

Intermediate	
 Linux	
 Course:	

Commandline	
 and	

Basic	
 Scripting	

Date: December 5./6., 2012, EMBL Heidelberg
Authors: Holger Dinkel & Frank Thommen

Structural and Computational Biology Unit
Version: 1.0

2 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

Table of Content

Part I: More Commandline Tools .. 3	

Command-line Tools... 3	

GZIP.. 3	

TAR ... 3	

GREP... 4	

SED ... 5	

AWK ... 6	

Hints ... 7	

Quoting... 7	

Expanding and Escaping .. 8	

PART II: Basic Shell Scripting.. 9	

What is a Script? ... 9	

Script Naming and Organization... 9	

Running a Script.. 9	

Basic Structure of a Shellscript... 10	

Readability and Documentation.. 10	

Command Grouping and Sequences ... 11	

Control Structures ... 12	

Conditional Statements .. 12	

Loops .. 15	

Making Scripts Flexible ... 16	

Configurable Scripts .. 16	

Defining your own Commandline Options and Arguments.. 17	

Ensuring a Sensible Exit Status ... 17	

Why is the exit status important after all? ... 18	

Tips and Tricks .. 18	

Script Debugging... 18	

Command Substitution .. 18	

Create Temporary Files .. 19	

Cleanup Temporary Files ... 19	

About Bio-IT ... 20	

Links and Further Information ... 20	

Live-CDs ... 20	

Acknowledgements ... 21	

Index... 22	

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 3

Part	
 I:	
 More	
 Commandline	
 Tools	

Command-­‐line	
 Tools	
 	

GZIP	

gzip is a compression/decompression tool.
When used on a file (without any parameters) it will compress it and replace the
file by a compressed version with the extension ‘.gz’ attached:
ls textfile*
textfile
gzip textfile
ls textfile*
textfile.gz

To revert this / to uncompress, use the parameter -d:
ls textfile*
textfile.gz
gzip -d textfile
ls textfile*
textfile

As a convenience, on most Linux systems, a shellscript named “gunzip”
exists which simply calls “gzip –d”

TAR	

tar (tape archive) is a tool to handle archives. Initially it was created to combine
multiple files/directories to be written onto tape, it is now the standard tool to
collect files for distribution or archiving.
tar stores the permissions of the files within an archive and also copies special files
(such as symlinks etc.), which makes it an ideal tool for archiving…
Usually tar is used in conjunction with a compression tool such as gzip to create a
compressed archive:

source: Th0msn80 (Wikipedia)

The most common command-line switches are:
-c create an archive
-t test an archive
-x extract an archive
-z use gzip compression
-f filename filename of the archive

Don’t forget to specify the target filename. It needs to follow the –f
parameter. Although you can combine options like such: ‘’tar –czf
archive.tar” the order matters, so “tar –cfz archive.tar” will not do
what you want…

4 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

Creating an archive containing two files:
tar -cf archive.tar textfile1 textfile2

Listing the contents of an archive:
tar -tf archive.tar
textfile1
textfile2

Extracting an archive:
tar -xf archive.tar

Creating and extracting a compressed archive containing two files:
tar -czf archive.tar.gz textfile1 textfile2
tar -xzf archive.tar.gz

	

GREP	

Find lines matching a pattern in textfiles
Usage: grep [options] pattern file(s)
grep -i ensembl P04637.txt
DR Ensembl; ENST00000269305; ENSP00000269305; ENSG00000141510.
DR Ensembl; ENST00000359597; ENSP00000352610; ENSG00000141510.
DR Ensembl; ENST00000419024; ENSP00000402130; ENSG00000141510.
DR Ensembl; ENST00000420246; ENSP00000391127; ENSG00000141510.
DR Ensembl; ENST00000445888; ENSP00000391478; ENSG00000141510.
DR Ensembl; ENST00000455263; ENSP00000398846; ENSG00000141510.

Useful options:
-v: Print lines that do not match
-i: Search case-insensitive
-l: List files with matching lines, not the lines itself
-L: List files without matches
-c: Print count of matching lines for each file

Count the number of fasta sequences (they start with a “>”) in a file:
grep –c “>” twofiles.fasta
2

List all files containing the term “Ensembl”:
grep –l Ensembl *.txt
P04062.txt
P12931.txt

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 5

SED	

sed is a Stream EDitor, it modifies text (text can be a file or a pipe) on the fly.

Usage: ‘sed command file’,

The most common usecases are:
Substitute TEXT by REPLACEMENT: ‘s/TEXT/REPLACEMENT/’
Transliterate the characters x�a, and y�b: ‘y/xy/ab/’
Print lines containing PATTERN: ‘/PATTERN/p’
Delete lines containing PATTERN: ‘/PATTERN/d’

echo “This is text.” | sed 's/text/replaced stuff/’
This is replaced stuff.

By default, text substitution are performed only once per line. You need to add a
trailing ‘g’ option, to make the substitution ‘global’ (‘s/TEXT/REPLACEMENT/g’),
meaning all occurrences in a line are substituted (not just the first in each line).
Note the difference:

echo “ACCAAGCATTGGAGGAATATCGTAGGTAAA” | sed ‘s/A/_/’
_CCAAGCATTGGAGGAATATCGTAGGTAAA

echo “ACCAAGCATTGGAGGAATATCGTAGGTAAA” | sed ‘s/A/_/g’
_CC__GC_TTGG_GG__T_TCGT_GGT___

When used on a file, sed prints the file to standard output, replacing text as it goes
along:
echo “This is text” > textfile
echo “This is even more text” >> textfile
sed 's/text/stuff/' textfile
This is stuff
This is even more stuff

sed can also be used to print certain lines (not replacing text) that match a pattern.
For this you leave out the leading ‘s’ and just provide a pattern: ‘/PATTERN/p’. The
trailing letter determines, what sed should do with the text that matches the pattern
(‘p’: print, ‘d’: delete)
sed '/more/p' textfile
This is text
This is even more text
This is even more text

As sed by default prints each line, you see the line that matched the pattern,
printed twice. Use option ‘-n’ to suppress default printing of lines.
sed -n '/more/p' textfile
This is even more text

6 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

Delete lines matching the pattern:
sed '/more/d' textfile
This is text

Multiple sed statements can be applied to the same input stream by prepending
each by option ‘-e’ (edit):
sed -e 's/text/good stuff/' -e ’s/This/That/’ textfile
That is good stuff
That is even more good stuff

Normally, sed prints the text from a file to standard output. But you can also edit
files in place. Be careful - this will change the file! The ‘-i’ (in-place editing) won’t
print the output. As a safety measure, this option will ask for an extension that will
be used to rename the original file to. For instance, the following option ‘-i.bak’
will edit the file and rename the original file to textfile.bak:
sed –i.bak 's/text/stuff/' textfile
cat textfile
This is stuff
This is even more stuff
cat textfile.bak
This is text
This is even more text

AWK	

awk is more than just a command, it is a complete text processing language (the
name is an abbreviation of the author’s names).
Each line of the input (file or pipe) is treated as a record and is broken into fields.
Generally, awk commands are of the form: 'condition { action }’, where:
• condition is typically an expression
• action is a series of commands

If no condition is given, the action is applied to each line, otherwise just to the
lines that match the condition.
awk '{print}' textfile
This is text
This is even more text
awk '/more/ {print}' textfile
This is even more text

awk reads each line of input and automatically splits the line into columns. These
columns can be addressed via $1, $2 and so on ($0 represents the whole line).

