Documentation for

diffTF: Genome-wide quantification of

differential transcription factor activity

Ivan Berest', Christian Arnold', Armando Reyes-Palomares' & Judith B. Zaugg'
! EMBL-European Molecular Biology Laboratory, Heidelberg, Germany.

Correspondence should be addressed to J.B.Z. (judith.zaugg@embl.de)

m.mm

ATAC-Seq in group 1 (e.g. unmutated) binding sites

]
Transcription
i J J a 1 a u . factor (TF)

‘ Nucleosome

Coverage

ATAC-Seq in group 2 (e.g. mutated)

%
%u .L..I.JL._M
S 1 i

Aggregate signal per TF across all its binding sites

== healthy controls

e S .
> K by ', === patients
Zz (] [] \‘
- P e’ N
Coverage of putative TF sites
Calculate differential TF activity TF a':ﬁ"it\‘oe“e“ size
_ . -
U —
§ Bl e .
[=)
iE g """""""""""" >
=
B0 &
i
T T —>
= 0 +
TF activity effect size *less active if TF is a repressor

Last update: 09/25/17

This document provides documentation and additional information for the
diffTF tool along with the ATAC-Seq pipeline that we developed independently and

in addition.

If you have questions or comments, feel free to contact us. We will be happy to
answer any questions related to this project as well as questions related to the
software implementation. For method-related questions, contact Judith B. Zaugg
(judith.zaugg@embl.de) or Ivan Berest (berest@embl.de). For technical questions,

contact Christian Arnold (christian.arnold@embl.de).

If you use this software, please cite the following reference:

Ivan Berest, Christian Arnold, Armando Reyes-Palomares, and Judith B. Zaugg.
diffTF : Genome-wide quantification of differential transcription factor activity. 2017.

in preparation.

Table of Contents

1. Introduction and AVailability........ccccccueeriieiiiiiiiiiieeieeeeee e e et et a e e eearaeees 4
@ 11} (el Q] 7: | 5
3. General Pipeline Details........cceciieriieriiriiieiieeieerieeieeste et et e st e st e e steestesbeessteebeesssessseaessseaennn 6
3. L. PrOIEQUISIEES. ceitieeieiiiiieteeeteeeeeiette ettt e eseeearerteeeeesessnsnnraaaeeesssesssnssnraaaeessesssssnsastaeesesenssnssnssnnnnnn 6

3. 1.1, SNAKEMAKE.eiiiriiiiieieetete ettt sttt st ettt e st e e s bt e eneeens 6
3.1.2. Wrapper script for SNakemake...........ccceveeciirierieienieeeecee ettt e 7
3.1.3. Other software needed by all Pipelines.........ccceecuerviirieriiiniiiiieeieceee e 7
3.1.4. Other software needed specifically for the diffTF pipeline...........ccccoecveviereeverciineeeennen. 9
3.1.5. Other software needed specifically for the ATAC-Seq pipeline........cccccccevveeerirerncnnnenns 10

3.2. Preparing @ New analySiS.......ccecueerierierriienieeieeete ettt ettt ettt ettt ettt saa s 12
3.3. General files and PArameLerS..........cccveeruierierreeeiieertteeieesteesteereeste e st essesbeesssessseesseesseesseens 14
3.3.1. Cluster configuration file for the analysis (ClUSter.jSON).......ccccevereiereerieriienieereeeienne 14
3.3.2. Parameters for calling Snakemake (Params.sh)...........cccccceeeeeevieeeeenceenseensieeeesieessnnns 16
3.3.3. Script to start the analysis and the Snakemake wrapper (runSnakefile.sh)..................... 21
3.3.4. INPUL (MELA)AALA. .. .erveerrieereeiieeiieereeeteesteesteesteesteeseessaeeseesssessseesssesseessseesssseeesssseesnnns 21

3.4, TIMPOTTANE INOTES. .. eeiiiiitieeeeeieerittte e et e e e eerirtteeeeeesessaarareeeeeesesssssnnraaaaeeessasssssssssssssassaaeeeaaanes 22
3.4. 1. WTADPET SCTIPL.eeteeeeuutteeeeeiiteeeeniitteeeestteeeeesrteeeesureeeesssreeesssseeeessssseeesssssseaessssssssssnsnsnns 22
3.4.2. Errors during the pipeline............cooiiiiiiiiiiiniiiteetee ettt 22
3.4.3. POITOITNANCE.cueeiieieeieteeet ettt ettt b st sat e sane e sabeesaeees 23

4. diffTF Pipeline: Specific Files and Parameters............cccueevueereeriieeneeeieeeniesiieeesreeessseeesssseeesssneens 24
4.1. General configuration file for the analysis (cOnfig.jSon).........cccceevveeriiecieinieeniieenieeiee e 24
4.2. Input metadata (SAMPIETADIC.CSV).....c..uueeeueeeeiieeeiieeeieeeetee ettt ere e ee e ree e vee s aeessaeaaees 28

5. ATAC-Seq Pipeline: Specific Files and Parameters............ccccceereeerieerieniieeneenieesreeessneeessnveeennns 30
5.1. General configuration file for the analysis (config.jSon).......ccccoeceeververiereniieniereeieeeieeee 30
5.2. Input metadata (SAMPLETADIC.CSV).........coeveecriieiieiiierieeiieete et ete et te e e steesreesaeessaesasaeens 37

1. Introduction and Availability

We here describe in detail how to run our diffTF pipeline for transcription factor binding activity
quantification for chromatin accessibility data as well as the independent ATAC-Seq pipeline for
proper preprocessing of ATAC-Seq data, both of which are available in the following Github
repository: https://git.embl.de/carnold/TFActivity.

For a biological motivation, please see the corresponding publication.

Lastly, feel free to contact us, see page 2 for details!

2. Quick Start

The following quick start briefly summarizes the necessary steps to use our pipelines.

