3. Acknowledgements 93

http://bio-it.embl.de/statistical-data-analysis
http://bio-it.embl.de/molecular-and-cellular-imaging
http://bio-it.embl.de/biological-modeling
http://www.embl.de
http://www.embl.de
http://www.novell.com/documentation/suse92/pdfdoc/user92-screen/user92-screen.pdf
http://www.novell.com
http://www.novell.com
http://creativecommons.org/licenses/by-sa/3.0/

Linux Course Documentation

94 Chapter 14. Appendix

Index

Symbols
[. 61
. 57
$? . 58
$HOME .. 23
$PAGER .. 23
$PATH .. 23
$PWD.. .23
| . 22
>> . 22
> . 22

A
append . 22
apropos . 6
awk . 41

B
backquote . 70
backtick . 70
break . 65
breaksw .. 63

C
case. .63, 68
cat . 14, 34
cd . 8, 31
chmod .. 19, 32
clear . 5, 31, 33
clone .83
command .. 3

general structure. .3
interrupt .5
switches . 3

command substitution 70
comment . 57
continue . 65
cp. .10, 32
cut .17, 34

D
date . 7, 34
disconnect. .21

E
echo. .4, 23
elif . 63
env . 23, 45, 52
environment variables 23

display. .23
set . 24

escape character . 70
exit. .5, 21, 33
exit status. .58, 68
export. .24

F
file .18, 29, 33

append . 22
overwrite . 22

find . 18, 31
for. .64
foreach. .64

G
grep . 15, 22, 34, 39
gzip . 37, 73

H
hash sign. .57
head . 14
hostname. .7, 21, 33

I
if - then - else . 61
init . 83
interpreter .56

L
less . 15, 23
ls. .8, 32, 33

M
man .. 6
mkdir. .13, 31
more . 23
mv . 12

95

Linux Course Documentation

O
options . 3

P
pattern . 63
Permissions . 19
pipe . 22
positional parameters.67
pwd .. 7

R
redirect . 22
Remote access. .20
reset . 5, 31
rm .. 12
rmdir . 13
rsync. .11

S
scp. .21, 33
secure copy. .21
secure shell . 20
sed . 39
set. .24, 45, 52, 70
shebang line. .56
shift. .68
sort . 17
special variables: $? . 58
ssh . 20, 33, 34

T
tail . 14
tar . 38, 73
test. .61
time . 7
touch . 10

U
unset . 70
until . 64, 65

V
variables

environment variables.44, 51
shell variables 44, 51

W
which. .18, 32
while. .64, 65
whoami .7, 21, 33

96 Index

	Introduction to the Linux Commandline
	Why Use the Commandline
	General Remarks Regarding Using UNIX/Linux Systems
	Absolute Paths / Relative Paths

	General Structure of Linux Commands
	A Journey Through the Commands
	Useful Terminal Tools & Keyboard Shortcuts
	Getting Help
	Who am I, where am I
	Moving Around
	See What's Around
	Organize Files and Folders
	View Files
	Extracting Informations from Files
	Useful Filetools
	Permissions
	Remote access
	IO and Redirections
	Environment Variables

	Exercises
	Misc. file tools
	Copying / Deleting Files & Folders
	View Files
	Searching
	Misc. terminal
	Permissions
	Remote access
	IO and Redirections
	Putting it all together
	Bioinformatics

	Solutions to the Exercises
	Misc. file tools
	Copying / Deleting Files & Folders
	View Files
	Searching
	Misc. terminal
	Permissions
	Remote access
	IO and Redirections
	Putting it all together
	Bioinformatics

	More Commandline Tools
	Commandline Tools
	GZIP
	TAR
	GREP
	SED
	AWK

	I/O Redirection
	Variables
	Setting, Exporting and Removing Variables
	Listing Variables
	Variable Inheritance

	Hints

	I/O Redirection
	Variables
	Setting, Exporting and Removing Variables
	Listing Variables
	Variable Inheritance
	Examples

	Basic Shell Scripting
	What is a Script?
	Script Naming and Organization
	Running a Script
	Basic Structure of a Shellscript
	Readability and Documentation
	Anatomy of a Shellscript
	Reporting Success or Failure - The Exit Status
	Command Grouping and Sequences

	Control Structures
	Conditional Statements
	Loops

	Making Scripts Flexible
	Configurable Scripts
	Defining your own Commandline Options and Arguments

	Ensuring a Sensible Exit Status
	Why is the exit status important after all?

	Tips and Tricks
	Combining Variables with other Strings
	Filenames and Paths
	Breaking up Long Code Lines
	Script Debugging
	Command Substitution
	Create Temporary Files
	Cleaning up Temporary Files

	Solutions to the Exercises
	TAR & GZIP
	GREP
	SED
	AWK
	Quoting and Escaping

	The Benefits of Version Control
	git at a Glance
	git Settings
	setting your identity
	Checking Your Settings

	A Typical git Workflow
	Creating a git Repository
	Cloning a git Repository
	Checking the Status
	Adding files
	Committing changes
	Viewing the History
	Pushing changes
	Pulling changes
	Undo local changes
	Using centralized workflow

	EMBL git server
	Appendix
	Links and Further Information
	Links
	Command Line Mystery Game
	Real printed paper books
	Live - CDs

	About Bio-IT
	Resources
	Training and Outreach
	Networking
	Biocomputing expertise at EMBL
	Centers

	Acknowledgements

	Index

