
Documentation for

Genome-wide quantification of

differential transcription factor activity: diffTF

Ivan Berest1, Christian Arnold1, Armando Reyes-Palomares1 , Kasper Rassmussen2 &

Judith B. Zaugg1

1 EMBL-European Molecular Biology Laboratory, Heidelberg, Germany.

2 Biotech Research and Innovation Centre (BRIC), University of Copenhagen

Correspondence should be addressed to J.B.Z. (judith.zaugg@embl.de)

Last update: 11/17/17

This document provides documentation and additional information for the

 diffTF pipeline.

If you have questions or comments, feel free to contact us. We will be happy to

answer any questions related to this project as well as questions related to the

software implementation. For method-related questions, contact Judith B. Zaugg

(judith.zaugg@embl.de) or Ivan Berest (berest@embl.de). For technical questions,

contact Christian Arnold (christian.arnold@embl.de).

If you use this software, please cite the following reference:

Ivan Berest*, Christian Arnold*, Armando Reyes-Palomares, Kasper Rassmussen &

Judith B. Zaugg. Genome-wide quantification of differential transcription factor

activity: diffTF. 2017. submitted.

2

Table of Contents
1. Quick Start..4
2. Prerequisites...5

2.1. Snakemake..5
2.2. R and R packages..5
2.3. samtools and bedtools...5

3. Running the example analysis..6
4. Pipeline Details...7

4.1. General configuration file for the analysis (config.json)..7
4.2. Input metadata...11
4.3. Output Folders and Files...12
4.4. Handling errors...16

3

1. Quick Start

The following quick start briefly summarizes the necessary steps to use our pipelines.

1. Install the necessary tools (Snakemake, samtools, and bedtools; see Section 2)

2. Clone the Git repository:

$ git clone https://git.embl.de/carnold/diffTF

3. To run the example analysis, follow the instructions in section 3.

4. Modify the example analysis to run your own analysis.

4

https://git.embl.de/carnold/diffTF

2. Prerequisites

2.1. Snakemake
Please ensure that you have at least version 4.3 installed. Principally, there are multiple ways to

install Snakemake, see https://snakemake.readthedocs.io. We recommend installing Snakemake via

conda.

2.2. R and R packages
A working R installation is needed and a number of packages from either CRAN or Bioconductor

have to be installed. Type the following in R to install them:

$ install.packages(c("checkmate", "futile.logger", "tidyverse",

"reshape2", "gridExtra", "scales", "jsonlite", "RcolorBrewer", "rlist",

"ggrepel", "lsr", "modeest", "locfdr", "boot"))

$ source("https://bioconductor.org/biocLite.R")

$ biocLite(c("limma", "vsn", "csaw", "DESeq2", "DiffBind",

"geneplotter"))

2.3. samtools and bedtools
In addition, samtools (http://samtools.sourceforge.net) and bedtools (http://bedtools.readthedocs.io)
are needed to run diffTF. We again recommend installing them via (bio)conda.

5

http://bedtools.readthedocs.io/
http://samtools.sourceforge.net/
https://snakemake.readthedocs.io/en/stable/getting_started/installation.html

3. Running the example analysis

To run the example analysis, simply perform the following steps:

• Change into the example/input directory within the Git repository

$ cd diffTF/example/input

• Download the data via the download script

$ sh downloadAllData.sh

• Start a dryrun via the helper script

$ sh startAnalysis.sh

• Once the dryrun is successful, change the startAnalysis.sh script and remove the dryrun

directive to start the analysis and restart the script.

$ {EDIT THE FILE}

$ sh startAnalysis.sh

Important notes:

• Since running the pipeline might be computationally demanding, make sure you have

enough space left on your device. Adjust the number of available cores accordingly.

• If you want to run the analysis on a cluster, we recommend using a proper cluster

configuration file in addition. For guidance and user convenience, we provide different
cluster configuration files for a small (up to 10-15 samples) and large (>15 samples)
analysis. See the folder src/clusterConfigurationTemplates for examples. Note that the
sample number guidelines above are very rough estimates only. See the Snakemake
documentation for details.

6

4. Pipeline Details

4.1. General configuration file for the analysis (config.json)

A configuration file that defines various parameters of the pipeline is required. In the following, we

explain the parameters in detail. Note that neither section nor parameter names must be changed.

Section “par_general”

outdir

String. Default “output”. Root output directory.

The root output directory where all output is stored. We recommend specifying an absolute path.

regionExtension

Integer > 0. Default 100. Target region extension in base pairs.

