############################################ # Libraries, versions, authors and license # ############################################ from snakemake.utils import min_version import subprocess import os import pandas import numpy import socket import time start = time.time() # Enforce a minimum Snakemake version because of various features min_version("4.0") __author__ = "Christian Arnold & Ivan Berest" __license__ = "MIT" ######## # MISC # ######## # Make the output nicer and easier to follow ruleDisplayMessage = "\n\n########################\n# START EXECUTING RULE #\n########################\n" # The onsuccess handler is executed if the workflow finished without error. onsuccess: print("\n\n#################################\n# Workflow finished, no error #") print( "# Check the FINAL_OUTPUT folder #\n#################################\n\n") print("\nRunning time in minutes: %s\n" % round((time.time() - start)/60,1)) # Else, the onerror handler is executed. onerror: print("\n\n#####################\n# An error occurred #\n#####################\n\n") print("\nRunning time in minutes: %s\n" % round((time.time() - start)/60,1)) #shell("mail -s "an error occurred" carnold@embl.de < {log}") # onstart handler will be executed before the workflow starts. Note that dry-runs do not trigger any of the handlers onstart: print("Reading samples and metadata....\n") print ("Running workflow for the following " + str(len(allTF)) + " TF:\n " + ' \n '.join(map(str, allTF))) print ("Running workflow for the following BAM files:\n " + ' \n '.join(map(str, allBamFiles))) def read_samplesTable(samplesSummaryFile, consensusPeaks): """text""" data = pandas.read_table(samplesSummaryFile) # Expect a particular number of columns, do a sanity check here if not consensusPeaks: if not {'SampleID', 'bamReads', 'conditionSummary', 'Peaks'}.issubset(data.columns.values): raise KeyError("The samples file must contain at least the following named columns (TAB separated!): 'SampleID', 'bamReads', 'conditionSummary', 'Peaks'") else: if not {'SampleID', 'bamReads', 'conditionSummary'}.issubset(data.columns.values): raise KeyError("The samples file must contain at least the following named columns (TAB separated!): 'SampleID', 'bamReads', 'conditionSummary'") return data ############################################### # Check if all parameters have been specified # ############################################### requiredSections = ["samples", "par_general", "peaks", "additionalInputFiles"] for sectionCur in requiredSections: if not sectionCur in config: raise KeyError("Could not find section \"" + sectionCur + "\" in the config file or no config file has been specified.") # 1. Section par_general missingParameters = [] requiredPar = ["outdir", "regionExtension", "comparisonType", "designContrast", "designVariableTypes", "nPermutations", "nBootstraps", "nCGBins", "TFs", "dir_scripts", "RNASeqIntegration"] for parCur in requiredPar: if not parCur in config["par_general"]: missingParameters.append(parCur) if len(missingParameters) > 0: missingParStr = ",".join(missingParameters) raise KeyError("Could not find parameter(s) \"" + missingParStr + "\" in section \"par_general\" in the config file.") # 2. Section par_general if not "summaryFile" in config["samples"]: raise KeyError("Could not find parameter \"summaryFile\" in section \"samples\" in the config file.") # 3. Section peaks if not "consensusPeaks" in config["peaks"]: raise KeyError("Could not find parameter \"consensusPeaks\" in section \"peaks\" in the config file.") if not "peakType" in config["peaks"]: raise KeyError("Could not find parameter \"peakType\" in section \"peaks\" in the config file.") if not "minOverlap" in config["peaks"]: raise KeyError("Could not find parameter \"minOverlap\" in section \"peaks\" in the config file.") # 4. Section additionalInputFiles if not "refGenome_fasta" in config["additionalInputFiles"]: raise KeyError("Could not find parameter \"refGenome_fasta\" in section \"additionalInputFiles\" in the config file.") if not "dir_TFBS" in config["additionalInputFiles"]: raise KeyError("Could not find parameter \"dir_TFBS\" in section \"additionalInputFiles\" in the config file.") if not "RNASeqCounts" in config["additionalInputFiles"]: raise KeyError("Could not find parameter \"RNASeqCounts\" in section \"additionalInputFiles\" in the config file.") if not "HOCOMOCO_mapping" in config["additionalInputFiles"]: raise KeyError("Could not find parameter \"HOCOMOCO_mapping\" in section \"additionalInputFiles\" in the config file.") ############################# # DIRECTORIES AND VARIABLES # ############################# # Maximum number of cores per rule. This value will never be achieved because the minimum of this value and the --cores parameter will define the number of CPUs per rule in the end. threadsMax = 16 # Increase ulimit -n for analysis with high number of TF and/or input files. The standard value of 1024 may not be enough. ulimitMax = 4096 # Input files samplesSummaryFile = config["samples"]["summaryFile"] extDir = "extension" + str(config["par_general"]["regionExtension"]) ROOT_DIR = config["par_general"]["outdir"] FINAL_DIR = ROOT_DIR + "/FINAL_OUTPUT/" + extDir TF_DIR = ROOT_DIR + "/TF-SPECIFIC" PEAKS_DIR = ROOT_DIR + "/PEAKS" LOG_BENCHMARK_DIR = ROOT_DIR + "/LOGS_AND_BENCHMARKS" TEMP_DIR = ROOT_DIR + "/TEMP" TEMP_EXTENSION_DIR = ROOT_DIR + "/TEMP/" + extDir TEMP_BAM_DIR = ROOT_DIR + "/TEMP/" + "sortedBAM" global samplesData samplesData = read_samplesTable(config["samples"]["summaryFile"], config["peaks"]["consensusPeaks"]) allBamFiles = samplesData.loc[:,"bamReads"] allBamFilesBasename = [] for fileCur in allBamFiles: if not os.path.isfile(fileCur): raise IOError("File \"" + fileCur + "\" (defined in " + config["samples"]["summaryFile"] + ") not found.") # if not os.path.isfile(fileCur + ".bai"): # raise IOError("File \"" + fileCur + "\" (defined in " + config["samples"]["summaryFile"] + ") does not have an index (corresponding *.bam.bai). All BAM files must be indexed (e.g., use samtools index)") basename = os.path.splitext(os.path.basename(fileCur))[0] allBamFilesBasename.append(basename) #print(allBamFilesBasename) # Add new column samplesData = samplesData.assign(basename = allBamFilesBasename) # Check existance of all specified peak files if not config["peaks"]["consensusPeaks"]: allPeakFiles = samplesData.loc[:,"Peaks"] for fileCur in allPeakFiles: if not os.path.isfile(fileCur): raise IOError("File \"" + fileCur + "\" (defined in " + config["samples"]["summaryFile"] + ") not found.") else: allPeakFiles = [] regionExt = config["par_general"]["regionExtension"] nPerm = config["par_general"]["nPermutations"] nBootstraps = config["par_general"]["nBootstraps"] nCGBins = config["par_general"]["nCGBins"] if config["par_general"]["comparisonType"] != "": compType = config["par_general"]["comparisonType"] + "." else: compType = "" suffixTFBS = '_TFBS.bed' allTF = [] if config["par_general"]["TFs"] == "all": TFBS_FILES = os.popen("ls " + config["additionalInputFiles"]["dir_TFBS"]).readlines() for TFCur in TFBS_FILES: if not os.path.basename(TFCur.replace('\n', '')).endswith(suffixTFBS): continue TFCurBasename = os.path.basename(TFCur.replace('\n', '').replace(suffixTFBS, '')) allTF.append(TFCurBasename) else: TFArray = config["par_general"]["TFs"].replace(" ", "").split(',') for TFCur in TFArray: fileCur = config["additionalInputFiles"]["dir_TFBS"] + "/" + TFCur + suffixTFBS if not os.path.isfile(fileCur): raise IOError("The TF " + TFCur + " is in the list of TFs to process, but the file \"" + fileCur + "\" is missing. Check the folder " + config["additionalInputFiles"]["dir_TFBS"] + " and \"par_general\": \"TFs\")") allTF.append(TFCur) if len(allTF) == 0: raise WorkflowError("The list of TFs is empty. Adjust the parameter \"par_general\": \"TFs\" and verify that in the specified folder \"" + config["additionalInputFiles"]["dir_TFBS"] + "\", files with the pattern \"{TF}_TFBS.bed\" are present") if not os.path.isfile(config["additionalInputFiles"]["refGenome_fasta"]): raise IOError("File \"" + config["additionalInputFiles"]["refGenome_fasta"] + "\" not found.") if config["par_general"]["RNASeqIntegration"]: filenameCur = config["additionalInputFiles"]["HOCOMOCO_mapping"] if not os.path.isfile(filenameCur): raise IOError("File \"" + filenameCur + "\" not found.") filenameCur = config["additionalInputFiles"]["RNASeqCounts"] if not os.path.isfile(filenameCur): raise IOError("File \"" + filenameCur + "\" not found.") if config["peaks"]["consensusPeaks"]: filenameCur = config["peaks"]["consensusPeaks"] if not os.path.isfile(filenameCur): raise IOError("File \"" + filenameCur + "\" not found.") # Check if it contains scientific notification # the || true in the end ensures the exit status of is 0, because this would raise an error otherwise nHits = int(subprocess.check_output('grep -c "e+" ' + config["peaks"]["consensusPeaks"] + " || true", shell=True)) if nHits > 0: raise AssertionError("File " + config["peaks"]["consensusPeaks"] + " contains at least one line with the scientific notation (e+). This will cause errors in subsequent steps. Check the file and transform all \"e+\" coordinates.") # Default directory for R scripts, specified relative to the Snakefile # Not to be confused with the dir_scripts directory, which is only used to load the correct functions.R file in all R scripts dir_scripts = "R/" script_checkParValidity = "0.checkParameters.R" script_createConsensusPeaks = "1.createConsensusPeaks.R" script_DESeqPeaks = "2.DESeqPeaks.R" script_analyzeTF = "3.analyzeTFNew.R" script_summary1 = "4.summary1.R" script_prepareBinning = "5.prepareBinning.R" script_binningTF = "6.binningTF.R" script_summaryFinal = "7.summaryFinal.R" ######### # RULES # ######### # For cluster usage: The keyword localrules allows to mark a rule as local, so that it is not submitted to the cluster and instead executed on the host node localrules: all, link_inputFiles rule all: input: perm = FINAL_DIR + "/" + compType + "summary.circular.pdf", summaryLogs = LOG_BENCHMARK_DIR + "/" + compType + "all.warnings.log" rule checkParameterValidity: input: output: flag = touch(TEMP_DIR + "/" + compType + "checkParameterValidity.done"), consPeaks = TEMP_DIR + "/" + compType + "consensusPeaks.clean.bed", log: expand('{dir}/0.checkParameters.