1. Install Snakemake (via conda is recommended), see https://snakemake.readthedocs.io, and

other software needed by our pipelines (see section 3.1)

2. Download the Git repository:

$ git clone ..
3. To prepare a new analysis, follow the instructions in section 3.2

4. Adjust the analysis-related files accordingly, see sections 3.3 and either 4 or 5.

https://snakemake.readthedocs.io/en/stable/getting_started/installation.html

3. General Pipeline Details

3.1. Prerequisites

First, we have to install a few things. A few command line calls have to be executed hereafter, and

they are denoted in the following syntax:

$ sh runSnakefile.sh

3.1.1. Snakemake

Snakemake is required for running our pipelines. Please ensure that you have at least version 4.0

installed, older versions are not suited.

Principally, there are multiple ways to install Snakemake, two of which we now describe in more

detail.
1. Installing Snakemake via miniconda

We recommend installing and maintaining Snakemake via miniconda. You should also consider this
approach if you want to use the conda-related features in Snakemake for software encapsulation,
which we highly recommend. See also
https://snakemake.readthedocs.io/en/stable/getting_started/installation.html for the official

documentation of how to install Snakemake.

1. Download the miniconda installer

$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-

x86_64.sh
2. Run the installer

$ bash Miniconda3-latest-Linux-x86_64.sh

If the installer asks whether or not to append something to your .bashrc (a shell script that Bash

runs whenever it is started interactively), say yes. If your system does not use .bashrc but instead
a different file (such as .profile), copy the line that the installer added at the end of the .bashrc file

to the corresponding file on your system.

3. Execute the following lines to add a few channels to your conda:

$ conda config --add channels conda-forge
$ conda config --add channels defaults

$ conda config --add channels r

$ conda config --add channels bioconda

Now we are ready to install Snakemake. Installing and updating Snakemake and other packages is

now trivial:

$ conda install snakemake

In addition, install a few more packages so that “dot” can be used for Snakemake (see the

Snakemake help for details)

$ conda install cairo pango graphviz

In the future, to update snakemake and other packages, simply type
$ conda update snakemake

or

$ conda update -all

2. Installing Snakemake via direct download

Alternatively, download Snakemake directly here:
https://bitbucket.org/snakemake/snakemake/downloads/. However, any conda-related features in
Snakemake will not be available if conda is not already installed on your system. In addition,

updating Snakemake becomes more cumbersome.

3.1.2. Wrapper script for Shakemake

We also need a wrapper script (runSnakemakeWrapper.sh) for Snakemake that we developed for
convenience reasons. Download it from the Github repository and store it in a directory of your

choice.

3.1.3. Other software needed by all pipelines

Other tools are needed to run our pipelines, as outlined below:

7

1. R and various packages

A working R installation is needed and a number of packages from either CRAN or
Bioconductor have to be installed. The combination of packages differs among the various
pipelines and are outlined below in the pipeline-specific sections, but the following
packages are shared among the various pipelines and are required: "checkmate",

"futile.logger", "tidyverse", "reshape2", "tools", "grDevices", "gridExtra", "scales", “rlist”.

Type the following in R to install them:

$ install.packages (c("checkmate", "futile.logger", "tidyverse",
"reshape2", "gridExtra", "scales", "ggplot2", "jsonlite",

"RcolorBrewer", "rlist"))
2. External tools

Each pipeline needs a number of external tools to work. Depending on whether or not you
run the pipeline on your personal computer or a cluster system, setting up these tools might
be the most time-consuming part. On a well-maintained cluster system, most if not all of
them should already be available since they are commonly used. Independent of the specific
pipeline, the following two tools are needed by all and have to be installed and available on

the system you run Snakemake from:
1. samtools (samtools.sourceforge.net, the executable has to be called samtools)

2. bedtools (http://bedtools.readthedocs.io, the executable has to be called bedtools)

Similarly to how you install Snakemake, you have two ways of installing these tools:

1. Conda-independent installation: Install the tools independent of conda. This reflects the
typical way to install new tools on your system. If the tools are already available on your
system (type “which samtools” and “which bedtools” to check), then this is the

easiest and quickest solution.

2. Conda-dependent installation: If you decide for the conda approach (see also above),
you can conveniently install and manage all of these tools centrally with the following

command:

$ conda install samtools bedtools

Note that you can list as many tools as you want, they just have to be space-separated.
After successful execution of this command (watch the output if all worked), all of the

tools should now be available on your system and you are ready to use our pipeline.

For Snakemake, it is also possible to define isolated software environments per rule.
Upon execution of a workflow, the conda package manager is used to obtain and deploy
the defined software packages in the specified versions. We highly recommend using
this feature for reproducibility, although setting this up properly may take a while. If you

want to do so, follow these steps:

1. Generate one or multiple conda environments in which only single tools or a
combinations of tools are available and installed. In the following, we demonstrate

this by just installing single tools per environment:
$ conda create --name samtools python=3 samtools

2. Activate the environment export the installed software packages to a yaml file.
Change {any_folder} to a folder of your choice in which you store all the conda

environment yaml files:
$ source activate samtools
$ conda env export > {any folder}/envs/samtools.yaml

3. Deactivate the environment and reference this yaml file in the central Snakefile for
each rule using the tool or combination of tools in the conda directive section of the

rule:
$ source deactivate
* Adjust the path in the conda: part of each rule*

4. Repeat 1 to 3 for the remaining tools if you chose to create one environment per tool
(i.e., here, repeat for bedtools)

3.1.4. Other software needed specifically for the diffTF pipeline

1. R and various packages

A working R installation and the following packages have to be installed in addition to the

packages listed above in section 2.1.3: "DESeq2", "vsn", "modeest", "limma", "csaw",

b

mon

"lst", "dplyr", "ggrepel”, “geneplotter”, “locfdr”, “boot”. Type the following in R to install

them:

$ install.packages (c("ggrepel", "dplyr", "lsr", "modeest",
"locfdr", "boot"))

source ("https://bioconductor.org/biocLite.R")

biocLite(c("limma", "vsn", "csaw", "DESeqg2", "DiffBind",
"geneplotter"))

2. External tools

No further external tools except samtools and bedtools (see section 2.1.3) are needed.