This parameter specifies the number of base pairs each target region (from the peaks file) should be
extended in both 5’ and 3’ direction.

comparisonType

String. Default ‘’.

This parameter helps to organize complex analysis for which multiple different types of
comparisons should be done. Set it to a short but descriptive name that summarizes the type of
comparison you are making or the types of cells you compare. The value of this parameter appears
as prefix in most output files created by the pipeline. It may also be empty.

designContrast

String. Default "~ Treatment + Condition". Design formula.

The variable corresponding to the two conditions comes typically last (here: Condition).

designVariableTypes

String. Default "Treatment:factor, Condition:factor".

7

The data types of all elements listed in designContrast. Names must be separated by commas,
spaces are allowed and will be eliminated automatically. The data type must be specified with a “:”,
followed by either “numeric”, “integer”, “logical”, or “factor”.

Importantly, if the variable of interest is continuous-valued (i.e., marked as being integer or
numeric), then the reported log2 fold change is per unit of change of that variable. That is, in the
final circular plot, TFs displayed in the left side have a negative slope per unit of change of that
variable, while TFs at the right side have a positive one.

nPermutations

Integer >= 0. Default 0. The number of random sample permutations.

If set to a value > 0, in addition to the real and non-permuted data, the sample conditions as
specified in the sample table and in the parameter conditionComparison will be randomly permuted
nPermutations times. Specifically, for the condition with fewer samples, 50% willb e randomly
chosen and switched with the same number of samples from the other condition. This procedure
maximizes randomized conditions. Note that the running time of the pipeline will be increased
when using permutations because parts of the pipeline are run for each permutation.

TFs

String. Default "all”. Either “all” or a comma-separated list of TF names of TFs to include.

If set to “all”, all TFs that are found in the directory as specified in dir_PWMScan will be used. If
the analysis should be restricted to a subset of TFs, list the names of the TF to include in a comma-
separated manner here. Note that for each TF {name}, a file “{name}_pwmscan.bed” needs to be
present in the directory dir_PWMScan.

We strongly recommending running diffTF with as many TF as possible due to our statistical model
that we use that compares against a background model.

dir_scripts

String. Default “”. The path to the directory where the R scripts for running the pipeline are stored.
We recommend specifying an absolute path.

RNASeqIntegration

Logical. true or false. Default false. Should RNA-Seq data be integrated into the pipeline?

8

If set to true, RNA-Seq counts as specified in the parameter RNASeqCounts will be used to classify
each TF into either “activator”, “repressor”, “unknown”, or “not-expressed” for the final circular
visualization and the summary table. For methodological details, see the Methods details of the
publication. Note that RNA-Seq integration is inly included in the very last step of the pipeline, so it
can also be easily integrated later.

Section "samples"

summaryFile

String. Default ‘samples.tsv’. Path to the sample metadata file.

Path to a tab-separated file that summarizes the input data. See the next section and the example file

for how this file should look like. We recommend specifying an absolute path.

Section "peaks"

consensusPeaks

String. Default ‘‘ (empty). Path to the consensus peak file. If set to the empty string “”, the pipeline
will generate a consensus peaks out of the peak files from each individual sample. We recommend
specifying an absolute path.

If no file is provided, the pipeline computes consensus peaks based on all individual peak files. For

this, you need to provide the following two things:

• a peak file for each sample in the metadata file in the column “peaks”, see the next section

for details.

• The format of the peak files, as specified in the parameter peakType (see below)

If a file is provided, it has to match exactly(!) the following specifications:

• tab-separated columns

• no column names in the first row

• five columns in total:

1. Chromosome

2. Start position

3. End position

9

4. Identifier

5. Line number (starting from 1)

peakType

String. Default ‘narrow‘. Format of the peaks. Only relevant if no consensus peak file has been

provided.

Only needed if no consensus peak set has been provided. All individual peak files must be in the

same format. See the help for DiffBind dba for a full list of supported formats, the most common

include:

• “raw”: text file file; peak score is in fourth column

• “bed”: .bed file; peak score is in fifth column

• “narrow”: default peak.format: narrowPeaks file (from MACS2)

minOverlap

Integer >= 0 or Float between 0 and 1. Default 2. Minimum overlap for peak files for a peak to be
considered into the consensus peak set. Corresponds to the minOverlap argument in the dba
function of DiffBind. Only needed when consensusPeaks is not provided.

