Documentation for

Genome-wide quantification of

differential transcription factor activity: diffTF

Ivan Berest', Christian Arnold"", Armando Reyes-Palomares' , Kasper Dindler

Rassmussen>’, Kristian Helin>® & Judith B. Zaugg'
! EMBL-European Molecular Biology Laboratory, Heidelberg, Germany

? Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen
 Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen

* shared first authorship

Correspondence should be addressed to J.B.Z. (judith.zaugg@embl.de)

Last update: 11/21/17

This document provides documentation and additional information for the

diffTF pipeline.

If you have questions or comments, feel free to contact us. We will be happy to
answer any questions related to this project as well as questions related to the
software implementation. For method-related questions, contact Judith B. Zaugg
(judith.zaugg@embl.de) or Ivan Berest (berest@embl.de). For technical questions,

contact Christian Arnold (christian.arnold@emb].de).

If you use this software, please cite the following reference:

Ivan Berest*, Christian Arnold*, Armando Reyes-Palomares, Kasper Rassmussen &
Judith B. Zaugg. Genome-wide quantification of differential transcription factor

activity: diffTF. 2017. submitted.

Table of Contents

O el 721 PR 4
2. PrOTOQUISITES. .. veeeieiirieeeeiiieee et et e ettt e e e srtteeeestbaeesesatbeeeesasaeesssssaaeessssssaeeesssssaesssssssssnssssssssssnneeeeees 5
2.1, SNAKEIMAKE. ... oottt ettt ettt ettt et sa bt et et b et esht e beeebeeereeeas 5
2.2. R aNd R PACKAGES.....cccuviiiiiiieiieeeiieeeiteeeiteesteeesae e e aeesstaeesstaeesssaeessaeessseeenssaesnssaesnsseesssseennnnes 5
2.3. samtools and DedLOOls.........cccueeuiiriiriiirieieeee e s 5

3. RUNNING YOUT OWIN @NALYSIS. ..uuiiiiiiiiiiieeiieeciieeecteeecteeee e esceeesve e e st eesbeeesaaeessabee s ntaaeessesssssnaasanns 6
4. PIPEIINE DELAILS......iieiiiiiieieiiiieeieett ettt ettt s e e st st e e s e e sbeesaeessbeesatesnba e stessseensaeensaeens 7
4.1. General configuration file for the analysis (config.json)........cccccceeevueeiieriieecienieccieeiee e 7
4.1.1. Section “Par_GENETAl”.........cocieruiiriiiriierieerteste et e ete et estessteesteesaeessbessbaeessabaeeesnbaeeenees 7
4.1.2. SECHION "SAIMPIES"....cuetieiiieeieeecteeect et eeetee e et eesteeesbeesssbeesssseesssseesseaesssseesssseessseasnnns 9
4.1.3. SECHION "PRAKS"....eieiieieeiteetterte ettt ettt e ettt et e ettt e s b e e tae et e et ae e eatae e e nraeeennees 9
4.1.4. Section "additionalINPULFILEs"........ccccuiiiiiiieiiieciieee e e e svaaee e 11

4.2, INDUL MNETAAALA.eeereeiieeieerie et erte et esteeteesttesteesteesteessaessseessaessseesseesssessssesnsessseesssesnseennses 12
4.3. Output Folders and Files...........coouiiiiiiieiiieeiieeieesteesee ettt esve e s e sir e e s svae s saee e svaaaee s 12
4.3.1 Folder FINAL_OUTPUT.......ccotiiiiienieeeteteteetesie ettt et s tesse e s st saeesaesatesaeenneeens 13

4.3.2 FOIder PEALS. ...ttt ettt st ettt st st e st e et e st e s e enee 13

4.3.3 Folder LOGS_AND_BENCHMARKS.....c..ooitiiiiinteteenenteieetesie et 14

4.3 4 FOIer TEMP......c.uiiieieteeetee ettt ettt ettt sttt s bt et e st e sbeeaesnneenns 15

4.3.5 Folder TF-SPECIFIC.....cc.cccctrrtirtiiirientertenteset ettt et st et etesie e s st e e st e e sareesaneeeaee 15

4.4. Working with the PIPELINe.........cceiiiiiiiiieiieceeeee ettt e e e e e saa e e s aeaaeas 16
4.5, HANAIING BITOTS. ... ceeviiiieeiieiieeieeteete ettt ste et e sbe et tessbeesaaessseesstessseenssessseassssaaesnsseens 17

1. Quick Start

First, thank you for the interest in diffTF! As mentioned above on page 2, if you have questions or

comments, feel free to contact us. We will be happy to answer any questions related to this project

as well as questions related to the software implementation. If you run into troubles or questions,

make sure to carefully read this document and Section 4 in particular.

