example_notebook_RGC_sim.ipynb 1.76 MB
Newer Older
AsariLab's avatar
AsariLab committed
1
2
3
4
5
6
7
8
9
10
11
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Demo Notebook with simulated RGCs data"
   ]
  },
  {
   "cell_type": "code",
12
   "execution_count": 1,
AsariLab's avatar
AsariLab committed
13
14
15
16
17
18
19
20
21
22
23
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "%load_ext autoreload\n",
    "%autoreload 2 \n",
    "%load_ext memory_profiler"
   ]
  },
  {
   "cell_type": "code",
24
   "execution_count": 2,
AsariLab's avatar
AsariLab committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The autoreload extension is already loaded. To reload it, use:\n",
      "  %reload_ext autoreload\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from collections import OrderedDict\n",
    "import neuralpredictors as neur\n",
    "from neuralpredictors.data.datasets import StaticImageSet, FileTreeDataset\n",
Ines Filipa Fernandes Ramos's avatar
Ines Filipa Fernandes Ramos committed
43
44
    "import MEI\n",
    "import matplotlib as mpl"
AsariLab's avatar
AsariLab committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Build the dataloaders"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The dataloaders object is a dictionary of 3 dictionaries: train, validation and test. Each of them contains the respective data from all datasets combined that were specified in paths. Here we only provide one dataset. While the responses are normalized, we exclude the input images from normalization. The following config was used in the paper (all arguments not in the config have the default value of the function). "
   ]
  },
  {
   "cell_type": "code",
63
   "execution_count": 3,
AsariLab's avatar
AsariLab committed
64
65
66
67
68
69
   "metadata": {},
   "outputs": [],
   "source": [
    "#Use dataloaders with generated RGC data\n",
    "from lurz2020.datasets.mouse_loaders import static_loaders\n",
    "\n",
70
    "paths = ['D://inception_loop/RGC_sim/data/static27012021']\n",
AsariLab's avatar
AsariLab committed
71
72
73
74
75
76
77
78
79
    "\n",
    "dataset_config = {'paths': paths, \n",
    "                  'batch_size': 64, \n",
    "                  'seed': 1, \n",
    "                  'cuda': True,\n",