Only include peaks in at least this many peak sets in the main binding matrix. Only needed when
consensusPeaks is not provided. If minOverlap is between zero and one, peak will be included from
at least this proportion of peaksets. For more information, see the minOverlap argument in the dba
function of DiffBind.

Section "additionalInputFiles"

refGenome_fasta

String. Default ‘hg19.fasta’. Path to the reference genome FASTA file.

The path to the reference genome file in FASTA format. We recommend specifying an absolute
path. Note that this file has to be in concordance with the input data; that is, the exact same genome
assembly version must be used.

dir_PWMScan

10

The path to the directory where the TF-specific PWM results are stored, in BED format. We
recommend specifying an absolute path. Each TF has to have one bed file, in the format {TF}.bed.
For user convenience, we provide these files as described in the publication as a separate download:

• For a pre-compiled list of 620 human TF based on the HOCOMOCO 10 database, download

this file: https://www.embl.de/download/zaugg/diffTF/PWMScan/PWMscan.human.tar.gz

• For a pre-compiled list of 423 mouse TF based on the HOCOMOCO 10 database, download

this file: https://www.embl.de/download/zaugg/diffTF/PWMScan/PWMscan.mouse.tar.gz

However, you may also manually create these files for additional TF of your choice. For this, see
the HOCOMOCO manual.

RNASeqCounts

String. Default “”. Path to the file with RNA-Seq counts.

If no RNA-Seq data is included, set to the empty string “”. Otherwise, if the parameter
RNASeqIntegration is set to true, we recommend specifying an absolute path for a tab-separated
file with normalized RNA-Seq counts. The first line must be used for labeling the samples, with
column names being identical to the sample names as specific in the sample summary table
(parameter summaryFile). The first column must be named ENSEMBL and it must contain
ENSEMBL IDs (e.g., ENSG00000028277) without dots. The IDs are then matched to the IDs from
the file as specified in the parameter HOCOMOCO_mapping.

HOCOMOCO_mapping

String. Default “HOCOMOCO/translationTable_human.csv”. Absolute path to the file with the
HOCOMOCO mapping.

If RNA-Seq integration shall be used, a translation table to associate TFs and ENSEMBL genes is
needed. For convenience, we provide such a translation table for human and mouse. If you want to
use your own version, check the example translation tables and construct one with an identical
structure.

4.2. Input metadata
This file summarizes the data and corresponding available metadata that should be used for the

analysis. The format is flexible and may contain additional columns that are ignored by the pipeline,

so it can be used to capture all available information in a single place. Importantly, the file must be

saved as tab-separated, the exact name does not matter as long as it is correctly specified in the

11

https://www.embl.de/download/zaugg/diffTF/PWMScan/PWMscan.mouse.tar.gz
https://www.embl.de/download/zaugg/diffTF/PWMScan/PWMscan.human.tar.gz

configuration file. It must contain at least contain the following columns (the exact names do

matter):

• “sampleID”: The ID of the sample

• “bamReads”: path to the BAM file corresponding to the sample. Note that the BAM

files must be valid BAM files with chromosome names with a “chr” as prefix. The

pipeline may crash if the “chr” part is missing.

• “peaks”: absolute path to the sample-specific peak file, in the format as given by the

parameter “peakType”. Only needed if no consensus peak file is provided

• conditionSummary: String with an arbitrary condition name that defines which condition

the sample belongs to. There must be only exactly two different conditions across all

samples (e.g., mutated and unmutated, day0 and day10, ...)

• All variable names from the design formula must also be present as a separate column.

4.3. Output Folders and Files
The pipeline produces a large number of output files. In the following, the directory structure and

the files are briefly outlined. As some directory or file names depend on specific parameters in the

configuration file, curly brackets will be used to denote that the filename depends on a particular

parameter or name. For example, {comparisonType} and {regionExtension} refer to the parameters

comparisonType and regionExtension as specified in the configuration file.

Most files have one of the following file formats:

• .bed.gz (gzipped bed file)

• .tsv (tab-separated value, text file with tab as column separators)

• .rds (binary R format, read into with the function readRDS)

• .pdf (PDF format)

• .log (text format)

FOLDER FINAL_OUTPUT

• extension{regionExtension}

12

◦ {comparisonType}.allMotifs.tsv.gz

◦ {comparisonType}.TF_vs_peak_distribution.tsv

◦ {comparisonType}.summary.tsv

◦ {comparisonType}.summary.volcano.pdf

◦ {comparisonType}.summary.circular.pdf

◦ {comparisonType}.diagnosticPlots.pdf

FOLDER PEAKS

Stores peak-associated files.