The following quick start briefly summarizes the necessary steps to use our pipelines.

1.

Install the necessary tools (Snakemake, samtools, and bedtools; see Section 2). We
recommend installing them via conda, in which case the installation is as easy as

$ conda install -c¢ bioconda snakemake bedtools samtools

If conda is not yet installed, follow the instructions in https://conda.io/docs/user-

guide/install/index.html. If you want to install the tools manually and outside of the conda

framework, see Section 2.

Clone the Git repository:

$ git clone https://git.embl.de/grp-zaugg/diffTF
To run the example analysis, simply perform the following steps::
a) Change into the example/input directory within the Git repository
$ cd diffTF/example/input
b) Download the data via the download script
$ sh downloadAllData.sh
c) To test if the setup is correct, start a dryrun via the helper script startAnalysisDryRun.sh
$ sh startAnalysisDryRun.sh
d) Once the dryrun is successful, start the analysis via the helper script startAnalysis.sh
$ sh startAnalysis.sh

To run your own analysis, modify the files config.json and sampleData.tsv. See the
instructions in Section 3 for more details.

If your analysis finished successfully, take a look into the FINAL_OUTPUT folder within
your specified output directory, which contains the summary tables and visualization of your
analysis. If you received an error, take a look into Section 4 to troubleshoot.

https://conda.io/docs/user-guide/install/index.html
https://conda.io/docs/user-guide/install/index.html

2. Prerequisites

2.1. Snakemake

Please ensure that you have at least version 4.3 installed. Principally, there are multiple ways to

install Snakemake, see http://snakemake.readthedocs.io/en/stable/getting started/installation.html.

As outlined in Section 1, we recommend installing it via conda

2.2. R and R packages
A working R installation is needed and a number of packages from either CRAN or Bioconductor

have to be installed. Type the following in R to install them:

$ install.packages (c("checkmate", "futile.logger", "tidyverse",
"reshape2", "gridExtra", "scales", "jsonlite", "RcolorBrewer", "rlist",

"ggrepel", "lsr", "modeest", "locfdr", "boot"))

$ source ("https://bioconductor.org/biocLite.R")

$ biocLite(c("limma", "vsn", "csaw", "DESeqg2", "DiffBind",

"geneplotter"))

2.3. samtools and bedtools

In addition, samtools (http://www.htslib.org/download/) and bedtools

(http://bedtools.readthedocs.io) are needed to run diffTF. As outlined in Section 1, we recommend

installing them via conda.

http://bedtools.readthedocs.io/
http://www.htslib.org/download/
http://snakemake.readthedocs.io/en/stable/getting_started/installation.html

3. Running your own analysis

Running your own analysis is almost as easy as running the example analysis. Carefully read and
follow the following steps and notes:

1. Copy the files config.json and startAnalysis.sh to a directory of your choice.

2. Modify the file config.json accordingly. See Section 4 for details about the parameters. We
suggest to convert all relative paths to absolute ones. Do not delete or rename any
parameters or sections.

3. Create a tab-separated file that defines the input data, in analogy to the file sampleData.tsv
from the example analysis, and refer to that in the config.json (parameter summaryFile)

4. Adapt the file startAnalysis.sh if necessary (Snakemake parameters)

Important notes:

* Since running the pipeline might be computationally demanding, make sure you have
enough space left on your device. As a guideline, analysis with 8 samples need around 12
GB of disk space, while a large analysis with 84 samples needs around 45 GB. Also, adjust
the number of available cores accordingly. The pipeline can be invoked in a highly
parallelized manner, so the more cores are available, the better!

* The pipeline is written in Snakemake, so for a deeper understanding and troubleshooting
errors, some knowledge of Snakemake is invaluable. The same holds true for running the
pipeline in a cluster setting. We recommend using a proper cluster configuration file in
addition. For guidance and user convenience, we provide different cluster configuration files
for a small (up to 10-15 samples) and large (>15 samples) analysis. See the folder
src/clusterConfigurationTemplates for examples. Note that the sample number guidelines
above are very rough estimates only. See the Snakemake documentation for details for how
to use cluster configuration files.