3.1.5. Other software needed specifically for the ATAC-Seq pipeline

3. R and various packages

A working R installation and the following packages have to be installed in addition to the
packages listed above in section 2.1.3: "Rsamtools", "GenomicRanges". Type the

following in R to install them:
$ source ("https://bioconductor.org/biocLite.R")

biocLite (c ("Rsamtools", "GenomicRanges"))
4. External tools
In addition to the tools listed in section 2.1.3, the following tools have to be installed:
1. Java 8 (needed for GATK and Picard)

2. GATK (https://software.broadinstitute.org/gatk/, executed via java, a jar archive is

needed which you have to download separately due to license restrictions)

3. Picard (https://broadinstitute.github.io/picard/, executed via java, a jar archive is needed

which you have to download separately due to licensing issues)

4. FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, the executable has
to be called fastqc)

10

9.

Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic, the executable has to

be called trimmomatic)

Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml, the executable has to be

called bowtie2)

deepTools (https://github.com/fidelram/deepTools, the executable has to be called
deeptools, although the individual tool names will be needed, such as plotPCA or

correctGCBias)

MACS 2 (https://github.com/taoliu/MACS, the executable has to be called macs2, see

the note below for the Python version)

IDR (https://github.com/nboley/idr, the executable has to be called idr)

10. MultiQC (http://multiqc.info/, the executable has to be called multiqc)

As outlined in section 2.1.3, there are two ways of how to install these tools. We here

describe only the one via conda, which is easier and faster. Installing these tools is

principally trivial, but there are two minor catches:

1.

All tools are compatible with Python3, except MACS2, which only runs under Python
2.7. Assuming that your default conda environment is Python3, you can simply install

all tools at once by simply executing the following lines of code in the terminal

S conda install java-jdk fastqgc trimmomatic bowtielZ deeptools

idr multiqgc picard gatk

MACS?2, however, has to be installed separately into a Python 2 environment because
each Python environment works only for a particular Python version (that is, 2 or 3), and
2 and 3 are not compatible with one another. The easiest way to do so is via

$ conda create --name macs2 python=2.7 macs2

To use MACS?2 on the command line, simply activate the environment first via

$ source activate macs?2

, then run MACS2, and in the end deactivate it again to return to the default environment
$ macs2 .. (run command)

$ source deactivate macs?2

11

To run MACS2 under Snakemake, things become easier: Simply use the conda-directive
in each rule that uses MACS?2, reference the prepared environment and Snakemake
handles the rest!

2. For GATK, due to license restrictions, a few extra steps are needed (see the instructions

on https://bioconda.github.io/recipes/gatk/README.html for details)

3.2. Preparing a new analysis

To prepare a new analysis (hereafter named TEST_ANALYSIS), follow the following steps:
1. Create a new folder TEST_ANALYSIS in a location of your choice.
2. Create two folders INPUT and OUTPUT within TEST _ANALYSIS.

3. In the INPUT folder, copy the following files from a previous analysis or from the

TEMPLATES folder in the Github repository:
config.json
. sampleTable.csv

1
2
3. cluster.json
4. params.sh
5

runSnakefile.sh

In addition, for data organization and management reasons, we also advise to put the actual

input data for the analysis in a data subfolder.

Except for params.sh (the name of which can be adjusted in the runSnakefile.sh file), the
exact names of these five files do not matter as long as they are correctly specified in the
corresponding files in which they are defined. Feel free to modify them according to your

needs.

The reason for such a, at first sight, complicated setup is that it greatly facilitates managing
and altering parameters and clearly separating analysis-associated and Snakemake-
associated parameters. You will quickly see that it becomes very easy to work with this
setup, as is it identical across analyses and very flexible, thereby also increasing

reproducibility and decreasing development time.

12

4. Modify the files cluster.json, config.json, params.sh and sampleTable.csv according to your

needs. See the next section for parameter details.

5. For the first run, it is highly recommended to make sure that you run Snakemake in dry
mode to see what it would actually do and execute. For this, set the dryRun parameter in

params.sh to TRUE and start the Snakemake dry run by typing

$ sh runSnakefile.sh

If you rerun only parts of an analysis, make sure that Snakemake does not recompute parts

that are already present, this sometimes happens for various reasons.

6. If you do not receive any warnings or error messages and Snakemake lists the jobs that it

would compute, change dryRun back to FALSE and start the analysis again via

$ sh runSnakefile.sh

Note that this command eventually also submits jobs automatically (if run in a cluster
environment). There is no need to manually call bsub or any architecture-specific
commands. If the expected running time of the analysis is high, you have to think about how

to best run Snakemake. These are the main options:

1. Execute Snakemake simply on the terminal. This is the easiest approach, but with one
important disadvantage: If you set your PC in sleep mode or shutdown, the analysis is

also interruped.

2. Use a method to allow Snakemake to run in the background independent of the state of
your PC. The easiest approach might be screen. It is easy to learn and preinstalled on
most systems. Alternatively, put the Snakemake job in the background, but then you
won'’t see the output and the current state of the analysis (see
https://stackoverflow.com/questions/625409/how-do-i-put-an-already-running-process-
under-nohup) unless you decided to redirect the Snakemake output to a file via “>

Snakemake output” or something alike.

13

3.3. General files and parameters

We now describe the various files that need to be present to start any of the analyses pipeline we
describe. As outlined above, we advise to copy and modify from the TEMPLATE folder in the
Github repository.

3.3.1. Cluster configuration file for the analysis (cluster.json)

This file in JSON format is only needed if you run the analysis in a cluster environment. If you run
an analysis locally, you can ignore this file.

Currently, our wrapper script supports both LSF/bsub and SLURM (see the params.sh section for
details). We cannot explain all technical details here, please check the Snakemake documentation
and our examples for orientation. The provided cluster.json templates for each pipeline work
flawlessly for us and should also work for you. If your cluster system is neither LSF nor SLURM,
the cluster config has to be modified, which should however be quick and easy because the same
principle applies for other systems as well and Snakemake makes it already easy to abstract from

the specific architecture.

If LSF/bsub is used, the cluster.json supports the following parameters in the __default__ section:

* queue (the queue name where jobs should be transmitted to. Default: medium_priority.

Adjust to the queue name of your choice.)