So an easy way to print or rearrange columns of text is:
echo “Bob likes Sue“ | awk ‘{print $3, $2, $1}’
Sue likes Bob
echo “Master Obi-Wan has lost a planet“ | awk ‘{print
$4,$5,$6,$1,$2,$3}’
lost a planet Master Obi-Wan has

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 7

awk splits text by default on whitespace (spaces or tabs), which might not be
ideal in all situations. To change the field separator (FS), use option ‘-F’
(remember to quote the field separator):

echo “field1,field2,field2“ | awk -F’,’ ‘{print $2, $1}’
field2 field1

Note two things here: First, the field separator is not printed, and second, if you
want to have space between the output fields, you actually need to separate them
by a comma or they will be catenated together…
echo “field1,field2,field2“ | awk -F’,’ ‘{print $1 $2 $3}’
field1field2field3

You can also combine the pattern matching and the column selection techniques:
awk '/more/ {print $3}' textfile
even

awk really is powerful in filtering out columns, you can for instance print only
certain columns of certain lines. Here we print the third column of those lines
where the fourth column is ‘more’:
awk '$4==”more” {print $3}' textfile
even

Note the double equal signs “==” to check for equality and note the quotes around
“more”.
If you want to match a field, but not exactly, you can use ‘~’ instead of ‘==’:
awk '$4~”ore” {print $3}' textfile
even

Hints	

Quoting	

In Programming it is often necessary to "glue together" certain words. Usually, a program or
the shell splits sentences by whitespace (space or tabulators) and treats each word
individually. In order to tell the computer that certain words belong together, you need to
"quote" them, using either single (') or double (") quotes. The difference between these two is
generally that within double quotes, variables will be expanded, while everything within
single quotes is treated as string literal.
When setting a variable, it doesn’t matter which quotes you use:

MYVAR=This is set
-bash: is: command not found
MYVAR='This is set'
echo $MYVAR
This is set
MYVAR="This is set"
echo $MYVAR
This is set

8 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

However, it does matter, when using (expanding) the variable:

Double quotes:

export MYVAR=123
echo "the variable is $MYVAR"
the variable is 123
echo "the variable is set" | sed "s/set/$MYVAR/"
the variable is 123

Single quotes:

export MYVAR=123
echo 'the variable is $MYVAR'
the variable is $MYVAR
echo "the variable is set" | sed 's/set/$MYVAR/'
the variable is $MYVAR

Weird things can happen when parsing data/text that contains quote characters:

MYVAR='Don't worry'; echo $MYVAR
> # you need to press Ctrl-C to abort
MYVAR="Don't worry"; echo $MYVAR
Don't worry

	

Expanding	
 and	
 Escaping	

You already learned how to expand a variable such that its value is used instead of its name:

export MYVAR=123
echo "the variable is $MYVAR"
the variable is 123

“Escaping” a variable is the opposite, ensuring that the literal variable name is used instead
of its value:

export MYVAR=123
echo "the \$MYVAR variable is $MYVAR"
the $MYVAR variable is 123

The “escape character” is usually the backslash “\”.

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 9

PART	
 II:	
 Basic	
 Shell	
 Scripting	

What	
 is	
 a	
 Script?	

A script is nothing else than a number of shell command place together in a file. The sim-
plest script is maybe just a complex oneliner that you don’t want to type each time again.
More complex scripts are seasoned with control elements (conditions and loops) which
allow for a sophisticated command flow. scripts might allow for configuration and customi-
zation, thus allowing one script to be flexibly used in several different environments.

Whatever you do in a script, you can also do on the commandline. This is
also the first way to test your scripts step by step!

Script	
 Naming	
 and	
 Organization	

It is good practice – though not technically required – to give your scripts an extension
which specifies their type. I.e. “.sh” for Bourne Shell and Bourne Again Shell scripts, “.csh”
for C-Shell scripts. Sometimes “.bash” for Bourne Again Shell scripts is used.
We recommend to either store all scripts in one location (e.g. ~/bin) and add this location to
your $PATH variable or to store the scripts together with the files that are processed by the
script.

If you use scripts to process data, then the scripts should probably be
archived together with the data files

Running	
 a	
 Script	

There are basically three ways to run a script:

a) the location to your script is not in your $PATH variable, then you have to specify the
full path to the script:

/here/is/my/script.sh
[...]

b) the location to the script is in the $PATH variable, then you can simply type its name:

script.sh
[...]

In both situations, the script will need to have execute permissions to be run. If for some
reason you can only read but not execute the script, then it can still be run by

c) specifying the interpreter. The full path (relative or absolute) to script has to be provi-
ded in this case, no matter wether the script location is already contained in $PATH or
not:

/bin/sh /here/is/my/script.sh
[...]

10 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

Basic	
 Structure	
 of	
 a	
 Shellscript	

Shellscripts have the following general structure:

• A line starting with “#!” which defines the interpreter (i.e. the program used to run
the script). This line is called the “shebang line” and must be the first line in a script

• A section where the configuration takes place, e.g. paths, options and commands are
defined and it is made sure, that all prerequisites are met

• A section where the actual processing is done. This includes error handling

• A controlled exit sequence, which includes cleaning up all temporary files and
returning a sensible exit status

This is merely a recommendation to keep your scripts well structured. None of these sections
are mandatory.

Readability	
 and	
 Documentation	

Make your script easily readable. Use comments and whitespace and avoid super compact
but hardly understandable commandlines. Always take into account, that not only the shell,
also human beings will probably have to read and understand your script.
Even if your script is very simple – document it! This helps others understand what you did,
but – most important – it helps you remember what you did, when you have to reuse the
script in the future.
Documentation is done either by writing comments into the script or by creating a special
documentation file (README.txt or similar). Documenting in the script can be done in se-
veral ways:

• A preamble in the script, outlining the purpose, parameters and variables of the script
as well as some information about authorship and and perhaps changes

• Within the script as blocks of text or “End of line” comments

To write a comments use the hash sign (“#”). Everything after a “#” is ignored when execu-
ting a script.