    "                  'normalize': True, \n",
    "                  'exclude': \"images\"}\n",
    "\n",
    "dataloaders_RGCs = static_loaders(**dataset_config)\n",
80
    "dat = FileTreeDataset('D://inception_loop/RGC_sim/data/static27012021', \"images\", \"responses\")"
AsariLab's avatar
AsariLab committed
81
82
83
84
85
86
87
88
89
90
91
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Look at the data"
   ]
  },
  {
   "cell_type": "code",
Ines Filipa Fernandes Ramos's avatar
changes    
Ines Filipa Fernandes Ramos committed
92
   "execution_count": 4,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The \"train\" set of dataset \"27012021\" contains the responses of 2304 RGC neurons to 4472 images\n"
     ]
    }
   ],
   "source": [
    "tier = 'train'\n",
    "dataset_name = '27012021'\n",
    "\n",
    "images, responses = [], []\n",
    "for x, y in dataloaders_RGCs[tier][dataset_name]:\n",
    "    images.append(x.squeeze().cpu().data.numpy())\n",
    "    responses.append(y.squeeze().cpu().data.numpy())\n",
    "    \n",
    "images = np.vstack(images)\n",
    "responses = np.vstack(responses)\n",
    "\n",
    "print('The \\\"{}\\\" set of dataset \\\"{}\\\" contains the responses of {} RGC neurons to {} images'.format(tier, dataset_name, responses.shape[1], responses.shape[0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAEGCAYAAADhfO2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABj1ElEQVR4nO3dd3xc1Zk+8OedUS+2bMu90k03xKEEUoDQkmxIsimQbMqGXSe7Ib+0zS4pm7Apu4QUUiAQEwgkoYYSmikGTLdx7zbuRbas3svU9/fHjGCkeY80I03T6Pl+Pgbp1dWdc8/cGc2599zniqqCiIiIiIiIssuT7QYQERERERERB2dEREREREQ5gYMzIiIiIiKiHMDBGRERERERUQ7g4IyIiIiIiCgHFGS7AURERGNddXW1zps3L9vNIKIxrK69F/UdPhxdXY7yYg4R0mnNmjWNqjrZ+hl7noiIKMvmzZuH1atXZ7sZRDSG/fvda7Bk0xH84tNn4oOnTc92c/KaiOx3/WxEgzMRuQzAbwB4AfxRVa8fbPmiwnItKamK/0HYXl4LxH7csH1vNgk57tnmupeb2OtXj12HazWu9Vv1kL2xWpTcU+Hqg3CRPVNVHdvq7LMkH9fVN672ONeTosd1La+Op1b8Qcf6HTunOGYEW/3scTwnXldjXPufq88cyzs6R1yrCdp9oIX2vhmo9KaiOc7lJeSoO54S1/rV8dLyBFzrT+79xfnaMp4v13MeKHe8FxXbGyu99j7lcezGnoDr/cJ+3FC5vXxRk2v98e3s8bfCH+x27Q1ERERkGPbgTES8AG4GcDGAGgCrROQxVd3q+p2Skiq884x/j6t7ffanMN/EYrNe0GsvX9Daa7fV8cFbiwvNerjE7hbXhzPX+qU3/tOfdPWYywZnTTLrcHxQ9HTbnyx75lSa9VCx/WGuqN3RN46PVAXd9vLWhzMA6JpVZta9vfbyHkcfe3vs59wTcNR77P7RQntA4dlfZ9bh89n1YnvflKL4fUrLS81lw+UlZl0LHQNaRx+jwDFQdAzmJOjo+7pmsx6aWW3WD71vnFkPF9nN8dovT4TsbkBxi93+gm57ede+0zvR7p/yI3Y/FHbZ+1Rhp73vhx397zH6OVBhv7fUnmvXg3PtTivaZe9TJY1mGZU1dtvb59qP277Qftx5f7W3tfhwZ1xtxa7b7cYQERGR00gCQc4CsEtV96iqH8B9AK5ITbOIiIiIiIjGlpEMzmYCOBjzfU201o+ILBKR1SKy2h/oGsHDERERERFROqnzOgTKhLRH6avqYlVdqKoLiwrL0/1wREREREREo9JIAkEOAZgd8/2saM1NBGpcn+Evsa8Dcl3jEXIs77qeSB2BDK5rdVzX5LiCGjzNHfbyRsBCaJaZmukMFfA6rmfztMVf4wEARS32tVDdM+0Le8KO0BVXcIGnyW5PYKK9flcQQYHjGjLndX2u66Qc15Y5l29sM+vhXsf1is5wDkewi99oT6nj+jTH9XJOjv017LhGLVhhX1Pp8dtt9xbZ+6YrIKPAvnwSXse1YhW19r7TPdl+G/I69p0Sxz7YU22vp+Kw4xrVLrsfXPumKyioe4rdz8HS+OU7ZzkCQcY72njI8brym2UUt9rb1HSS3Tc9J9r7/fG/tR+ga459gC08O/5a1/B+3kaTiGg0EmeyF2XCSP56rgJwnIgcJSJFAK4E8FhqmkVERERERDS2DPvMmaoGReQaAM8gEqV/h6puSVnLiIiIiIiIxpAR3edMVZcAWJKithAREREREY1ZvCiAiIiIiGiMCzsiFyizODgjIiIiIhrjnt5yJNtNIIxwWmOyJBhGYXN3XD04vtRcXh1hMQUdjqgyR9KfOtLsXCl0yabohcdX2OsxkvvCRXaiZKDCfipEHW0cZ6emuVIWi1scqY8+e1vDxXY7w2V2Mp23216/S2GLHfWnRXY/eLp8dnuK7fZIwLGPFDr6eWq1vbyDltkJjLCOOjkOgYTLihw/sJ9z174TLHekHfrsQ2DOtFPHvtM7ye7j4jZ7/f5Kx3om2I/rCoUKltg/8I+z1+NxvGwLOxw/cCRxuvqnoMvex0sd6ZGtx8T3W1md4/Ucth/TP95e3l9l19uK7J2td6rdxvm/iH8/BgZ5Hfrtx+2cFb98qIhpX0RERMnimTMiIiIiIqIcwMEZERERERFRDuDgjIiIiIiIKAdk9JozIiKi0UBE7gDwIQD1qnpKtHY/gBOii1QBaFXVBcbv7gPQASAEIKiqCzPQZCIiygMcnBEREcW7E8BNAP7cV1DVT/V9LSK/BNA2yO9foKqNaWsdERHlpYwOztQrCFWWxNUD4+xmFDXbiXue3vgURMCdshiGnYonjhs6iGP9CNnrD1VXmnX1xm+rK4mvqM3eVvXaM09dyXqeoGOb7Id1tqegy9HHjvVrgd1Ob6/dZ671eFpbzTo8jsTNQjvlzkrKBIBwRZlZV8d64OjnsGN5NdLyJGj3caDSTkEMltnb6qtMbhZy2PHq9jiCNQu7HfuOYx8JljqeE0c4YrjA7stx++0kzoAjhbK4xZHE6Win9ZwAcKe7OvZl1yRwV6qsf3z8D7pn2J1T0GWvvLTeXnnn0faTGCqx13PUw/bj9s6w37v2/aNZRul++zmp3hTfHo9jvx8tVPVlEZln/UxEBMAnAVyY0UYREVHe4zVnREREyXk3gDpV3en4uQJ4VkTWiMgi10pEZJGIrBaR1Q0NDWlpKBERjS4cnBERESXnKgD3DvLz81X1TACXA/iKiLzHWkhVF6vqQlVdOHny5HS0k4iIRhkOzoiIiBIkIgUAPgbgftcyqnoo+v96AI8AOCszrSMiGjnF6J6WPtpxcEZERJS49wPYrqo11g9FpFxEKvu+BnAJgM0ZbB8REY1iHJwRERENICL3AlgO4AQRqRGRq6M/uhIDpjSKyAwRWRL9diqAV0VkA4CVAJ5U1acz1W4iopESOJKuKCMyHqVvJZupx94Jgo40O1eamsdnJ5hJwE6hc6W1ocCR3Kf28t72XntxK9FP7G3tmV5u1j2ONoaL7NTBsDPF0ZHK2Gkn3wXGF5v1kCP5zpXoV3Kky6y7+jI4tSqp9buew3BVhb28IyXSlcrYcbS9nva5jnRKI3hwwg5HcqQjvVAc21ReZ+/fXp8jEdPRZz3VjvRSRxf3TLC3taDH8XpwhCkWN9v94HektZY02isqaOk26wd/aq+n7JHxZn387h6z7m2z0yODjtdE08l2f3afGP++oL2O9xZHWmPvJMfrts1ezzH3t5t1LbaXd6WOnrDY3tc8XXZyvPWe7PU5XmujhKpe5ah/wagdBvCB6Nd7AJye1