* name (an arbitrary name for each job. Wildcards are supported. The default name we use us
analysisName.{rule}.{wildcards}. Replace analysisName by any name of your choice)

* resources (additional memory-related resources specific for the system. Our default is
\"selectfmem>10000] rusage[mem=10000] span[hosts=1]\". Note the “\ which are
important!

* memory (requested default memory. We suggest a default of 10000 — that is, 10 GB)

» output (path to the output file. Wildcards are supported. A reasonable default name here is,

for example, {rule}.{wildcards}.out)

* error (path to the error file. Wildcards are supported. A reasonable default name here is, for

example, {rule}.{wildcards}.err)

14

The wrapper script transforms these values into the following syntax that is passed on to
Snakemake: bsub -q {cluster.queue} -J {cluster.name} -n {threads} -R \"{cluster.resources}\" -M

{cluster.memory} -o \"{cluster.output}\" -e \"{cluster.error }\"

If SLURM is used, the cluster.json has to contain the following parameters in the __default__
section:
* queueSLURM (the queue name where jobs should be transmitted to. Default: 1day. Adjust
to the queue name of your choice.)
» group (the name of the group you are in)
* name (an arbitrary name for each job. Wildcards are supported. The default name we use us
analysisName.{rule}.{wildcards}. Replace analysisName by any name of your choice)
* memory (requested default memory. We suggest a default of at least 20000)
* maxTime: The maximum allowed running time. Depending on the complexity of the
analyses, individual steps may need multiple hours to finish.
* output (path to the output file. Wildcards are supported. A reasonable default name here is,
for example, {rule}.{wildcards}.out)
* nNodes: Number of nodes that are allocated for this job. Corresponds to the -N option of
sbatch (Default: 1).
* nCores: Corresponds to the -n option of sbatch (Default: 16)
* error (path to the error file. Wildcards are supported. A reasonable default name here is, for
example, {rule}.{wildcards}.err)
The wrapper script transforms these values into the following syntax that is passed on to
Snakemake: sbatch -p {cluster.queueSLURM} -J {cluster.name} -A {cluster.group} -N
{cluster.nNodes} -n {cluster.nCores} --mem {cluster.memory} -o \"{cluster.output}\"

-e \"{cluster.error }\" --mail-type NONE \""

Feel free to extend this to suit your needs by adding parameters to the cluster config and editing the

wrapper script. See also https://slurm.schedmd.com/sbatch.html for details.

If you run the analysis on either LSF or SLURM, the changes to make are minimal:
1. Adjust the first part of the output and error files (everything before the

Logs_and_Benchmarks folder) and replace the absolute path according with the value of the

15

outdir parameter as specified in the config.json file. The Logs_and_Benchmarks part is
automatically created by the wrapper script, do not delete this.

2. Memory requirements for the various rules have been set generously so that it also works for
larger amounts of data. There is principally no need to change these values unless you want
to decrease the memory footprint further. The values in the __default__ section apply to all
rules unless overwritten explicitly below.

3. Optional: Adjust the name of the analysis so that it becomes easier for you to track the

analysis status on the cluster if multiple analyses are run simultaneously.

3.3.2. Parameters for calling Snakemake (params.sh)

This file defines Snakemake-specific parameters only, all of which are explained in the following.
Parameters in bold are the most important ones and the ones that usually have to be modified, while
non-bold indicates parameters that only have to be touched in particular cases. Parameters in

are either obselete or do not have to be touched unless there is a very specific reason.

configFile

String. Default “config.json”. Corresponds to --configfile in Snakemake.

Path to the config file. Since the config file is usually located in the same directory, this can be left

untouched unless it has been renamed or moved.

snakefile

String. Default “Snakefile”. Path to the Snakefile. Corresponds to --snakefile in Snakemake.

The Snakefile to run. Adjust this accordingly.

nCores

Integer > 0. Default 5. Corresponds to --cores in Snakemake.

Maximum number of CPUs per rule (if the rule supports parallel execution). Make to set this to
reasonable values. If Snakemake is executed in a cluster environment, this value is currently force

set to 16. Only relevant for rules with threads directive values of > 1.

16

dryRun
Logical. TRUE or FALSE. Default TRUE. Corresponds to --dryrun in Snakemake.

Run in dry mode without actually computing something? See the Snakemake help for --dryrun for

more details.

submitToCluster
Logical. TRUE or FALSE. Default FALSE. Corresponds to --cluster in Snakemake.

Execute Snakemake rules with the given submit command e.g. bsub or SLURM? Set to TRUE to
run the analysis on the cluster. If set to TRUE, a cluster config file (cluster.json) has to be specified.
See the Snakemake help for --cluster and the corresponding section for cluster.json above for more

details.

clusterConfig

String. Path to the cluster config. Default “cluster.json”. Only relevant if submitToCluster is set to

TRUE.

Path to the cluster config file (relative path suffices usually) that defines the wildcards used in
'cluster' for specific rules, instead of having them specified in the Snakefile. See the cluster config

section for more details.

useConda
Logical. TRUE or FALSE. Default FALSE. Corresponds to --use-conda in Snakemake.

Should Snakemake use conda and run each rule with a conda directive in its own isolated

environment? See the Snakemake help for --use-conda for more details.

condaDir
String. Path to any directory. Default

mn

(empty string). Corresponds to --conda-prefix in

Snakemake.

17

Specify a directory in which the 'conda’ and 'conda-archive' directories are created. These are used
to store conda environments and their archives, respectively. If not supplied, the value is set to the
".snakemake' directory relative to the invocation directory. See the Snakemake help for --conda-

prefix for more details.

| forceRerunAll |
Logical. TRUE or FALSE. Default FALSE. Corresponds to --forceall in Snakemake.

Forces to rerun the whole pipeline even if the output files are already present. See the Snakemake

help for --forceall for more details.

ignoreTemp
Logical. TRUE or FALSE. Default TRUE. Corresponds to --notemp in Snakemake.