#!/bin/sh Shebang line

myscript.sh

General purpose script for extracting Glycine
occurrences in a datafile.

Usage: myscript.sh datafile

Exit values: 1: No datafile given or file
doesn’t exist
2: No Glycine found

Author: Me, myself and I
Date: Heidelberg, December 12., 2012

Preamble with a short
description, usage
information, authorship etc.
etc.

--- Configuration ---
GREPCMD=/bin/grep
DATAFILE=$1

Configuration

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 11

--- Check prerequisites ---
first check for $1
if [-z $DATAFILE]
then
 echo “No datafile given” 1>&2 # print on STDERR
 echo “USAGE: $0 datafile”
 exit 1
fi

then check if the file exists
if [! -f $DATAFILE]
then
 echo “Datafile $DATAFILE does not exist!” 1>&2
 exit 1
fi

Checking prerequisites and
sane environment

--- Now processing---
$GREPCMD –q Glycine $DATAFILE # Where is Glycine?

This is what you actually
wanted to do

--- Exit ---
if [$? –eq 0]
then
 exit 0
else
 exit 2
fi

Ensure a valid and
meaningful exit status

Command	
 Grouping	
 and	
 Sequences	

Commands can be concatenated to be executed one after the other unconditionally or based
on the success of the respective previous command:

cmd1; cmd2 – execute commands in sequence

 Create a directory and change into it
mkdir a; cd a

cmd1 && cmd2 – execute cmd2 only if cmd1 was successful

 Confirm that /etc exists
cd /etc && echo “/etc exists”

cmd1 || cmd2 – execute cmd2 only if cmd1 was not successful

 Warn if /etc doesn’t exist
cd /etc || echo “/etc is missing!”

(cmds) – groups commands to create one single output stream. The commands are run

in a subshell (i.e. a new shell is opened to run them)

 Change into /etc and list content. You are still in the same directory as you
were before
pwd
/home/fthommen
(cd /etc; ls)
pwd
/home/fthommen

12 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

{ cmds; } – groups commands to create one single output stream. The commands are run

in the current (!) shell. The opening “{“ must be followed by a blank and the
last command must be succeeded by a “;”

 Change into /etc and list content. You are still in /etc after the bracketed
expression (compare to the example above)
pwd
/home/fthommen
{ cd /etc; ls; }
[…]
pwd
/etc

Control	
 Structures	

The following syntax elements will be described for sh/bash and for csh/tcsh. However since
this course is mainly about sh/bash, examples will only be given for sh/bash. Some notes
about csh/tcsh specialities might be given in the text.
This is only a selection of the most useful or most common elements. There are much more
in the manpages. All shells offer myriads of possibilities which cannot possibly be demon-
strated in this course.
Some of the described features might be specific to bash and not be available in a classical
Bourne Shell on other systems.

Conditional	
 Statements	

if	
 –	
 then	
 –	
 else	

This is the most basic conditional statement: Do something depending on certain conditions.
The basic syntax is

sh/bash csh/tcsh

if condition1
then
 statements
elif condition2
 more statements
[…]
else
 even more statements
fi

if (condition) then
 statements
else if (condition2) then
 more statements
[…]
else
 even more statements
endif

Conditions can be a) the exit status of a command or b) the evaluation of a logical or
arithmetic expression:

a) Evaluating the exit status of a command: Simply use the command as condition

 Example
if grep –q root /etc/passwd
then
 echo root user found
else
 echo No root user found
fi

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 13

To evaluate the exit status of a command in csh/tcsh, it must be placed
within curly brackets with blanks separating the brackets from the
command: if ({ grep –q root /etc/passwd }) then [...]

Redirect the output of the command to be evaluated to /dev/null if you
are only interested in the exit status and if the command doesn’t have a
“quiet” option.

Note: Redirection of commands in conditions does not work for csh/tcsh

b) Evaluating of conditions or comparisons: Conditions and comparisons are evaluated
using a special command test which is usually written as “[“ (no joke!). As “[“ is a
command, it must be followed by a blank. As a speciality the “[“ command must be
ended with “]” (note the preceding blank here)

In csh/tcsh the test/[command is not needed. Conditions and
comparisons are directly placed within the round braces.

sh/bash csh/tcsh

File conditions
-e file file exists -e file
-f file file exists and is a regular file -f file
-d file file exists and is a directory -d file
-r file file exists and is readable -r file
-w file file exists and is writeable -w file
-x file file exists and is executable -x file
-s file file exists and has a size > 0
 file exists and has zero size -z file

String Comparisons
-n s1 String s1 has non-zero length
-z s1 String s1 has zero length
s1 = s2 Strings s1 and s2 are identical s1 == s2
s1 != s2 Strings s1 and s2 differ s1 != s2
string String string is not null

Integer Comparisons
n1 –eq n2 n1 equals n2 n1 == n2
n1 –ge n2 n1 is greater than or equal to n2 n1 >= n2
n1 –gt n2 n1 is greater than n2 n1 > n2
n1 –le n2 n1 is less than or equal to n2 n1 <= n2
n1 –lt n2 n1 is less than n2 n1 < n2
n1 –ne n2 n1 it not equal to n2 n1 != n2

Combination of conditions
! cond True if condition cond is not true ! cond

cond1 –a cond2

True if conditions cond1 and cond2 are
both true cond1 && cond2

cond1 –o cond2 True if conditions cond1 or cond2 is true cond1 || cond2

14 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

Examples: Test for the existence of /etc/passwd
if [-e /etc/passwd]
then
 echo /etc/passwd exists
else
 echo /etc/passwd does NOT exist
fi

or
if test -e /etc/passwd
then
 echo /etc/passwd exists
else
 echo /etc/passwd does NOT exist
fi

case	

The case statement implements a more compact and better readable form of if – elif – elif –
elif etc. Use this if your variable (and you can only check for variables with case) can have a
distinct number of valid values. A typical usage of case will follow later.
The basic syntax is

sh/bash csh/tcsh

case variable in
 pattern1)
 statements
 ;;
 pattern2)
 statements
 ;;
 […]
 *)
 statements
 ;;
esac

switch (variable)
 case pattern1:
 statements
 breaksw
 case pattern2:
 statements
 breaksw
 default:
 statements
endsw

“*”, “?” and “[...]” can be used for the patterns

The *) (sh/bash) and default: (csh/tcsh) patterns are ”catch-all” patterns
which match everything not matched above. It is often used to detect invalid
values of variable.

Multiple patterns can be handled by separating them with “|” in sh/bash or
by successive case statements in csh/tcsh.