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Check parameter validity {script_checkParValidity}..." threads: 1 priority: 1 params: script: dir_scripts + script_checkParValidity rule produceConsensusPeaks: input: checkFlag = ancient(rules.checkParameterValidity.output.flag), peaks = allPeakFiles output: consensusPeaks_bed = TEMP_DIR + "/" + compType + "consensusPeaks.bed", summaryPlot = TEMP_DIR + "/" + compType + "consensusPeaks_lengthDistribution.pdf" log: expand('{dir}/1.produceConsensusPeaks.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Calculate consensus peaks for all peak files with the script {script_createConsensusPeaks}..." threads: 1 params: script: dir_scripts + script_createConsensusPeaks # Forces the execution of the rule above just when the user did not provide a consensus peak file def retrieveConsensusPeakFile (par_consensusPeaks): if not par_consensusPeaks: return rules.produceConsensusPeaks.output.consensusPeaks_bed else: return rules.checkParameterValidity.output.consPeaks rule filterSexChromosomesAndSortPeaks: input: consensusPeaks = retrieveConsensusPeakFile(config["peaks"]["consensusPeaks"]) output: consensusPeaks_filtered = TEMP_DIR + "/" + compType + "consensusPeaks.filtered.bed", consensusPeaks_sorted = PEAKS_DIR + "/" + compType + "consensusPeaks.filtered.sorted.bed" message: "{ruleDisplayMessage}Filter sex and unassembled chromosomes..." threads: 1 shell: """ grep -v "^chrX\|^chrY\|^chrM\|^chrUn\|random\|hap\|_gl" {input.consensusPeaks} > {output.consensusPeaks_filtered} && sort -k1,1 -k2,2n {output.consensusPeaks_filtered} > {output.consensusPeaks_sorted} """ overlapPattern = "overlaps.bed.gz" rule sortTFBS: input: flag = ancient(rules.checkParameterValidity.output.flag), bed = config["additionalInputFiles"]["dir_TFBS"] + "/{TF}" + suffixTFBS output: #bedSorted = TEMP_DIR + "/" + compType + "{TF}_TFBS.sorted.bed.gz" bedSorted = TEMP_DIR + "/" + compType + "{TF}_TFBS.sorted.bed" message: "{ruleDisplayMessage} Sort bed file {input.bed}..." threads: 1 shell: #"""sh -c 'sort -k1,1 -k2,2n {input.bed} | gzip -f > {output.bedSorted}'""" """sh -c 'sort -k1,1 -k2,2n {input.bed} > {output.bedSorted}'""" def getBamFileFromBasename(basename): """text""" hit = numpy.asarray(samplesData.loc[samplesData["basename"] == basename, "bamReads"]) if len(hit) != 1: raise KeyError("Could not uniquely retrieve the BAM file for the basename \"" + basename + "\" from the file " + config["samples"]["summaryFile"]) return hit rule resortBAM: input: flag = ancient(rules.checkParameterValidity.output.flag), BAM = lambda wildcards: getBamFileFromBasename(wildcards.BAM) output: BAMSorted = TEMP_BAM_DIR + "/" + "{BAM}.bam" message: "{ruleDisplayMessage} Sort BAM file {input.BAM}..." threads: 1 params: compression = "-c", noSeqInf = "-t" shell: """sh -c 'repair {params.compression} {params.noSeqInf} -i {input.BAM} -o {output.BAMSorted} '""" rule intersectPeaksAndBAM: input: consensusPeaks = rules.filterSexChromosomesAndSortPeaks.output.consensusPeaks_sorted, allBAMs = expand('{dir}/{allBasenamesBAM}.bam', dir = TEMP_BAM_DIR, allBasenamesBAM = allBamFilesBasename) output: consensusPeaksSAF = TEMP_DIR + "/" + compType + "consensusPeaks.filtered.sorted.saf", peaksBamOverlapRaw = temp(PEAKS_DIR + '/' + compType + 'allBams.peaks.overlaps.bed'), peaksBamOverlap = PEAKS_DIR + '/' + compType + 'allBams.peaks.overlaps.bed.gz' log: message: "{ruleDisplayMessage} Intersect for file {input.consensusPeaks} with all BAM files..." threads: threadsMax params: pairedEnd = "-p -B -d 0 -D 2000 -C", readFiltering = "-Q 10", ulimitMax = ulimitMax shell: """ ulimit -n {params.ulimitMax} && awk 'BEGIN {{ OFS = "\\t" }} {{print $4,$1,$2,$3,"+"}}' {input.consensusPeaks} >{output.consensusPeaksSAF} && featureCounts \ -F SAF \ -T {threads} \ {params.readFiltering} \ {params.pairedEnd} \ -s 0 \ -a {output.consensusPeaksSAF} \ -o {output.peaksBamOverlapRaw} \ {input.allBAMs} && gzip -f < {output.peaksBamOverlapRaw} > {output.peaksBamOverlap} """ # TF-specific part: rule intersectPeaksAndTFBS: input: consensusPeaks = rules.filterSexChromosomesAndSortPeaks.output.consensusPeaks_sorted, #allTFBS = expand('{dir}/{compType}{TF}_TFBS.sorted.bed.gz', dir = TEMP_DIR, compType = compType, TF = allTF) allTFBS = expand('{dir}/{compType}{TF}_TFBS.sorted.bed', dir = TEMP_DIR, compType = compType, TF = allTF) output: TFBSinPeaks_bed = expand('{dir}/{compType}allTFBS.peaks.bed.gz', dir = TEMP_DIR, compType = compType), TFBSinPeaksMod_bed = expand('{dir}/{compType}allTFBS.peaks.extension.bed.gz', dir = TEMP_EXTENSION_DIR, compType = compType) log: message: "{ruleDisplayMessage} Obtain binding sites from peaks: Intersect files {input.allTFBS} and {input.consensusPeaks}..." threads: 1 params: extension = config["par_general"]["regionExtension"], ulimitMax = ulimitMax shell: """ ulimit -n {params.ulimitMax} && bedtools intersect \ -a {input.consensusPeaks} \ -b {input.allTFBS} \ -wa -wb \ -sorted \ -filenames \ | gzip -f > {output.TFBSinPeaks_bed} && zcat {output.TFBSinPeaks_bed} | cut -f4,5,6,7,8,9,12 | uniq | awk '{{OFS="\\t"}};{{ print $4, $5-{params.extension}, $6+{params.extension},$1,$2,$7,$3}}' | gzip -f > {output.TFBSinPeaksMod_bed} """ rule intersectTFBSAndBAM: input: bed = rules.intersectPeaksAndTFBS.output.TFBSinPeaksMod_bed, allBAMs = expand('{dir}/{allBasenamesBAM}.bam', dir = TEMP_BAM_DIR, allBasenamesBAM = allBamFilesBasename) output: saf = temp(expand('{dir}/{compType}{{TF}}.allTFBS.peaks.extension.saf', dir = TEMP_EXTENSION_DIR, compType = compType)), BAMOverlapRaw = temp(TF_DIR + "/{TF}/" + extDir + "/" + compType + "{TF}.allBAMs.overlaps.bed"), BAMOverlap = TF_DIR + "/{TF}/" + extDir + "/" + compType + "{TF}.allBAMs.overlaps.bed.gz" log: message: "{ruleDisplayMessage} Intersect file {input.bed} against all BAM files..." threads: 4 params: pairedEnd = "-p -B -d 0 -D 2000 -C", readFiltering = "-Q 10", ulimitMax = ulimitMax shell: """ ulimit -n {params.ulimitMax} && zgrep "{wildcards.TF}_TFBS\.sorted" {input.bed} | awk 'BEGIN {{ OFS = "\\t" }} {{print $4"_"$2"-"$3,$1,$2,$3,$6}}' | sort -u -k1,1 >{output.saf} && featureCounts \ -F SAF \ -T {threads} \ {params.readFiltering} \ {params.pairedEnd} \ -a {output.saf} \ -s 0 \ -o {output.BAMOverlapRaw} \ {input.allBAMs} && gzip -f < {output.BAMOverlapRaw} > {output.BAMOverlap} """ name_plots = PEAKS_DIR + "/" + compType + "diagnosticPlots.peaks.pdf" rule DESeqPeaks: input: sampleData = config["samples"]["summaryFile"], BAMPeakoverlaps = rules.intersectPeaksAndBAM.output.peaksBamOverlap output: sampleDataR = PEAKS_DIR + "/" + compType + "sampleMetadata.rds", peakFile = PEAKS_DIR + "/" + compType + "peaks.rds", peaks_tsv = PEAKS_DIR + "/" + compType + "peaks.tsv", condComp = TEMP_EXTENSION_DIR + "/" + compType + "conditionComparison.rds", normFacs = PEAKS_DIR + "/" + compType + "normFacs.rds", plots = name_plots, plotsPerm = expand('{dir}/{compType}diagnosticPlots.peaks_permutation{perm}.pdf', dir = PEAKS_DIR, compType = compType, perm = range(1, nPerm + 1, 1)), DESeqObj = PEAKS_DIR + "/" + compType + "DESeq.object.rds" log: expand('{dir}/2.DESeqPeaks.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Run R script {script_DESeqPeaks}" threads: min(threadsMax, config["par_general"]["nPermutations"] + 1) params: doCyclicLoess = "true" script: dir_scripts + script_DESeqPeaks name_outputTSV = "output.tsv" name_plotsDiag = TF_DIR + "/{TF}/" + extDir + "/" + compType + "{TF}" + ".diagnosticPlots.pdf" name_TFSummary = TF_DIR + "/{TF}/" + extDir + "/" + compType + "{TF}" + ".summaryPlots.pdf" rule analyzeTF: input: overlapFile = rules.intersectTFBSAndBAM.output.BAMOverlap, sampleDataR = rules.DESeqPeaks.output.sampleDataR, peakFile = rules.DESeqPeaks.output.peakFile, peakFile2 = rules.DESeqPeaks.output.peaks_tsv, normFacs = rules.DESeqPeaks.output.normFacs, plotsPerm = rules.DESeqPeaks.output.plotsPerm output: outputTSV = TF_DIR + "/{TF}/" + extDir + "/" + compType + "{TF}." + name_outputTSV, outputRDS = TF_DIR + "/{TF}/" + extDir + "/" + compType + "{TF}." + "summary.rds", plot_diagnostic = name_plotsDiag, plot_TFSummary = name_TFSummary, DESeqObj = TF_DIR + "/{TF}/" + extDir + "/" + compType + "{TF}." + "DESeq.object.rds" log: expand('{dir}/3.analyzeTF.{{TF}}.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Run R script {script_analyzeTF} for TF {wildcards.TF}..." threads: 1 params: doCyclicLoess = "true", allBAMS = list(allBamFiles) script: dir_scripts + script_analyzeTF rule summary1: input: peaks = rules.DESeqPeaks.output.peaks_tsv, TF = expand('{dir}/{TF}/{ext}/{compType}{TF}.summary.rds', dir = TF_DIR, TF = allTF, ext = extDir, compType = compType) output: outputTable = FINAL_DIR + "/" + compType + "TF_vs_peak_distribution.tsv" log: expand('{dir}/4.summary1.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Run R script {script_summary1} ..." threads: 1 script: dir_scripts + script_summary1 rule concatenateMotifs: input: diagnosticPlots = rules.summary1.output, TFMotifes = expand('{dir}/{TF}/{extension}/{compType}{TF}.{patternTSV}', dir = TF_DIR, TF = allTF, extension = extDir, compType = compType, patternTSV = name_outputTSV) output: allMotifs_tsv = FINAL_DIR + "/" + compType + "allMotifs.tsv.gz" log: message: "{ruleDisplayMessage}Concatenate all motifs for file {input.TFMotifes}..." threads: 1 params: folder = TF_DIR, pattern = "*" + extDir + "/" + compType + "*." + name_outputTSV shell: """ find {params.folder} -type f -path "{params.pattern}" -exec awk 'NR==1 || FNR!