If set to TRUE, temporary files (as declared by the temp directive) are not deleted. This might be a
reasonably good idea in the beginning to check if the pipeline runs through. Also, this is useful
when running only a part of the workflow since temp() may lead to deletion of files required by
other parts of the workflow. To save disk space, set to FALSE. Advanced option. See the

Snakemake help for --notemp for more details.

| touchOutputFiles |
Logical. TRUE or FALSE. Default FALSE.

Don’t run Snakemake, just update the time stamps for output files. This is sometimes useful when
you manually mess with the timestamps of the output files outside of Snakemake. Advanced

option.

| allowedRules |

String. Name of rule(s), separated by space. Default "" (empty string): option disabled. Corresponds

to --allowed-rules in Snakemake.

18

Which rules are allowed to run? If you want to restrict which rules are allowed to run, name the
rules as they appear in the Snakefile, separated by spaces. Advanced option. See the Snakemake

help for —allowed-rules for more details.

| runSpecificRule |

mnmn

String. Name of rule. Default "" (empty string): option disabled. Corresponds to --forcerun in

Snakemake.

Force the re-execution or creation of the given rules or files. Name the rule as it appears in the

Snakefile. Advanced option. See the Snakemake help for —forcerun for more details.

rerunlncomplete
Logical. TRUE or FALSE. Default TRUE. Corresponds to —rerun-incomplete in Snakemake.

Re-run all jobs the output of which is recognized as incomplete. See the Snakemake help for —

rerun-incomplete for more details.

| runAlsoDownstreamRules |

Logical. TRUE or FALSE. Default TRUE. Only relevant if runSpecificRule is set to a non-default

value.

If set to FALSE, ONLY the rule as specified in runSpecificRule will be run (internally, the --until
option is appended after --forcerun with the same rule); otherwise, all downstream rules are also

triggered. Advanced option. See the Snakemake help for --until for more details.

useSLURM
Logical. TRUE or FALSE. Default FALSE.

If set to TRUE, preconfigures Snakemake for SLURM systems using sbatch. If set to FALSE,

preconfigures Snakemake for LSF systems using bsub. See the Snakemake help for --cluster for

more details. If SLURM is used, make sure to adjust the cluster.json accordingly.

19

| maxJobsCluster |

Integer > 0 & < 500. Default 200. Only relevant if submitToCluster is set to TRUE. Corresponds to

--jobs in Snakemake.
The maximum number of simultaneous jobs that are allowed to run. Be careful with this option and
do not set it to higher values unless you know the 10 and general performance of the underlying

system is not noticeably influenced. See the Snakemake help for -- jobs for more details.

| maxRestartsPerJob |

Integer >= 0. Default 1. Corresponds to --restart-times in Snakemake.
The number of times a job that fails should be re-executed. Increase to higher values (we

recommend 2) for unstable cluster systems. See the Snakemake help for -- restart-times for more

details.

20

3.3.3. Script to start the analysis and the Snakemake wrapper

(runSnakefile.sh)

For this short script, only the absolute path to the wrapper script that has been downloaded before
has to be modified once. If params.sh has been renamed, the new name has to be adjusted in this

file also.

3.3.4. Input (meta)data

This file summarizes the data and corresponding metadata that are available and that should be used
for the analysis. The format is flexible and may contain additional information that is currently
ignored by the pipeline, so it should be used to capture all the available information in a single
place. Importantly, the file must be saved as tab-separated, the exact name does not matter as long
as it is correctly specified in the configuration file. The required columns differ among the

pipelines, check the details in the corresponding sections below.

21

3.4. Important Notes
3.4.1. Wrapper script

In addition to the options in the Snakemake params file, the following Snakemake-related options
are currently always invoked by the wrapper script: --timestamp, --keep-going, --reason, --latency-

wait 30, --stats.

Although the wrapper script supports a variety of Snakemake-related options, it has also limitations.
Options not mentioned in the params.sh file above are currently not supported by the wrapper
script. This includes, for example, the usage of particular advanced Snakemake options or cluster-

related options such as using DRMAA. Feel free to extend the wrapper script to suit your needs!

For integrity reasons, the wrapper script currently searches for empty output files before calling
Snakemake. The reason for this is that usually, empty files denote that something went wrong
beforehand. If you modified our Snakefile and you know that you have and need empty output files,

feel free to comment the part out of the wrapper script.

Since the --nolock parameter is enabled by default, do not attempt to run multiple Snakemake
analyses in the same folder! Unless you changed the —nolock option, this will not immediately

result in an error, but it will corrupt the metadata files that Snakemake produces.

3.4.2. Errors during the pipeline

Errors occur during the Snakemake run can principally be divided into:
* Temporary errors
* might occur due to temporary problems such as bad nodes, file system issues or latencies
* rerunning usually fixes the problem already

* The default Snakemake configuration is to rerun failing jobs automatically (twice at

most, see the parameter list in the wrapper script for details), which usually eliminates
temporary problems almost completely. Feel free to change this value accordingly.

* Permanent errors
* indicates a real error related to the specific command that is executed

* rerunning does not fix the problem as it is systematic

22

To troubleshoot errors, you have to first locate the exact error. Depending on how you run

Snakemake (i.e., in a cluster setting or not), check the following places:

in locale mode: the Snakemake output on the console

in cluster mode: the error OR output file of the corresponding rule that threw the error. In the
default setup, the error file is named identically to the rule and has a “.err” and “.out”,
respectively, in the end of the filename, along with wildcard assignments for easier
identification. Check the “Logs_and_Benchmarks” directory

After locating the error, fix it accordingly. For example, if you receive a memory-related error, try

to increase the available memory. In a cluster setting, for example, adjust the cluster file accordingly

by either increasing the default memory or (preferably) adding the rule that threw an error to the list

of exceptions and override the default values.

After fixing the error, simply rerun Snakemake via “sh runSnakefile.sh”.

3.4.3. Performance

Since running the pipeline might be computationally demanding, make sure you have
enough space left on your device. Preferably, use a cluster system and put the folder in a file

system with high IO performance.

if the number of jobs in parallel is high, system IO might increase substantially

running times and memory requirements somewhat scale with the number of permutations.
If you specify a high number of permutations (> 5 let’s say), adjust the time and memory

settings accordingly.