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 15

Examples: Check if /opt/ or /usr/ paths are contained in $PATH
case $PATH in
 /opt/ | */usr/*)
 echo /opt/ or /usr/ paths found in \$PATH
 ;;
 *)
 echo ‘/opt and /usr are not contained in $PATH’
 ;;
esac

Loops	

for	
 /	
 foreach	

The for and foreach statements respectively will loop through a list of given values and run
the given statements for reach run:

list is a list of strings, separated by whitespaces

Examples: List all files in /tmp in a bulleted list
for FILE in /tmp/*
do
 echo “ * $FILE”
done

or
for FILE in `ls /tmp`
do
 echo “ * $FILE”
done

while	
 /	
 until	

The while and until loops execute your commands while (or until respectively) a certain
condition is met

The conditions are constructed the same way as those used in if statements.

“Manual”	
 loop	
 control	

Instead of (or additionally to) the built-in loop control in for/foreach, while and until loops,
you can control exiting and continuing them with “break” and “continue”:

sh/bash csh/tcsh

for variable in list
do
 statements
done

foreach variable (list)
 commands
end

sh/bash csh/tcsh

while condition
do
 statements
done

until condition
do
 statements
done

while (condition)
 commands
end

N.A.

16 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

break “breaks out” of the innermost loop (loops can be nested!) and continues after the end
of the loop.
continue skips the rest of the current (innermost) loop and starts the next iteration

Making	
 Scripts	
 Flexible	

Scripts are most useful, if they can be reused. Copying scripts and changing them to fit the
new situation is time-consuming and error-prone. Additionally if you add an improvement to
the current script, then all previous versions will stay without it. Having one script with the
possibility to configure it, is usually the better way. Customization of scripts can be achieved
by either using variables or by adding the possibility to use your own commandline options
and arguments.

Configurable	
 Scripts	

Using	
 Variables	

Any value – be it paths, commands or options – that are specific to individual applications or
your script, should not be “hardcoded” (i.e. used literally within the script) but assigned to
variables:

Bad example: You have to change two instances of the path each time you want to list an
other directory:

#!/bin/sh

echo “The directory /etc contains the following files:”
ls /etc

Good example: The path is now in a variable and only one instance has to be changed each
time (less work, less errors)

#!/bin/sh

$MYDIR=/etc

echo “The directory $MYDIR contains the following files:”
ls $MYDIR

Of course, you’ll still have to modify the script each time you want to list the content of an
other directory. A more flexible way of customization would be to use a settings file.

Using	
 a	
 Settings	
 File	

Instead of having your configurable section within the script, it can be “outsourced” in its
own file. This file is basically a shellscript which is run within the primary script. To run
commands from a file within the current environment, the commands source (bash,
csh/tcsh) or . (dot) (sh/bash) are used:

The settings file, e.g. settings.ini:

$MYDIR=/etc

The script:

#!/bin/sh

. ./settings.ini

echo “The directory $MYDIR contains the following files:”
ls $MYDIR

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 17

Defining	
 your	
 own	
 Commandline	
 Options	
 and	
 Arguments	

The best way to configure a script is to allow for your own commandline options and
arguments. Commandline arguments are available the script as so-called positional
parameters $1, $2, $3 etc. $0 contains the name of the script.

If you run the script

#!/bin/sh

echo The script is $0
echo The first commandline option is $1
echo The second commandline option is $2

With two arguments, you’ll get the following output:

./script.sh ABC DEF
The script is ./script.sh
The first commandline option is ABC
The second commandline option is DEF

In many cases you’ll not know how many parameters are given on the commandline. In
these cases you can use shift to loop through them. shift removes $1 and moves all
other positional parameters one position to the right: $2 becomes $1, $3 becomes $2 etc.

Some more variables are important when dealing with commandline parameters:

$#: Current number of positional parameters
$*: All positional parameters
$@: All positional parameters. If used within double quotes (“$@”), then it will expand

to the list of all positional parameters, where each parameter is individually
quoted

With the help of $#, shift, case and the positional parameters we can now check all the
commandline parameters:

while ["$#" –gt 0]
do
 case $1 in
 -h) echo “Sorry, no help available!” # not very helpful, is it?
 exit 1 # exit with error
 ;;

 -v) VERBOSE=1 # we may use $VERBOSE later
 ;;

 -f) shift
 FILE=$1 # Aha, -f requires an
 # additional argument
 ;;

 *) echo “Wrong parameter!”
 exit 1 # exit with error
 esac
 shift
done

Ensuring	
 a	
 Sensible	
 Exit	
 Status	

If you don’t provide your own exit status, then the script will return the exit status of the last
executed command. In many cases this might be what you want, but very often it isn’t.

18 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

Consider the following script which is a real example from real life and happened to me
personally:

#!/bin/sh

[... do something that fails ...]

echo "End of the script"

This script will always succeed, as the echo command hardly ever fails. You will – from the
exit status of the script – never be able to detect, that something went wrong. Instead in such
cases we should handle the exit codes of the commands we run within the script. The most
important variable in this context is

$?: The exit status of the last run command

With its help we can keep track of the exit stati of all our important processing steps and
finaly return a sensible value:

#!/bin/sh
mystatus=0;

[... do something that might fail ...]
if [$? -ne 0]
then
 mystatus=1
fi

[... do something else that might fail, too ...]
[$? -ne 0] && mystatus=1 # same as above. Do you understand
 # this?

echo "End of the script"
exit $mystatus

Why	
 is	
 the	
 exit	
 status	
 important	
 after	
 all?	

First when you use your script within other scripts, you’ll probably need to be able to check,
if it has succeeded. There might be other ways (e.g. checking outputfiles for certain strings,
checking directly the textual output of the script etc.), but these ways are usually
cumbersome and require lots of coding. Exit values are easy to check.
Second: Other tools and systems might also use the exit status of your script. E.g. the cluster
system uses your job’s exit status to assess, if it has run successfully or not. Returning success
even in case of failure will result in lots of complications in case a problem occurs. It took us
several days to find the bug above.

Tips	
 and	
 Tricks	

Script	
 Debugging	

sh/bash and csh/tcsh have both an option “-x” which helps debugging a script by echoing
each command before executing it.

Command	
 Substitution	

You can use the output of a command and assign it to a variable or use it right away as text
string, by using the command substitution operators “`” (backticks, backquotes) or “$(…)”.
The backtick operator works in all shells, while $(…) only works in bash.