4. Pipeline Details

In this section, we explain all relevant details for the diffTF pipeline. If you feel something is
missing, do not hesitate to contact us.

4.1. General configuration file for the analysis (config.json)
To run the pipeline, a configuration file that defines various parameters of the pipeline is required.
Please note the following important points:

* neither section nor parameter names must be changed.
* For parameters that specify a path, both absolute and relative paths are possible. We

recommend specifying an absolute path. Relative paths must be specified relative to the
Snakemake working directory.

* For parameters that specify a directory, there should be no trailing slash.

In the following, we explain all parameters in detail, organized by section names.

4.1.1. Section “par_general”

outdir
String. Default “output”. Root output directory.

The root output directory where all output is stored.

regionExtension

Integer > 0. Default 100. Target region extension in base pairs.

This parameter specifies the number of base pairs each target region (from the peaks file) should be
extended in both 5’ and 3’ direction.

comparisonType

String. Default .

This parameter helps to organize complex analysis for which multiple different types of
comparisons should be done. Set it to a short but descriptive name that summarizes the type of
comparison you are making or the types of cells you compare. The value of this parameter appears
as prefix in most output files created by the pipeline. It may also be empty.

designContrast

String. Default "~ Treatment + conditionSummary". Design formula for the differential
accessibility analysis in DESeq?2.

This important parameter defines the actual contrast that is done in the differential analysis. That is,
which groups of samples are being compared? Examples include mutant vs wildtype, mutated vs.
unmutated, etc. The last element in the formula must always be “conditionSummary”, which
defines the two groups that are being compared. This name is currently hard-coded and
required by the pipeline. Our pipeline allows including additional variables to model potential
confounding variables, like gender, batches etc. For each additional variable that is part of the
formula, a corresponding and identically named column in the sample summary file must be
specified.

designVariableTypes

String. Default "Treatment:factor, Condition:factor".

The data types of all elements listed in designContrast. Names must be separated by commas,

[12%2)

spaces are allowed and will be eliminated automatically. The data type must be specified with a “:”,

¥ <

followed by either “numeric”, “integer”, “logical”, or “factor”.

Importantly, if the variable of interest is continuous-valued (i.e., marked as being integer or
numeric), then the reported log2 fold change is per unit of change of that variable. That is, in the
final circular plot, TFs displayed in the left side have a negative slope per unit of change of that
variable, while TFs at the right side have a positive one.

nPermutations
Integer >= 0. Default 0. The number of random sample permutations.

If set to a value > 0, in addition to the real and non-permuted data, the sample conditions as
specified in the sample table and in the parameter conditionComparison will be randomly permuted
nPermutations times. Specifically, for the condition with fewer samples, 50% will be randomly
chosen and switched with the same number of samples from the other condition. This procedure
maximizes randomized conditions. Note that the running time of the pipeline will be increased
when using permutations because parts of the pipeline are run for each permutation.

1Fs

String. Default "all”. Either “all” or a comma-separated list of TF names of TFs to include.

If set to “all”, all TFs that are found in the directory as specified in dir_PWMScan will be used. If
the analysis should be restricted to a subset of TFs, list the names of the TF to include in a comma-
separated manner here. Note that for each TF {name}, a file “{name}_pwmscan.bed” needs to be
present in the directory dir_PWMScan.

We strongly recommending running diff TF with as many TF as possible due to our statistical
model that we use that compares against a background model.

dir_scripts

String. The path to the directory where the R scripts for running the pipeline are stored.

RINASeqlIntegration
Logical. true or false. Default false. Should RNA-Seq data be integrated into the pipeline?

If set to true, RNA-Seq counts as specified in the parameter RNASeqCounts will be used to classify

P EN1Y)y &«

each TF into either “activator”, “repressor”, “unknown”, or “not-expressed” for the final circular

visualization and the summary table. Note that RNA-Seq integration is only included in the very
last step of the pipeline, so it can also be easily integrated later.

4.1.2. Section "samples"
summaryFile

String. Default ‘samples.tsv’. Path to the sample metadata file.

Path to a tab-separated file that summarizes the input data. See the next section and the example file

for how this file should look like.

4.1.3. Section "peaks"

consensusPeaks

€

String. Default ““ (empty). Path to the consensus peak file. If set to the empty string “”, the pipeline

will generate a consensus peaks out of the peak files from each individual sample.
If no file is provided, the pipeline computes consensus peaks based on all individual peak files. For

this, you need to provide the following two things:

* a peak file for each sample in the metadata file in the column “peaks”, see the next section

for details.