If you have to abort a current Snakemake run, press CTRL+C once (!) and then manually
kill all running jobs associated with this analysis. Snakemake does not kill jobs

automatically if you abort it unless you use it in the --cluster-sync or --drmaa mode.

23

4. diffTF Pipeline: Specific Files and Parameters

As outlined in section 2.2, five different files have to be present for any new analysis, three of
which share the same content across analyses and have already been described in section 2.3. We
now describe the remaining two files that contain content and parameters specific to the diffTF

pipeline.
4.1. General configuration file for the analysis (config.json)

Section “par_general”

outdir
String. Default “output”. Root output directory.

The root output directory where all output is stored.

regionExtension

Integer > 0. Default 100. Target region extension in base pairs.

This parameter specifies the number of base pairs each target region (from the peaks file) should be
extended in both 5’ and 3’ direction.

comparisonType
String. Default .

This parameter helps to organize complex analysis for which multiple different types of
comparisons should be done. Set it to a short but descriptive name that summarizes the type of

comparison you are making or the types of cells you compare. The value of this parameter appears
as prefix in most output files created by the pipeline. It may also be empty.

conditionComparison

String. Default “mutated,unmutated”. Two conditions to compare against.

This defines the two (!) conditions that should be compared in the TF activity pipeline. The names
must be comma-separated and present in the corresponding column in the metadata file. Only those
samples corresponding to one of the two specified conditions will be taken as input. If a sample has
another, third condition, it will therefore be ignored.

24

designContrast

String. Default "~ Treatment + Condition". Design formula.

The variable corresponding to the two conditions comes typically last (here: Condition).

designVariableTypes

String. Default "Treatment:factor, Condition:factor".

The data types of all elements listed in designContrast. Names must be separated by commas,

1738 2)

spaces are allowed and will be eliminated automatically. The data type must be specified with a “:”,

followed by either “numeric”, “integer”, “logical”, or “factor”. The variable corresponding to the
condition must (!) come last!

nPermutations
Integer >= 0. Default 0. The number of random sample permutations.

If set to a value > 0, in addition to the real and non-permuted data, the sample conditions as
specified in the sample table and in the parameter conditionComparison will be randomly permuted
nPermutations times while retaining the original frequencies of the two conditions. The full pipeline
is then run independently for each permutation also. In the final circular visualization, additional 5
and 95% thresholds are then drawn to mark the region of the plot that cannot be distinguished from
noise, therefore increasing accuracy of the results. Note that the running time of all R scripts will be
increased, currently only the “prepareData” R script uses multiple CPUs, the others will calculte the
necessary intermediate results sequentially for each permutation, thereby increasing running time
linearly with the number of permutations.

limit nTF to
Integer >= -1. Default -1. Run the analysis only for a subset of the Tfs for testing purposes.

If set to a value > 0, only the specified number of Tfs are analyzed. Use this parameter to test if the
pipeline works by setting it to a small value (say 10) initially. If all runs through, change it back to
-1.

dir_scripts
String. Default “”. The path to the directory where the R scripts for running the pipeline are stored.

25

RNASeqgIntegration

Logical. true or false. Default false. Should RNA-Seq data be integrated into the pipeline?

If set to true, RNA-Seq counts as specified in the parameter RNASeqCounts will be used to classify

)y €C SN 13

each TF into either “activator”, “repressor”, “unknown”, or “not-expressed” for the final circular

visualization and the summary table. For methodological details, see the Methods details of the
publication.

Section "samples”
summaryFile
String. Default ‘samples.tsv’. Path to the sample metadata spreadsheet.

Path to a tab-separated file that summarizes the input data. See the next section and the example file

for how this file should look like.

Section "peaks"
consensusPeaks

String. Default “ (empty). Path to the consensus peak file. If set to the empty string, the pipeline
will generate a consensus peaks out of the peak files from each individual sample

If no file is provided, the pipeline computes consensus peaks based on all individual peak files. For

this, you need to provide the following two things:

* a peak file for each sample in the metadata file in the column “peaks”, see the next section

for details.
* The format of the peak files, as specified in the parameter peakType (see below)
If a file is provided, it has to match exactly(!) the following specifications:

* tab-separated columns
* no column names in the first row
* five columns in total:

1. Chromosome

2. Start position

26

3. End position
4. Identifier

5. Line number (starting from 1)

peakType
String. Default ‘narrow‘. Format of the peaks. Only relevant if no consensus peak file has been

provided.

Only needed if no consensus peak set has been provided. Currently, all individual peak files must be
in the same format. Because we use DiffBind to create the consensus peaks, the following formats

are supported (taken from the DiffBind help for dba):

.K(

raw”: text file file; peak score is in fourth column

* “bed”: .bed file; peak score is in fifth column

.“

narrow”: default peak.format: narrowPeaks file

* “macs”: MACS .xls file

* “swembl”: SWEMBL .peaks file

* “bayes”: bayesPeak file

* “peakset”: peakset written out using pv.writepeakset

* “fp4”: FindPeaks v4

minOverlap

Integer >= 0 or Float between 0 and 1. Default 2. Minimum overlap for peak files for a peak to be
considered into the consensus peak set. Corresponds to the minOverlap argument in the dba
function of DiffBind. Only needed when consensusPeaks is not provided.

Only include peaks in at least this many peak sets in the main binding matrix. Only needed when
consensusPeaks is not provided. If minOverlap is between zero and one, peak will be included from
at least this proportion of peaksets. For more information, see the minOverlap argument in the dba
function of DiffBind.

Section "additionallnputFiles"

27

refGenome fasta

String. Default ‘hg19.fasta’. Path to the reference genome FASTA file.

The path to the reference genome file in FASTA format.

dir PWMScan

The directory where the TF-specific PWM results are stored, in BED format. Each TF has to have
one bed file, in the format { TF }.bed. For your conveiance, we already provide all files for the TF
that we used for your analyses, a total of 620 human and 423 mouse TF (see
PWMscan.human.tar.gz and PWMscan.mouse.tar.gz). However, you may also manually create these
files for additional TF of your choice. For this, see the HOCOMOCO manual).