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 19

Three variants for the same (print out who you are in English text):

ME=`whoami`
echo I am $ME
I am fthommen

ME=$(whoami)
echo I am $ME
I am fthommen

echo I am `whoami`
I am fthommen

Create	
 Temporary	
 Files	

You can create temporary files with mktemp. By default it will create a new file in /tmp and
print its name:

mktemp
/tmp/tmp.Yaafh19370

Cleanup	
 Temporary	
 Files	

It is considerate, good practice and sometimes even important, to clean up temporary data
before ending a script. A simple way – which will not cover all cases, though – could be to
store all created temporary files in a variable and remove them all before exiting the script:

#! /bin/sh
ALL_TEMPFILES=”” # store a list of all temporary files here

TEMPFILE1=`mktemp`
ALL_TEMPFILES=”$ALL_TEMPFILES $TEMPFILE1”

TEMPFILE2=`mktemp`
ALL_TEMPFILES=”$ALL_TEMPFILES $TEMPFILE2”

[... process, process, process ...]

rm –f $ALL_TEMPFILES
exit

20 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

About	
 Bio-­‐IT	
 	

Bio-IT is a community project aiming to develop and strengthen the bioinformatics user
community at EMBL Heidelberg. It is made up of members across the different EMBL
Heidelberg units and core facilities. The project works to achieve these aims, firstly, by
providing a forum for discussing and sharing information and ideas on computational
biology and bioinformatics, focused on the Bio-IT portal http://bio-it.embl.de. Secondly, we
organise and participate in a range of different networking and social activites aiming to
strengthen ties across the community.

	
 Links	
 and	
 Further	
 Information	

• A full 500 page book about the Linux commandline for free(!): LinuxCommand.org

(http://linuxcommand.org/)

• Another nice introduction: “A beginner's guide to UNIX/Linux”
(http://www.mn.uio.no/astro/english/services/it/help/basic-services/linux/guide.html)

• The “commandline starter” chapter of an O’Reilly book: Learning Debian GNU/Linux
– Issuing Linux Commands (http://oreilly.com/openbook/debian/book/ch04_01.html)

• A nice introduction to Linux/UNIX file permissions: “chmod Tutorial”
(http://catcode.com/teachmod/)

• Linux Cheatsheets (http://www.cheat-sheets.org/#Linux)

• For the technically interested:
Linux Filesystem Hierarchy Standard (http://www.pathname.com/fhs/) and Linux
Standard Base (http://www.linuxfoundation.org/collaborate/workgroups/lsb)

• Unix commands applied to bioinformatics
(http://rous.mit.edu/index.php/Unix_commands_applied_to_bioinformatics)

• BioPieces (http://code.google.com/p/biopieces/)

Real printed paper books:

• Dietz, M., , Praxiskurs Unix-Shell, O’Reilly (highly recommended!)

• Herold, H., awk & sed, Addison-Wesley

• Robbins, A., sed & awk Pocket Reference, O’Reilly

• Robbins, A. and Beebe, N., Classic Shell Scripting, O’Reilly

• Siever, E. et al., Linux in a Nutshell, O’Reilly

Live-­‐CDs	

A Live-CD is a complete bootable computer operating system which runs in the
computer's memory, rather than loading from the hard disk drive. It allows users to
experience and evaluate an operating system without installing it or making any
changes to the existing operating system on the computer.
Just download an ISO-Image, burn it onto a CD/DVD and insert it into your DVD-
Drive to boot your computer with Linux!

Bio-IT Course “Intermedate Linux Commandline and Basic Scripting” 21

Fedora	
 Live	
 CD	
 http://fedoraproject.org/wiki/FedoraLiveCD	

This Live CD contains everything the Fedora Linux operating system has to offer
and it's everything you need to try out Fedora — you don't have to erase anything
on your current system to try it out, and it won't put your files at risk. Take Fedora
for a test drive, and if you like it, you can install Fedora directly to your hard drive
straight from the Live Media desktop.

Knoppix	
 http://knopper.net/knoppix	

Knoppix is an operating system based on Debian designed to be run directly from
a CD / DVD or a USB flash drive, one of the first of its kind for any operating
system. When starting a program, it is loaded from the removable medium and
decompressed into a RAM drive. The decompression is transparent and on-the-fly.
More than 1000 software packages are included on the CD edition and more than
2600 are included on the DVD edition. Up to 9 gigabytes can be stored on the
DVD in compressed form.

BioKnoppix	
 http://bioknoppix.hpcf.upr.edu/	

Bioknoppix is a customized distribution of Knoppix Linux Live CD. With this
distribution you just boot from the CD and you have a fully functional Linux OS
with open source applications targeted for the molecular biologist. Beside using
RAM, Bioknoppix doesn't touch the host computer, being ideal for demonstrations,
molecular biology students, workshops, etc.

Vigyaan	
 http://www.vigyaancd.org	

Vigyaan is an electronic workbench for bioinformatics, computational biology and
computational chemistry. It has been designed to meet the needs of both beginners
and experts.

BioSlax	
 http://www.bioslax.com/	

BioSLAX is a live CD/DVD suite of bioinformatics tools that has been released by
the resource team of the BioInformatics Center (BIC), National University of
Singapore (NUS).

Acknowledgements	

EMBL Logo © EMBL Heidelberg
Bio-IT Logo © Bio-IT Project. EMBL Heidelberg
All other graphics as declared

22 Bio-IT Course “Intermediate Linux Commandline and Basic Scripting”

Index	

.	

. ..16

$	

$?..18
$@ ..17
$*..17
$# ...17

A	

awk...6

B	

backtick operator ..18
break ..16

C	

case ..14
Combination of conditions..................................13
Command Substitution..18
conditional statements

case ..14
if ...12

continue ...16
Control Structures ...12

D	

Debugging ..18
dot command..16

E	

Escape...8
Escaping..8
Exit Status..17
Expand..8

F	

File conditions ..13
for ...15
foreach..15

G	

grep ..4

gzip ..3

I	

if ...12
Integer Comparisons ...13

L	

Loops..15

for...15
foreach ...15
until..15
while ..15

M	

mktemp ..19

P	

positional parameters ..17

Q	

Quoting ..7

Double quotes ..8
Single quotes ..8

S	

Script Debugging ..18
sed ..5
source...16
String Comparisons ...13

T	

tar ...3
Temporary Files ..19

Cleanup..19
Creation..19

U	

until ..15

W	

while ..15

Frank Thommen, Structural and Computational Biology Unit, December 2012

	
 	
 	
 	

Input-­‐Output	
 (IO)	
 Redirections	

Three IO “channels” are available by default:

• Standard input (STDIN, Number: 0): The input for your program, normally your
keyboard but can be an other program (when using pipes or IO redirection)

• Standard output (STDOUT, Number: 1): Where your program writes its regular
output to. Normally your terminal

• Standard error (STDERR, Number: 2): Where your programs normally write their
error message to. Normally your terminal

Input, output and error messages can be redirected from their default “targets” go others. If
using the file descriptor numbers (0, 1, 2) in redirections, then there must be no whitespace
between the numbers and the redirection operators.