* The format of the peak files, as specified in the parameter peakType (see below)

If a file is provided, it has to match exactly(!) the following specifications:

* tab-separated columns
* no column names in the first row
* five columns in total:
1. Chromosome
2. Start position
End position

Identifier

ok W

Line number (starting from 1)

peakType
String. Default ‘narrow‘. Format of the peaks. Only relevant if no consensus peak file has been

provided.

Only needed if no consensus peak set has been provided. All individual peak files must be in the
same format. See the help for DiffBind dba for a full list of supported formats, the most common

include:
* “raw”: text file file; peak score is in fourth column
* “bed”: .bed file; peak score is in fifth column

* “narrow”: default peak.format: narrowPeaks file (from MACS?2)

minOverlap

Integer >= 0 or Float between 0 and 1. Default 2. Minimum overlap for peak files for a peak to be
considered into the consensus peak set. Corresponds to the minOverlap argument in the dba
function of DiffBind. Only needed when consensusPeaks is not provided.

Only include peaks in at least this many peak sets in the main binding matrix. Only needed when
consensusPeaks is not provided. If minOverlap is between zero and one, peak will be included from
at least this proportion of peaksets. For more information, see the minOverlap argument in the dba
function of DiffBind.

10

4.1.4. Section "additionallnputFiles"

refGenome fasta

String. Default ‘hg19.fasta’. Path to the reference genome FASTA file.

The path to the reference genome file in FASTA format. Note that this file has to be in concordance
with the input data; that is, the exact same genome assembly version must be used.

dir PWMScan

String. Path to the directory where the TF-specific PWM results are stored. Each TF has to have one
bed file, in the format {TF}.bed. For user convenience, we provide these files as described in the
publication as a separate download:

* For a pre-compiled list of 620 human TF based on the HOCOMOCO 10 database, download
this file: https://www.embl.de/download/zaugg/diffTE/PWMScan/PWMscan.human.tar.gz

* For a pre-compiled list of 423 mouse TF based on the HOCOMOCO 10 database, download
this file: https://www.embl.de/download/zaugg/diffTF/PWMScan/PWMscan.mouse.tar.gz

However, you may also manually create these files for additional TF of your choice. For this, see
the HOCOMOCO manual.

RNASegCounts

String. Default “”. Path to the file with RNA-Seq counts.

If no RNA-Seq data is included, set to the empty string “”. Otherwise, if the parameter
RNASeqIntegration is set to true, specify the path to a tab-separated file with normalized RNA-
Seq counts. It does not matter whether the values have been variance-stabilized or not, as long as
values across samples are comparable. Also, consider filtering lowly expressed genes. For guidance,
you may want to read Question 4 in
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/fag.html,

The first line must be used for labeling the samples, with column names being identical to the
sample names as specific in the sample summary table (parameter summaryFile). The first
column must be named ENSEMBL and it must contain ENSEMBL IDs (e.g., ENSG00000028277)
without dots. The IDs are then matched to the IDs from the file as specified in the parameter
HOCOMOCO_mapping.

HOCOMOCO mapping

11

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html
https://www.embl.de/download/zaugg/diffTF/PWMScan/PWMscan.mouse.tar.gz
https://www.embl.de/download/zaugg/diffTF/PWMScan/PWMscan.human.tar.gz

String. Default “HOCOMOCO/translationTable_human.csv”.

If RNA-Seq integration shall be used, a translation table to associate TFs and ENSEMBL genes is
needed. For convenience, we provide such a translation table for human and mouse. If you want to
use your own version, check the example translation tables and construct one with an identical
structure.

4.2. Input metadata

This file summarizes the data and corresponding available metadata that should be used for the
analysis. The format is flexible and may contain additional columns that are ignored by the pipeline,
so it can be used to capture all available information in a single place. Importantly, the file must be
saved as tab-separated, the exact name does not matter as long as it is correctly specified in the
configuration file. It must contain at least contain the following columns (the exact names do

matter):

* “samplelD”: The ID of the sample

* “bamReads”: path to the BAM file corresponding to the sample. Note that the BAM

files must be valid BAM files with chromosome names with a “chr” as prefix. The

pipeline may crash if the “chr” part is missing.