• if no consensus peak file was provided (parameter “consensusPeaks”):

consensusPeaks.bed and consensusPeaks_lengthDistribution.pdf

• for each input BAM file {basenameBAM}:

{basenameBAM}.overlapPeaks.bed.gz

• {comparisonType}.sampleMetadata.rds

• {comparisonType}.peaks.rds

• {comparisonType}.peaks.tsv

• {comparisonType}.normFacs.rds

• {comparisonType}.diagnosticPlots.peaks.pdf

• for each permutation {perm}:

{comparisonType}.diagnosticPlots.peaks_permutation{perm}.pdf

• {comparisonType}.DESeq.object.rds

FOLDER Logs_and_Benchmarks

Stores various log and error files.

13

• *.log files from R scripts

◦ 1.produceConsensusPeaks.R.log

◦ 2.DESeqPeaks.R.log

◦ 3.analyzeTF.{TF}.R.log for each TF {TF}

◦ 4.summary1.R.log

◦ 5.prepareBinning.log

◦ 6.binningTF.{TF}.log for each TF {TF}

◦ 7.summaryFinal.R.log

• *.log files (summary logs for convenience)

◦ all.errors.log

◦ all.warnings.log

FOLDER TEMP

Stores temporary and intermediate files.

• extension{regionExtension}

◦ for each input BAM file {basenameBAM} and TF {TF}:

{TF}__{basenameBAM}.resorted.gz

◦ conditionComparison.rds

◦ for each permutation {perm}:

{comparisonType}.motifs.coord.permutation{perm}.bed.gz

◦ for each permutation {perm}:

{comparisonType}.motifs.coord.nucContent.permutation{perm}.bed.gz

◦ {comparisonType}.allTFData_processedForPermutations.rds

◦ {comparisonType}.allTFUniqueData_processedForPermutations.rds

• sorted.consensusPeaks.bed OR sorted.{consensusPeakBasename)

14

• for each TF {TF}:

{TF}_pwmscan.sorted.bed.gz

• for each input BAM file {basenameBAM}:

{basenameBAM}.idxstats, {basenameBAM}.chrOrder1, {basenameBAM}.chrOrder2,

{basenameBAM}.resorted.gz

FOLDER TF-SPECIFIC

Stores TF-specific files.

for each TF {TF}:

• {TF}.peaks.bed.gz

• extension{regionExtension}

◦ {TF}.peaks.corr.bed.gz

◦ {TF}.{comparisonType}.overlapBAMs.bed.gz

◦ {TF}.{comparisonType}.output.tsv

◦ {TF}.{comparisonType}.summary.rds

◦ {TF}.{comparisonType}.diagnosticPlots.pdf

◦ {TF}.{comparisonType}.summaryPlots.pdf

◦ for each permutation {perm}:

{TF}.{comparisonType}.diagnosticPlots_permutation{perm}.pdf

◦ for each permutation {perm}:

{TF}.{comparisonType}.summaryPlots_permutation{perm}.pdf

◦ {TF}.{comparisonType}.DESeq.object.rds

◦ {TF}.{comparisonType}.permutationResults.rds

◦ {TF}.{comparisonType}.permutationSummary.tsv

15

◦ {TF}.{comparisonType}.covarianceResults.rds

4.4. Handling errors
Errors occur during the Snakemake run can principally be divided into:

• Temporary errors (often when running in a cluster setting)

◦ might occur due to temporary problems such as bad nodes, file system issues or latencies

◦ rerunning usually fixes the problem already. Consider using the option –restart-times.

• Permanent errors

◦ indicates a real error related to the specific command that is executed

◦ rerunning does not fix the problem as they are systematic (such as a missing tool)

To troubleshoot errors, you have to first locate the exact error. Depending on how you run
Snakemake (i.e., in a cluster setting or not), check the following places:

• in locale mode: the Snakemake output on the console

• in cluster mode: either error, output or log file of the corresponding rule that threw the error

After locating the error, fix it accordingly. For example, if you receive a memory-related error, try

to increase the available memory. In a cluster setting, adjust the cluster configuration file

accordingly by either increasing the default memory or (preferably) or by overriding the default

values for the specific rule.

16

	1. Quick Start
	2. Prerequisites
	2.1. Snakemake
	2.2. R and R packages
	2.3. samtools and bedtools

	3. Running the example analysis
	4. Pipeline Details
	4.1. General configuration file for the analysis (config.json)
	4.2. Input metadata
	4.3. Output Folders and Files
	4.4. Handling errors