Redirect to /dev/null to discard the output.

cmd > afile Write the output of cmd into afile. This will
overwrite afile.

cmd >> afile Write the output of cmd into afile. This will
add to afile

cmd > /dev/null Discard the output of cmd

cmd > afile 2>&1 Write the output of cmd into afile (overwriting
the file!) and write STDERR to the same place

cmd >> afile 2>&1 Add the output and error messages of cmd into
afile

cmd > afile 2> afile Same as above

cmd >> afile 2>/dev/null Add the output of cmd to afile and discard
error messages

cmd > /dev/null 2>&1

cmd > /dev/null 2>/dev/null

cmd >& /dev/null

Three time the same: Discard output and error
messages completely

cmd1 < cmd2 Use output of cmd2 as standard input for cmd1

See also http://www.catonmat.net/blog/bash-one-liners-explained-part-three/,
http://www.catonmat.net/blog/bash-redirections-cheat-sheet/ and
http://wiki.bash-hackers.org/howto/redirection_tutorial.

Frank Thommen, Structural and Computational Biology Unit, December 2012

	
 	
 	
 	

Variables	

The shell knows two types of variables: “Local” shell variables and “global” exported envi-
ronment variables. By convention, enviroment variables are written in uppercase letters.

Shell variables are only available to the current not inherited when you start an other shell or
script from the commandline. Consequently, these variables will not be available for your
shellscripts.

Environment variables are inherited in shells and scripts started from your current.

Setting,	
 Exporting	
 and	
 Removing	
 Variables	

Variables are set (created) by assigning them a value

MYVAR=something

There must be no whitespace around the equal sign. To create an environment variable,
export is used. You can either export while assigning a value or in a separate step. Both to
the following procedures are equivalent:

export MYGLOBALVAR=”something else”

MYGLOBALVAR=”something else”
export MYGLOBALVAR # No “$” in front of the variable!

Variables are removed with unset:

unset MYVAR

Assigning a variable an empty value (MYVAR=) will not remove it!

Listing	
 Variables	

You can list all your current environment variables with env and all shell variables with
set. The list of shell variables will also contain all environment variables

Variable	
 Inheritance	

Only enviromnent variables will be available in shells and scripts started from your current
shell. However in shell commands run in subshells (i.e. commands run within round
brackets) also local (shell) variables of your current shell are available.

Frank Thommen, Structural and Computational Biology Unit, December 2012

Examples	

Consider the following small shellscript vartest.sh:

#!/bin/sh
echo $MYLOCALVAR
echo $MYGLOBALVAR
echo -----

We will use it in the following examples to illustrate the various variable inheritances:

export MYGLOBALVAR=”I am global”
MYLOCALVAR=”I am local”

Set the variables

./vartest.sh

I am global

Run the script normally, i.e. in a new
shell

. ./vartest.sh
I am local
I am global

“source” the script, i.e. run it within
your current shell

(echo $MYGLOBALVAR; echo $MYLOCALVAR)
I am global
I am local

Access the variables in a subshell

Exercises for the ”Intermediate Linux Course: Commandline and Basic Scripting” 1

Exercises
Commandline tools

I. TAR & GZIP
1. Use gzip to compress the file P12931.txt
2. Decompress the resulting file P12931.txt.gz (revert previous command)
3. Use tar to create an archive containing all fasta files in the current directory into an

archive called “fastafiles.tar”
4. Use gzip to compress the archive “fastafiles.tar”.
5. How can you achieve the two previous steps “using tar to create archive” and “gzip

the archive” in one command?
6. Test (list the contens of) the compressed archive “fastafiles.tar.gz”
7. Download the compressed PDB file for entry 1Y57 from rcsb.org (eg. “wget

http://www.rcsb.org/pdb/files/1Y57.pdb.gz") and decompress it.

II. GREP
1. Which of the DNA files ENST.* contains ‘TATATCTAA’ as part of the sequence?
2. Which of the DNA files ENST.* contains ‘CAACAAA’ as part of the sequence?
3. Considering the previous example, would you consider grep a suitable tool to perform

motif searches? Why not? Try to find the pattern ‘CAACAAA’ by manual inspection of
the first two lines of each sequence.

4. Count the number of ATOMs (lines starting with ‘ATOM’) in the file 1Y57.pdb.
Does this number agree with the annotated number of atoms (Search the REMARKs
for ‘protein atoms’)

III. SED
1. Use sed to print only those lines that contain “version” in the files P12931.txt and

P04062.txt
2. Use sed to change the text ‘sequence version 3’ to ‘sequence version 4’ in the files

P12931.txt and P04062.txt (without actually changing the files, just printing)
3. Use sed to update the text ‘entry version 3’ to ‘entry version 4’ in the files P12931.txt

and P05480.txt (this time, make the changes directly in the files)
4. Replace all occurrences of ‘r’ by ‘l’ and ‘l’ by ‘r’ (at the same time) in the file

PROTEINS.txt (so that ‘structural’ becomes ‘stluctular’)

IV. AWK
1. Use awk to print only those lines that contain “version” in the files P12931.txt and

P05480.txt and compare the procedure to sed.
2. For all FASTA files print only the second item of the header (split on “|”)

eg. for “>sp|P12931|SRC_HUMAN Proto-oncogene”, print only “P12931”
3. The file ‘P12931.csv contains phosphorylation sites in the protein P12931. (If the file

‘P12931.csv’ does not exist, use ‘wget’ to download it from
“http://phospho.elm.eu.org/byAccession/P12931.csv”).

a. Column three of this file lists the amino acid position of the phosphorylation
site. You are only interested in position 17 of the protein. Try to use ‘grep’ to
filter out all these lines containing ‘17’.

b. Now use awk to show all lines containing ‘17’.

2 Exercises for the ”Intermediate Linux Course: Command-line and Basic Scripting”

c. Next try show only those lines where column three equals 17 (Hint: The file is
semicolon-separated…).

d. Finally print the PMIDs (column 6) of all lines that contain ‘17’ in column 3.

Quoting and Escaping
1. Familiarize yourself with quoting and escaping.

a. Run the following commands to see the difference between single and double
quotes when expanding variables:

echo "$HOSTNAME"
echo '$HOSTNAME'

b. Next, use ssh to login to a different machine to run the same command there,

again using both quoting methods:

ssh teach01@pc-atcteach01 'echo $HOSTNAME'

ssh teach01@pc-atcteach01 "echo $HOSTNAME"

Closely inspect the results; is that what you were expecting? Discuss this with your
neighbour.