* “peaks”: absolute path to the sample-specific peak file, in the format as given by the

parameter “peakType”. Only needed if no consensus peak file is provided

* conditionSummary: String with an arbitrary condition name that defines which condition
the sample belongs to. There must be only exactly two different conditions across all

samples (e.g., mutated and unmutated, dayO and day10, ...)

» If applicable, all additional variables from the design formula except conditionSummary

must also be present as a separate column.

4.3. Output Folders and Files

The pipeline produces a large number of output files. In the following, the directory structure and
the files are briefly outlined. As some directory or file names depend on specific parameters in the
configuration file, curly brackets will be used to denote that the filename depends on a particular
parameter or name. For example, {comparisonType} and {regionExtension} refer to the parameters

comparisonType and regionExtension as specified in the configuration file.

12

Most files have one of the following file formats:

.bed.gz (gzipped bed file)

* .tsv (tab-separated value, text file with tab as column separators)
* .rds (binary R format, read into with the function readRDS)

e .pdf (PDF format)

* .log (text format)

4.3.1 Folder FINAL_OUTPUT

* extension{regionExtension}
o {comparisonType}.allMotifs.tsv.gz
© {comparisonType}.TF_vs_peak_distribution.tsv
o {comparisonType}.summary.tsv
o {comparisonType}.summary.volcano.pdf
o {comparisonType}.summary.circular.pdf

o {comparisonType}.diagnosticPlots.pdf

4.3.2 Folder PEAKS

Stores peak-associated files.

* if no consensus peak file was provided (parameter “consensusPeaks”):

{comparisonType}.consensusPeaks.bed and consensusPeaks_lengthDistribution.pdf:
generated consensus peaks, before filtering (see below) as well as a diagnostic plot showing

the length distribution of the peaks

* {comparisonType}.consensusPeaks.filtered.sorted.bed: Filtered consensus peaks (removal
of peaks from one of the following chromosomes: chrX, chrY, chrM, chrUn*, *random*,

hap|_gl

* for each input BAM file {basenameBAM }:

13

{basenameBAM }.overlapPeaks.bed.gz: Intersection of each input BAM with the consensus

peak set

{comparisonType}.sampleMetadata.rds
{comparisonType}.peaks.rds
{comparisonType}.peaks.tsv

{comparisonType}.normFacs.rds: Gene-specific normalization factors for each sample and
peak. This file is produces after the differential accessibility analysis for the peaks. The

normalization factors will be used for the TF-specific differential accessibility analysis.

{comparisonType}.diagnosticPlots.peaks.pdf and
{comparisonType}.diagnosticPlots.peaks_permutation{perm}.pdf for each permutation
{perm}: Various diagnostic plots for the differential accessibility peak analysis for the real
and permuted data, respecively: (1) MA plots, (2) density plots of normalized and non-
normalized counts, (3) mean-average plots (average of the log-transformed counts vs the
fold-change per peak) for each of the sample pairs and (4) mean SD plots (row standard

deviations versus row means)

{comparisonType }.DESeq.object.rds: The DESeq?2 object from the differential accessibility

peak analysis

4.3.3 Folder LOGS_AND_BENCHMARKS

Stores various log and error files.

* log files from R scripts: Each logfile is produced by the corresponding R script and

contains debugging information as well as warnings and errors:

© 1.produceConsensusPeaks.R.log

o 2.DESeqgPeaks.R.log

o 3.analyzeTF.{TF}.R.log for each TF {TF}
© 4.summaryl.R.log

o 5.prepareBinning.log

14

o 6.binningTF.{TF}.log for each TF {TF}
o 7.summaryFinal.R.log

* *]og summary files: Summary logs for user convenience, produced at very end of the

pipeline only. They should contain all errors and warnings from the pipeline run.
o all.errors.log

o all.warnings.log

4.3.4 Folder TEMP

Stores temporary and intermediate files.

* extension{regionExtension}

o for each input BAM file {basenameBAM} and TF {TF}:

{TF}__{basenameBAM }.resorted.gz

o conditionComparison.rds: Stores the condition comparison as a string. Some steps in

diffTF need this file as input.

o for each permutation {perm}:

{comparisonType}.motifs.coord.permutation{perm}.bed.gz

o for each permutation {perm}:

{comparisonType}.motifs.coord.nucContent.permutation{perm}.bed.gz

© {comparisonType}.allTFData_processedForPermutations.rds and
{comparisonType}.allTFUniqueData_processedForPermutations.rds. Produced in

5.prepareBinning.R, and needed subsequently for each 6.binningTF.R step.
* consensusPeaks.filtered.bed: filtered consensus peaks file before sorting.

e for each TF {TF}:

{TF}_pwmscan.sorted.bed.gz: Coordinate-sorted version of the input PWMs.