RNASeqCounts
String. Default “”. Path to the file with RNA-Seq counts.

If the parameter RNASeqIntegration is set to true, a tab-separated file has to be specified with
normalized RNA-Seq counts. The first line must be used for labeling the samples, with column
names being identical to the sample names as specific in the sample summary table (parameter
summaryFile). The first column must be named ENSEMBL and it must contain ENSEMBL IDs
(e.g., ENSG00000028277) without dots. The IDs are then matched to the IDs as specified in the
HOCOMOCO_mapping file.

HOCOMOCO mapping

String. Default “HOCOMOCO/HOCOTFID2ENSEMBL.txt”. Path to the file with the
HOCOMOCO mapping.

If RNA-Seq integration shall be used, a translation table to associate Tfs and ENSEMBL genes is
needed. For convenience, we provide such a translation table for human and mouse. If you want to
use your own version, check the example translationt ables and construct one that has an identical
structure.

4.2. Input metadata (sampleTable.csv)
In addition to the information mentioned above (general notes about this file and requirements), the

structure of this file has to be as follows:
* It must contain at least contain the following columns (the exact names do matter):
* “samplelD”: The ID of the sample

28

* “bamReads”: path to the BAM file corresponding to the sample. Note that the BAM
files must be valid BAM files with chromosome names that have a “chr” as prefix. The

pipeline may crash if the “chr” part is missing.

* “conditionSummary”: particular condition the samples belongs to. Note that while more
than two groups can be defined (e.g., disease-mutated, disease-unmutated, wildtype)

across samples, only two specific groups can be compared for each analysis.

e All variable names from the design formula must also be present as a separate column with

reasonable input data

29

5. ATAC-Seq Pipeline: Specific Files and Parameters

As outlined in section 2.2, five different files have to be present for any new analysis, three of
which share the same content across analyses and have already been described in section 2.3. We
now describe the remaining two files that contain content and parameters specific to the ATAC-Seq

pipeline.
5.1. General configuration file for the analysis (config.json)

Section "par_general"

loutdir|
STRING. Output directory. Will be created if not yet present. Specify absolute path here.

Example: "/g/scb2/zaugg/carnold/Projects/AtacSeq/example/output?"

|pairedEnd|
BOOLEAN. true or false. Default true. Paired end data?

Single-end ATAC-Seq data is not yet supported with this pipeline and it requires rewriting parts of
it. If set to "false", the Snakemake pipeline will abort in the beginning.

Section "additionalInputFiles"

[trimmomatic_adapters|

STRING. Absolute path to the adapters file for Trimmomatic in .fa format.

|blacklistRegions|

STRING. Absolute path to a BED file that contains the genomic regions that should be filtered from
the peaks

30

The following three files are required for base quality score recalibration using GATK
"BaseRecalibrator". See the help pages of the tool "BaseRecalibrator" from GATK for more details.
We recommend downloading the GATK_bundle, which contains all necessary files.

|[knownSNPs|

STRING. Absolute path to a database of known polymorphic sites (SNPs). Supported formats from
GATK: BCF2, BEAGLE, BED, BEDTABLE, EXAMPLEBINARY, GELITEXT, RAWHAPMAP,
REFSEQ, SAMPILEUP, SAMREAD, TABLE, VCF, VCF3

|knownIndels|

STRING. Absolute path to a database of known polymorphic sites (Indels). See description above.

[refGenome_fastal

STRING. Absolute path to a fasta file with the reference genome. Importantly, note that this has to
correspond to the same genome assembly version as the alignment as well as the database of
polymorphic sites as specified above.

"refGenome_dict":
"/g/scb2/zaugg/zaugg shared/annotations/hg19/GATK_bundle/ucsc.hg19.onlyRefChr.dict",

"refGenome_2bit :

"/g/scb2/zaugg/zaugg_shared/annotations/hg19/GATK_bundle/ucsc.hg19.2bit",

"annotationGTF" :
"/g/scb2/zaugg/zaugg_shared/annotations/hg19/Gencode_v19/gencode.v19.annotation.gtf"

Section "executables"

|java_exec

31

STRING. (Path to the) java executable. Java version must be at least 1.8!

"GATK_jar"
"/g/scb2/zaugg/carnold/Projects/AtacSeq/src/Snakemake/tools/GenomeAnalysisTK.jar",

"PICARD_jar"
STRING. (Path to the) picardtools main jar file

Example: "/g/scb2/zaugg/zaugg_shared/Programs/Picardtools/picard.jar"

|STATS_script|
STRING. (Absolute path to the) STATS script path (R script)

Example: "/g/scb2/zaugg/carnold/Projects/AtacSeq/src/Snakemake/src/aut_stats.R"

|FL_distr_script|
STRING. (Absolute path to the) FL_distr script path (R script)

Example: "/g/scb2/zaugg/carnold/Projects/AtacSeq/src/Snakemake/src/Fragment_length.R"

Section "par_trimming"
[trimmomatic_ILLUMINACLIP|
STRING. ILLUMINACLIP value. See trimmomatic manual

Example: "1:30:4:5:true"

[trimmomatic_trailing|
INTEGER. TRAILING value. See trimmomatic manual

Example: 3

[trimmomatic_minlen|

INTEGER. MINLEN value. See trimmomatic manual

32

Example: 20

[trimmomatic_phredType|

STRING. Phred type. See trimmomatic manual. The "-" is added automatically by the Snakemake
pipeline.

Example: "phred33"

Section "par_align"

|bowtie2_sensitivity|
STRING. Sensitivity. Leave empty for the default sensitivity. See bowtie2 manual.

Example: "--very-sensitive"

|bowtie2_X]|
INTEGER. Value for parameter X. See bowtie2 manual.
Example: 2000

|[bowtie2_refGenome|

STRING. Value for parameter x. See bowtie2 manual.

Example: "/g/scb/zaugg/zaugg_shared/annotations/hg19/referenceGenome/Bowtie2/hg19"
|assembly Version|

STRING. Reference genome assembly version. Must match the one used by the alignment program.
Example: "hg19"

Section "par_postalign"

|minMAPQscore|

33

INTEGER. Minimum MAPQ score. Reads with a lower MAPQ quality will be removed during the
processing.