Basic scripting
1. gzip can use nine different levels of compression. Read ‘gzip –help’ or ‘man gzip’ to

find out how to compress a file while keeping the original file unchanged and how to
use these different compression levels. Then write a for-loop to iterate over all
possible levels, compressing the file 1Y57.pdb and compare the sizes of the resulting
nine compressed files.

2. Write a script that combines the two files “P00523.fasta” and “P12931.fasta” into one
file called “twofiles.fasta” and run /g/software/bin/clustalw2 on these files.
(OPTIONAL) Finally, view the resulting alignment “twofiles.aln” using
/g/software/bin/clustalx.

3.
a. Write a script that tests the existence of a directory and if it exists, prints out the

content list as a nice bulleted list (using “*” as bullets). If the directory does not
exist, then print out the error message of "ls <directory>".

b. Modify the above script, so that the directory can be given as commandline
argument. Print out an error message, if no commandline argument is given or
if the given argument is not a directory.

c. Modify the script, so that the directory must be given as an option (e.g.
myscript.sh -d <directory>)

d. If you used file testing expressions, then modify the script to only use "ls" and
its exit status to test for the directory existence. "ls" should only be run once (!)
in the course of the whole script (Hint: Use temporary files)

4. (OPTIONAL) Write a for loop to get all (unique) PDB ids (column 13) from file
P12931.csv and retrieve the corresponding PDB file using this URL scheme:
"http://www.rcsb.org/pdb/files/ID.pdb"
eg. “wget http://www.rcsb.org/pdb/files/1Y57.pdb"

Exercises/Solutions for the ”Intermediate Linux Course: Commandline and Basic Scripting” 1

Solutions to the Exercises
Commandline tools

I. TAR & GZIP
1. Use gzip to compress the file P12931.txt
gzip P12931.txt

2. Decompress the resulting file P12931.txt.gz (revert previous command)
gunzip P12931.txt.gz # or gzip –d P12931.txt.gz

3. Use tar to create an archive containing all fasta files in the current directory into an

archive called “fastafiles.tar”
tar –c -f fastafiles.tar *.fasta

4. Use gzip to compress the archive “fastafiles.tar”.
gzip fastafiles.tar

5. How can you achieve the two previous steps “using tar to create archive” and “gzip

the archive” in one command?
tar –c –z -f fastafiles.tar.gz *.fasta # note the -z

6. Test (list the contents of) the compressed archive “fastafiles.tar.gz”
tar –tf fastafiles.tar.gz

7. Download the compressed PDB file for entry 1Y57 from rcsb.org

(eg. “wget http://www.rcsb.org/pdb/files/1Y57.pdb.gz") and decompress it.
wget "http://www.rcsb.org/pdb/files/1Y57.pdb.gz"
gunzip 1Y57.pdb.gz

II. GREP
1. Which of the DNA files ENST.* contains ‘TATATCTAA’ as part of the sequence?
grep TATATCTAA ENST.*
ENST00000380152.fasta:ACGGAAGAATGTGAGAAAAATAAGCAGGACACAATTA
CAACTAAAAAATATATCTAA
ENST00000544455.fasta:ACGGAAGAATGTGAGAAAAATAAGCAGGACACAATTA
CAACTAAAAAATATATCTAA

2. List only the names of the DNA files ENST.* that contain ‘CAACAAA’ as part of the

sequence.
grep –l CAACAAA ENST.*
ENST00000380152.fasta
ENST00000544455.fasta

3. Considering the previous example, would you consider grep a suitable tool to perform

motif searches? Why not? Try to find the pattern ‘CAACAAA’ by manual inspection of
the first two lines of each sequence.
Answer: When using grep as a motif searching tool, you need to keep in mind that
grep (like sed and awk) is line-oriented, meaning that by default it only searches for a

2 Exercises/Solutions for the ”Intermediate Linux Course: Command-line and Basic Scripting”

given motif in a single line. In the given example, upon manual inspection you will
find the given motif also in the file ENST00000530893.fasta, which grep missed. You
would need to think about how to do multi-line searches (eg. Removing line-breaks
etc.)

4. Count the number of ATOMs (lines starting with ‘ATOM’) in the file 1Y57.pdb.
5. Does this number agree with the annotated number of atoms (Search the REMARKs

for ‘protein atoms’)
grep –c “ATOM” 1Y57.pdb
3632
grep –i “protein atoms” 1Y57.pdb
REMARK 3 PROTEIN ATOMS : 3600

This means there are 3600 atoms annotated in this PDB file, however we counted
3632. This is because grep also counted any occurrence of “ATOM” within
REMARKS. We can avoid this by either filtering out the remarks:

grep –v “REMARK” 1Y57.pdb | grep –c “ATOM”
3600

…or by telling grep to only count those lines that start with “ATOM”:
grep “^ATOM” 1Y57.pdb
3600

III. SED
1. Use sed to print only those lines that contain “version” in the files P12931.txt and

P04062.txt
sed –n ‘/version/p’ P12931.txt P04062.txt

2. Use sed to change the text ‘sequence version 3’ to ‘sequence version 4’ in the files
P12931.txt and P04062.txt (without actually changing the files, just printing)
sed ‘s/sequence version 3/sequence version 4/’
P12931.txt P04062.txt

3. Use sed to update the text ‘entry version 3’ to ‘entry version 4’ in the files P12931.txt
and P05480.txt (this time, make the changes directly in the files)
sed –i.bak ‘s/sequence version 3/sequence version 4/’
P12931.txt P04062.txt

4. Replace all occurrences of ‘r’ by ‘l’ and ‘l’ by ‘r’ (at the same time) in the file
PROTEINS.txt (so that ‘structural’ becomes ‘stluctular’)
sed ‘y/rRlL/lLrR/’ PROTEINS.txt

IV. AWK
1. Use awk to print only those lines that contain “version” in the files P12931.txt and

P05480.txt and think about how this procedure is different to sed.
awk ‘/version/ {print}’ P12931.txt P05480.txt

This is very similar to sed, you also have to use the slashes ‘/’ to define the search
pattern. However the sed notation is slight a little more concise…

2. For all FASTA files print only the second item of the header (split on “|”) eg. for
“>sp|P12931|SRC_HUMAN Proto-oncogene”, print only “P12931”

Exercises/Solutions for the Bio-IT Course “Introduction to the Linux Commandline” 3

awk –F"|" ‘/>/ {print $2}’ *.fasta

3. The file ‘P12931.csv contains phosphorylation sites in the protein P12931. (If the file
‘P12931.csv’ does not exist, use ‘wget’ to download it from
“http://phospho.elm.eu.org/byAccession/P12931.csv”).