* for each input BAM file {basenameBAM }:

15

{basenameBAM }.idxstats, {basenameBAM }.chrOrder1, {basenameBAM }.chrOrder2,
{basenameBAM } .resorted.gz: Various temporary input BAM-associated files for the

chromosome names and order as well as BAM-congruent resorted peak files.

4.3.5 Folder TF-SPECIFIC
Stores TF-specific files.

for each TF {TF}:

e {TF}.peaks.bed.gz
* extension{regionExtension}

o {TF}.peaks.corr.bed.gz

o

{TF}.{comparisonType}.overlapBAMs.bed.gz
o {TF}.{comparisonType}.output.tsv

o {TF}.{comparisonType}.summary.rds

o {TF}.{comparisonType}.diagnosticPlots.pdf

o {TF}.{comparisonType}.summaryPlots.pdf

o for each permutation {perm}:

{TF}.{comparisonType}.diagnosticPlots_permutation{perm}.pdf

o for each permutation {perm}:

{TF}.{comparisonType}.summaryPlots_permutation{perm}.pdf

o {TF}.{comparisonType}.DESeq.object.rds
o {TF}.{comparisonType}.permutationResults.rds
o {TF}.{comparisonType}.permutationSummary.tsv

o {TF}.{comparisonType}.covarianceResults.rds

16

4.4. Working with the pipeline

diffTF is programmed as a Snakemake pipeline, which offers many advantages to the user because
each step can easily be modified, parts of the pipeline can be rerun, and running the pipeline on
different systems is easy with minimal modifications. However, with great flexibility comes a price:
the learning curve to work with the pipeline might be a bit higher, especially if you have no
Snakemake experience.

TODO: How to rerun parts of it

4.5. Handling errors

Errors occur during the Snakemake run can principally be divided into:
* Temporary errors (often when running in a cluster setting)
o might occur due to temporary problems such as bad nodes, file system issues or latencies
o rerunning usually fixes the problem already. Consider using the option —restart-times.
* Permanent errors
o indicates a real error related to the specific command that is executed
o rerunning does not fix the problem as they are systematic (such as a missing tool)

To troubleshoot errors, you have to first locate the exact error. Depending on how you run
Snakemake (i.e., in a cluster setting or not), check the following places:
* in locale mode: the Snakemake output on the console

* in cluster mode: either error, output or log file of the corresponding rule that threw the error

After locating the error, fix it accordingly. We here provide some guidelines of different error types

that may help you fixing the errors you receive:

* Errors related to erroneous input: These errors are easy to fix, and the error message

should be indicative. If not, please let us know, and we improve the error message in the

pipeline.

* Errors of technical nature: Errors related to memory, missing programs, R libraries etc can
be fixed easily by making sure the necessary tools are installed and by executing the
pipeline in an environment that provides the required technical requirements. For example,
if you receive a memory-related error, try to increase the available memory. In a cluster
setting, adjust the cluster configuration file accordingly by either increasing the default

memory or (preferably) or by overriding the default values for the specific rule.

17

* Errors related to the input data: Error messages that indicate the problem might be
located in the data are more difficult to fix, and we cannot provide guidelines here. Feel free

to contact us.

After fixing the error, rerun Snakemake. Snakemake will continue at the point at which the error
message occurred, without rerunning already successfully computed previous steps (unless

specified otherwise).

18

	1. Quick Start
	2. Prerequisites
	2.1. Snakemake
	2.2. R and R packages
	2.3. samtools and bedtools

	3. Running your own analysis
	4. Pipeline Details
	4.1. General configuration file for the analysis (config.json)
	4.1.1. Section “par_general”
	4.1.2. Section "samples"
	4.1.3. Section "peaks"
	4.1.4. Section "additionalInputFiles"

	4.2. Input metadata
	4.3. Output Folders and Files
	4.3.1 Folder FINAL_OUTPUT
	4.3.2 Folder PEAKS
	4.3.3 Folder LOGS_AND_BENCHMARKS
	4.3.4 Folder TEMP
	4.3.5 Folder TF-SPECIFIC

	4.4. Working with the pipeline
	4.5. Handling errors