Example: 10

|ValidationStringencySortSam|

STRING. Value of the VALIDATION_STRINGENCY from SortSam (Picard tools). See the manual
for details.

Example: "LENIENT"

|ValidationStringencyMarkDuplicates|

STRING. Value of the VALIDATION_STRINGENCY from MarkDuplicates (Picard tools). See the
manual for details.

Example: "SILENT"

ICIGAR|

STRING. Used for filtering reads (default: filter INDELS). Relates to the one letter abbreviations
for CIGAR strings such as I for insertion and D for deletion.

Specify all the one letter abbreviations in the CIGAR string of a read here that should be filtered.

"ID" would keep a read only if the CIGAR string does not contain the letters "I" and "D" (e.g., only
M for example)

Example: "ID"

|adjustRSS_forward|

INTEGER. Adjustment of the read start positions on the forward strand. Should be a positive
number. See the Buenrostro paper for details.

Example: 4

|adjustRSS_reverse|

INTEGER. Adjustment of the read start positions on the reverse strand. Should be a negative
number. See the Buenrostro paper for details.

Example: -5

34

Section "par_scripts"

The STATS script does a TSS enrichment test to test whether or not ATAC-Seq reads are primarily
located within annotated TSS as opposed to outside of TSS regions.

|STATS_script_withinThr]|

INTEGER. The region size in bp that specifies what is considered within a TSS. A value of 4000
means the region from -2kb up to +2kb of annotated TSS.

Example: 4000

|STATS_script_outsideThr|

INTEGER. The size of the region adjacent to the within TSS region that is considered outside of a
TSS.

A value of 1000 therefore denotes the 1kb region up- and downstream of the within TSS region
(from -3 to -2kb upstream and from +2 to +3 kb downstream of annotated TSS.)

Example: 1000

|STATS_script_geneTypesToKeep|

STRING. Gene type to keep / do the analayses for. Allowed are gene types as specified by
GENCODE. The default is "protein_coding".

Example: "protein_coding"

|FL_distr_script_cutoff]

INTEGER. Fragment length cutoff. All reads with a fragment length less than this value will be
filtered for the purpose of this script.

Example: 600

35

Section "par_peakCalling"

"modelNonStringent": "--nolambda --nomodel",

"modelStringent": "--nomodel",

"modelStringent_minQValue" : 0.01,

"modelNonStringent_minQValue" : 0.1,

"modelNonStringent_slocal": 10000,

"Encode_pValThreshold": 0.1,

"Encode_modelBroadAndGapped": "--nomodel --shift -75 --extsize 150 --broad --keep-dup all",

"Encode_modelNarrow": "--nomodel --shift -75 --extsize 150 -B --SPMR --keep-dup all --call-
summits"

Section "par_deepTools"

leffectiveGenomeSize|

|bamCoverage_normalizationCoverage|

STRING. Either "normalizeTolx NUMBER" OR "normalizeUsingRPKM" (note the missing (!)
leading "--"), where NUMBER denotes. Beware of the mapping dependence on the read length: The
reported numbers on the websites are for 30bp reads, and we now have much longer reads usually.
See Koehler et al. (2011) for numbers (Koehler, R., Issac, H., Cloonan, N., & Grimmond, S. M.
(2011). The uniqueome: a mappability resource for short-tag sequencing. Bioinformatics, 27(2),
272-274.)

Example: "normalizeUsingRPKM 2487768882" for hg19/hg38 and 75bp reads

|bamCoverage_binSize|
INTEGER. Size of the bins, in bases

Example: 10

|[bamCoverage_otherOptions|

36

STRING. Additional options that are supported by bamCoverage. Note that the "--" or "-" has to be
present here.

Example: "--extendReads"

5.2. Input metadata (sampleTable.csv)

In addition to the information mentioned above (general notes about this file and requirements), the

structure of this file has to be as follows:

* It must contain at least contain the following columns (the exact names do matter):

'individual’: The name of the individual the sample belongs to.

'sampleName': The name of the sample. Must correspond 1:1 to the corresponding file
names except the suffix (“_1” and “_2”, see below). Thus, if the sample names are
denoted as "test1_repl1" and "test2_rep1", the corresponding files in the input folder
must be named "test]l_repl_1.gz" & "testl_repl_2.gz" for paired-end data and

"test2_repl_1.gz " & "test2_repl_2.gz".
'Flowcell_ID': unique identifier for a particular flow cell.

'lane_ID': lane of the flow cell. If all samples used the same lane, set to “lanel” or any

other name.

"Technology': Sequencing technology used to generate the sequencing data. Valid values:
ILLUMINA, SOLID, L.S454, HELICOS and PACBIO. We only tested the pipeline for

Illumina data so far.

'Library_ID':library-specific identifier. If all samples used the same library, set to

“default” or any other name.

37

	1. Introduction and Availability
	2. Quick Start
	3. General Pipeline Details
	3.1. Prerequisites
	3.1.1. Snakemake
	3.1.2. Wrapper script for Snakemake
	3.1.3. Other software needed by all pipelines
	3.1.4. Other software needed specifically for the diffTF pipeline
	3.1.5. Other software needed specifically for the ATAC-Seq pipeline

	3.2. Preparing a new analysis
	3.3. General files and parameters
	3.3.1. Cluster configuration file for the analysis (cluster.json)
	3.3.2. Parameters for calling Snakemake (params.sh)
	3.3.3. Script to start the analysis and the Snakemake wrapper (runSnakefile.sh)
	3.3.4. Input (meta)data

	3.4. Important Notes
	3.4.1. Wrapper script
	3.4.2. Errors during the pipeline
	3.4.3. Performance

	4. diffTF Pipeline: Specific Files and Parameters
	4.1. General configuration file for the analysis (config.json)
	4.2. Input metadata (sampleTable.csv)

	5. ATAC-Seq Pipeline: Specific Files and Parameters
	5.1. General configuration file for the analysis (config.json)
	5.2. Input metadata (sampleTable.csv)

