image-feature-enhancement.md 1.35 KB
Newer Older
Christian Tischer's avatar
Christian Tischer committed
1 2 3
# Image feature enhancement

<img src='https://g.gravizo.com/svg?
4
digraph G {
Christian Tischer's avatar
Christian Tischer committed
5 6
    shift [fontcolor=white,color=white];
    image -> filter -> "enhanced image";
7 8
    node [shape=box, color=grey, fontcolor=grey];
    "enhanced image" -> "feature" [label=" aka", style=dashed, color=grey, fontcolor=grey, fontsize=10];
9 10
    node [shape=box, color=grey, fontcolor=grey, width=0, height=0 ,margin=0];
    filter -> "feature enhancement" [label=" aka", style=dashed, color=grey, fontcolor=grey, fontsize=10];   
Christian Tischer's avatar
Christian Tischer committed
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
}
'/>



## Difference of Gaussian (DoG) for spot enhancement

<img src='https://g.gravizo.com/svg?
 digraph G {
	shift [fontcolor=white,color=white];
	image -> "small blur";
	image -> "large blur";
	"small blur" -> "remove noise";
	"large blur" -> "estimate local background";
	"small blur" -> "DoG = small blur - large blur";
	"large blur" -> "DoG = small blur - large blur";
}
'/>

### Activity: Enhance spots in noisy image with uneven background

- Open image: xy_8bit__two_spots_noisy_uneven_background.tif
- Appreciate that you cannot simply threshold them
- Copy the image and blur with a Gaussian of small radius -> gs
- Copy the image and blur with a Gaussian of bigger radius -> gb
- Create `DoG = gs - gb`
- Appreciate that you can simply threshold the DoG image
 
### Formative Assessment

TODO

### Learn more

- https://en.wikipedia.org/wiki/Difference_of_Gaussians