a. Column three of this file lists the amino acid position of the phosphorylation
site. You are only interested in position 17 of the protein. Try to use ‘grep’ to
filter out all these lines containing ‘17’.

grep 17 P12931.csv

b. Now use awk to show all lines containing ‘17’.
awk ‘/17/ {print}’ P12931.csv

c. Next try show only those lines where column three equals 17 (Hint: The file is

semicolon-separated…).
awk –F";" ‘$3==17 {print}’ P12931.csv

d. Finally print the PMIDs (column 6) of all lines that contain ‘17’ in column 3.

awk –F";" ‘$3==17 {print $6}’ P12931.csv

Quoting and Escaping
1. Familiarize yourself with quoting and escaping.

a. Run the following commands to see the difference between single and double
quotes when expanding variables:

echo "$HOSTNAME"
echo '$HOSTNAME'

b. Next, use ssh to login to a different machine to run the same command there,

again using both quoting methods:

ssh pc-atcteach01 'echo $HOSTNAME'

ssh pc-atcteach01 "echo $HOSTNAME"

Closely inspect the results; is that what you were expecting? Discuss this with your
neighbour.

4 Exercises/Solutions for the ”Intermediate Linux Course: Command-line and Basic Scripting”

Basic scripting
1. gzip can use nine different levels of compression. Read ‘gzip –help’ or ‘man gzip’ to

find out how to compress a file while keeping the original file unchanged and how to
use these different compression levels. Then write a for-loop to iterate over all
possible levels, compressing the file 1Y57.pdb and compare the sizes of the resulting
nine compressed files.

--- Configuration ---
GZIP=gzip
DATAFILE=$1

--- Check prerequisites ---
first check for $1
if [-z $1]
then
 echo ?No datafile given? 1>&2 # print on STDERR
 echo ?USAGE: $0 datafile?
 exit 1
fi

then check if the file exists
if [! -f $DATAFILE]
then
 echo ?Datafile $DATAFILE does not exist!? 1>&2
 exit 1
fi

--- Now processing---
for level in 1 2 3 4 5 6 7 8 9
do
 echo "compressing $DATAFILE at level $level"
 $GZIP -c -$level $DATAFILE > $DATAFILE.$level.gz
done

2. Write a script that combines the two files “P00523.fasta” and “P12931.fasta” into one

file called “twofiles.fasta” and run /g/software/bin/clustalw2 on these files.
(OPTIONAL) Finally, view the resulting alignment “twofiles.aln” using
/g/software/bin/clustalx.

Exercises/Solutions for the Bio-IT Course “Introduction to the Linux Commandline” 5

3.
a. Write a script that tests the existence of a directory and if it exists, prints out the

content list as a nice bulleted list (using “*” as bullets). If the directory does not
exist, then print out the error message of "ls <directory>".

--- Configuration ---
DIRECTORY=/tmp

--- Now processing---
check if the file exists
if [! -d $DIRECTORY]
then
DIRECTORY does not exist!
 ls $DIRECTORY
 exit 2
else
 for item in $(ls $DIRECTORY)
 do
 echo " * " $item
 done
fi

--- Exit ---
if [$? -eq 0]
then
 exit 0
else
 exit 2
fi

6 Exercises/Solutions for the ”Intermediate Linux Course: Command-line and Basic Scripting”

b. Modify the above script, so that the directory can be given as commandline
argument. Print out an error message, if no commandline argument is given or
if the given argument is not a directory.

--- Configuration ---
DIRECTORY=$1

--- Check prerequisites ---
first check for $1
if [-z $1]
then
 echo ?No DIRECTORY given? 1>&2 # print on STDERR
 echo ?USAGE: $0 DIRECTORY?
 exit 1
fi

then check if the file exists
if [! -d $DIRECTORY]
then
DIRECTORY does not exist!
 ls $DIRECTORY
 exit 2
fi

--- Now processing---
for item in $(ls $DIRECTORY)
do
 echo " * " $item
done

Exercises/Solutions for the Bio-IT Course “Introduction to the Linux Commandline” 7

c. Modify the script, so that the directory must be given as an option (e.g.
myscript.sh -d <directory>)

--- Check prerequisites ---
if ["$#" -eq 0]
then echo "No argument given. Please specify a directory"
 exit 1
fi

while ["$#" -gt 0]
do
 case $1 in
 -d) shift # next argument should be stored as variable
 DIRECTORY=$1
 ;;

 *) echo "Wrong parameter!"
 exit 1 # exit with error
 esac
 shift
done

then check if the file exists
if [! -d $DIRECTORY]
then
DIRECTORY does not exist!
 ls $DIRECTORY
 exit 2
fi

--- Now processing---
for item in $(ls $DIRECTORY)
do
 echo " * " $item
done

--- Exit ---
if [$? -eq 0]
then
 exit 0
else
 exit 3
fi

8 Exercises/Solutions for the ”Intermediate Linux Course: Command-line and Basic Scripting”

d. If you used file testing expressions, then modify the script to only use "ls" and
its exit status to test for the directory existence. "ls" should only be run once (!)
in the course of the whole script (Hint: Use temporary files)

--- Check prerequisites ---
if ["$#" -eq 0]
then echo "No argument given. Please specify a directory"
 exit 1
fi

while ["$#" -gt 0]
do
 case $1 in
 -d) shift # next argument should be stored
 DIRECTORY=$1
 ;;

 *) echo "Wrong parameter!"
 exit 1 # exit with error
 esac
 shift
done

check if the file exists
TMPFILE=`mktemp -t tmp`
ERRORFILE=`mktemp -t tmp`
ls $DIRECTORY > $TMPFILE 2>$ERRORFILE
if [$? -eq 0]
 then # DIRECTORY does exist!
 for item in `cat $TMPFILE`
 do
 echo " * " $item
 done
else # DIRECTORY does NOT exist!
 cat $ERRORFILE
fi

rm -f $TMPFILE
rm -f $ERRORFILE

Exercises/Solutions for the Bio-IT Course “Introduction to the Linux Commandline” 9

4. (OPTIONAL) Write a for loop to get all (unique) PDB ids (column 13) from file
P12931.csv and retrieve the corresponding PDB files using this URL scheme:
"http://www.rcsb.org/pdb/files/ID.pdb"
eg. “wget http://www.rcsb.org/pdb/files/1Y57.pdb"

This will print the 13th column (PDB) from the given file
Use sort –u to avoid retrieving the same file again
for i in $(awk -F';' '{print $13}' P12931.csv | sort -u);
do
 if [$i = '-']
 then echo "not using " $i
 elif [$i = 'PDB']
 then echo "not using " $i
 else
 wget "http://www.rcsb.org/pdb/files/$i.pdb" ;
 fi;
done