=1' {{}} + | gzip -f > {output.allMotifs_tsv} """ rule calcNucleotideContent: input: motifsBed = rules.concatenateMotifs.output.allMotifs_tsv output: bedTemp = TEMP_EXTENSION_DIR + "/" + compType + "motifs.coord.permutation{perm}.bed.gz", bed = TEMP_EXTENSION_DIR + "/" + compType + "motifs.coord.nucContent.permutation{perm}.bed.gz" log: message: "{ruleDisplayMessage}Calculate nucleotide content via bedtools nuc for file {input} ..." threads: 1 params: refGenome = config["additionalInputFiles"]["refGenome_fasta"] shell: """ zgrep "$(printf '^{wildcards.perm}\\t')" {input.motifsBed} | awk '{{OFS="\\t"}};{{print $3,$4,$5,$6,$2}}' | gzip -f > {output.bedTemp} && bedtools nuc -fi {params.refGenome} -bed {output.bedTemp} | gzip -f > {output.bed} """ rule prepareBinning: input: nucContent = expand('{dir}/{compType}motifs.coord.nucContent.permutation{perm}.bed.gz', dir = TEMP_EXTENSION_DIR, compType = compType, perm = range(0, nPerm + 1, 1)), motifes = rules.concatenateMotifs.output.allMotifs_tsv output: allTFData = TEMP_EXTENSION_DIR + "/" + compType + "allTFData_processedForPermutations.rds", allTFUniqueData = TEMP_EXTENSION_DIR + "/" + compType + "allTFUniqueData_processedForPermutations.rds" log: expand('{dir}/5.prepareBinning.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Run R script {script_prepareBinning} ..." threads: min(threadsMax, config["par_general"]["nPermutations"] + 1) params: nCGBins = nCGBins script: dir_scripts + script_prepareBinning rule binningTF: input: allTFData = rules.prepareBinning.output.allTFData, allTFUniqueData = rules.prepareBinning.output.allTFUniqueData output: permResults = expand('{dir}/{{TF}}/{extension}/{compType}{{TF}}.permutationResults.rds', dir = TF_DIR, extension = extDir, compType = compType), summary = expand('{dir}/{{TF}}/{extension}/{compType}{{TF}}.permutationSummary.tsv', dir = TF_DIR, extension = extDir, compType = compType), covResults = expand('{dir}/{{TF}}/{extension}/{compType}{{TF}}.covarianceResults.rds', dir = TF_DIR, extension = extDir, compType = compType) log: expand('{dir}/6.binningTF.{{TF}}.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Run R script {script_binningTF} ..." threads: 1 params: nBootstraps = nBootstraps script: dir_scripts + script_binningTF rule summaryFinal: input: allPermutationResults = expand('{dir}/{TF}/{extension}/{compType}{TF}.permutationSummary.tsv', dir = TF_DIR, TF = allTF, extension = extDir, compType = compType), condComp = rules.DESeqPeaks.output.condComp, DeSeqObj = rules.DESeqPeaks.output.DESeqObj output: summary = FINAL_DIR + "/" + compType + "summary.tsv", circularPlot = FINAL_DIR + "/" + compType + "summary.circular.pdf", diagnosticPlots = FINAL_DIR + "/" + compType + "diagnosticPlots.pdf", log: expand('{dir}/7.summaryFinal.R.log', dir = LOG_BENCHMARK_DIR) message: "{ruleDisplayMessage}Run R script {script_summaryFinal} ..." threads: 1 params: TFs = ",".join(allTF) script: dir_scripts + script_summaryFinal rule cleanUpLogFiles: input: rules.summaryFinal.output output: warnLog = LOG_BENCHMARK_DIR + "/" + compType + "all.warnings.log", errorLog = LOG_BENCHMARK_DIR + "/" + compType + "all.errors.log" message: "{ruleDisplayMessage}Clean and summarize Logs_and_Benchmark directory..." threads: 1 params: dir = LOG_BENCHMARK_DIR shell: """ grep -i "^WARN" {params.dir}/*.log > {output.warnLog} || true && grep -i "^FATAL" {params.dir}/*.log > {output.errorLog} || true && rm {params.dir}/*.out {params.dir}/*.err || true """