sYREVHe4pkzIiIiIiKiHMDBGRERERERUQ7g4IyIiIiIiCgHcHBGRERElAar9jWjo9e+3paIyMLBGREREVGKdfQG8Ilbl+Pf/ro2200holEko2mN6hEEy42HdKTEFbbbaW3iSNyTXkdaoyMZ0ExTBAC/vR6noJ2Wh6L4bZWAvWxxk534CEeSpb/KTo7z9trr9/jterDSkdznSl9sdLTT8Zyo0QeRH9jrd7UzVGond4rHkQjnaH9wQolZbz3W7s85n91l1puOTLPXv7UyrtYx2+6D4jZHEl+PvU2uVEZXQmfPdPu59Th2b1+5vZ7iDrudndPtYztds+zlJ22y21PalNzrLTDRTir93kmPmvVfPn6lWS9otpNEXe8LHkf/V2+00x275sRvr5a4nlu7730T7cecusJePlxmv068HfbrVort5Xsn26+TEsfr3EqydKXqEo0V/ujrZWutnaJKRGQZ0eBMRPYB6AAQAhBU1YWpaBQREREREdFYk4ozZxeoamMK1kNERERERFmkriltlBGcd0JERERERJQDRjo4UwDPisgaEVlkLSAii0RktYisDvjtazyIiIiIiCj7BPZ1zZQZI53WeL6qHhKRKQCWish2VX05dgFVXQxgMQBUjnckBRAREREREY1xIxqcqeqh6P/rReQRAGcBeNm1fKhY0HZUfDpYeX1yiXseV/KY376XiJbaSXziSGVUj31C0dPTbdbhdZyADBvbVWh3ubfVXrcE7DZ6O+w0NVdCWrjYftyCgKPvHdRxMMXr6Eup77DX47MT7lwKS+ztdfWnKw1SPePNeufF9r6z1ZHK6D9iJwZ6KuP7s6fafk66p9mdOe0N137pSGWcbCfutZxgP65/rt33ji7DxGr7OQz67ccNtZaa9d5JdlpjxSF7HyzcV2/Wu06fadaXtc0362G7mYDY/amOBENXuqO/aoJZ9/TGr18L7cfsnWUn07pecHWX2imOR3odqaZB+z1QS+31VE7sNOvTbrCfQyvtNLiJR16JiHLV7oZOzKwqRYkruZyyZtjTGkWkXEQq+74GcAmAzalqGBERERERpVaXL4iLfvkSFv7kuWw3hQwjOXM2FcAjEjn6XADgHlV9OiWtIiIiIiKilOuN3nO30+eYqcO0xqwa9uBMVfcAOD2FbSEiIiIiIhqzGKVPRERENAI3L9uFm5ftynYziFKCaY3ZlYqbUBMRERGNWT9/5k0AwFcuODbLLSGi0S6jgzNPwE5m9AQcyXquFMQCO1lGHXFz0uFIWQw6EgaL7MQzV4obXMsbyYkScm2rIy3HlSjnqLsSKL1ddsKli5bZ6W6ebjvpT3yOpMxe+3HD7XYanIbs9DhPid0eV/9IRblZL6iz+3/iQ3YCYNsn7aTC8tl2vbM+/nFLt7tSFu36kXfaiXi+E3vMenGJ3ZeycZxZV5/9ujrhuMNmfUfNVLNeuc5O0Kx0vGw759ipjP5x9nN79C77NVG2r82sr71lgVnvdaRi1l5QbdZLWux2Tnyt1ax7/fbylfvjay0L7GUrJtnvUR6x99dQ2O7kidPs9RzcZ2/r5Jfs967WE6vs9Vxs96VvUvzrNsQrkImIiJLGaY1ERERERASAgSDZxsEZERHRACJyh4jUi8jmmNp1InJIRNZH/33A8buXicibIrJLRK7NXKuJiGi04+CMiIgo3p0ALjPqN6rqgui/JQN/KCJeADcDuBzASQCuEpGT0tpSIiLKGxycERERDaCqLwNoHsavngVgl6ruUVU/gPsAXJHSxlHO6rt/FNFoxrTG7OLgjIiIKHHXiMjG6LTHCcbPZwI4GPN9TbRGY0Brtx2ORUSUqMymNQbDKK2LT/vzOO5QLo4jUM6kQleyYYmdfic9jgseHeuBxx7LqqMOI5gtVGkn03lbHImSjsTKzuPGm/XCLrvPiusd63eQHr9dD9jPlSv50rn+E48266HxpWbd29Rl1gMTy+z1O1IxQ2X2Lu8IxUNvt73vhIP281K2Lz79ruKw/cfaX2kn5XWcaC9fttXum8nvazHrrS12WmNJk/24O3tmm3WP40Bw93S708LT7YROzyE73bFqp51gqGX28q7XW+Uhu99aT7S31+u3X+fj9tivFe22t6uo0V7eOyd+37H2DwD4h7M2m/X7N7/DrHtq7b655LI1Zv3R+y4w6y2OyXZlR+y+6TjWsTOMnZMFtwD4MQCN/v+XAL443JWJyCIAiwBgzpw5qWgfERGNcjxzRkRElABVrVPVkKqGAdyGyBTGgQ4BiD3SMStas9a3WFUXqurCyZMnp77BRETDMDCt8UBTcgf4aWQ4OCMiIkqAiEyP+fajAKxTnqsAHCciR4lIEYArATyWifYREaXayzsa8J6fL8Oj681jTJQGHJwRERENICL3AlgO4AQRqRGRqwHcICKbRGQjgAsAfCO67AwRWQIAqhoEcA2AZwBsA/CAqm7JykYQEQ1DbCDIm0c6AACbatqy1ZwxJ6PXnBEREY0GqnqVUb7dsexhAB+I+X4JgLiYfSIioqHwzBkREREREVEOyOyZs7CayYyeHjtlLVxmJ+V5uuITHyO/YKe+iSNlTceV2+tx0CJHd6kj6s9IlfO29ZiLulIKD7+v0qx3z7C3taDLToObstpeT3mN4yJPtdfTO7fKrBe22s+JK4kzVG4/t8Fyu4+1oMKsd8y20y99Vcndo0Mdi18+f6tZf2H/cWY9VBq/XS3H2n3pcSUuO6Iju2c5Uk1/ZQcJVFTYEXrd1Y7U0Ql2Qmc4YC8/d06jWe+8f7pZn7DDfh0GKu3nvPGsars9jpdh9zRHiutsO+kz1GK//oPljnTH6ip7/Y5U2bYTjGWD9nP77E3nmXXP8WYZoRJ7Pbe//h6zPm683TeFHfb6A3YIKsZt95r1nqnx7ZGxk+BIRESUMjxzRkREREREAOLTGimzODgjIiIiIiLKARycERERERERgP5pjZR5HJwREREREY0RD62tyXYTaBAcnBERERERjRHPbqnLdhNoEEOmNYrIHQA+BKBeVU+J1iYCuB/APAD7AHxSVVuGfDQRhIuMtK+QfeGhK5VRehxpjS4FdsJYsMqOJAuX2MuHiuyxbHGTnUIXMlLfCuvtiL6Cw81mvaLGTpTrmuPoM0eyXvcUu17x1E6zLuV239RfPt+sT9psr9/b64hs89inzDtm2btkz2RHgp5jVwjZIY5Qx+GIcfvt9MsnV51u1gsn2A8875n4NM4DX7P7YEKlnZTZ22H3ffU4O3Ww6aRpZr17ur2PlB5r30jSu2O8WZ+6yu6bg+fbjzvJ8ZSHHa8f13XHLSc5Fvfav1DQZe9TxWvt11Bxs72eokZHgmnQsWEtdn8WtsWnTZY22o/Z/G47KbNsu70jlzTYTemcY79+it5vJ2v6V9uJmC6T19tps0fOjU+bFXu3ISKiHMdAkOxK5MzZnQAuG1C7FsDzqnocgOej3xMREREREdEwDTk4U9WXAQw8rXMFgLuiX98F4COpbRYREREREdHYMtxrzqaqam306yMAproWFJFFIrJaRFYHgva0LCIiIqJ84g9xbi+NTkxrzK4RB4KoqsJ51QigqotVdaGqLiwssK/9ICIiIsonP3tqOwCgucu+ppRoNOnyB7PdhDFjuIOzOhGZDgDR/9enrklEREREo1tNix2gQzQa3bvyYLabMGYMmdbo8BiAzwO4Pvr/RxP5JfUIgmXxD6njiszlS/faAZDdx0826wXddpqat9ce7YeL7VRG/zi7W4Il9lhWHNGAB98fv10TtpeYy05+7oBZH7fLngpaf5bjLKRjFoW4Dnh47T6A2Ke0y47YJ0k7ZtvrKWm2+yxYaq8/UGHX/ePtx/X6kmuna/2FXfbyJfX2vuD32dtVc0F8/bw5G81ld7fbSXnBg450wdPtVECPHQCKUKX9eug6XGnWZ66wd57a8+w+8/Ta9e5pdn38bnv9Erb7fvwOu+8D4+y+75hnr3/aCrsfOmfY6/e02a85daS+SmWFWS/qiK8V9Njbqt2O148r3fEMe1tLD9vr6ei236PKax3tccxoKWyy+6aoNf59zfmeQ0REOY1pjdk15JkzEbkXwHIAJ4hIjYhcjcig7GIR2Qng/dHviYiIiIiIaJiGPHOmqlc5fnRRittCREREREQ0Zo04EISIiIiIiPID0xqzi4MzIiIiIqIxwhErQDmCgzMiIiIiojFCh8j7iA0EYThI5g03rXFYJKwo7IyPluueUWou33PUBLNe0OOIAXMMNbtmlZn1wg57PV6fI8HMY9eD5XZCmhbGL992rCstcJZZr/0HO4pPmswyqjfZyXTFLfZ61J9cvaTFXn/bBHtXCht9AABev10vdNyn3OpLAAg5nnNXgmFRm72egh47/a5iv/0ApVfWmfVD9VVxtRe2zDeXHTfJ3lgJ2ftIzRszzfqc9XZcc1m9ndDnDdh90HKCvR+XOm6UET7bTo8c9zc7DVIcN2SVsOMQnqM89yN7zHrj7+eZda/fftwpL9vPoeuvlgRc7zv2PuI1khk7ZtvLFk7stutd9nuXt9NejyulFE/biZKdl3faj7vCfg5DFfY+FS4yniwe+iMiIkoa/3wSERENICJ3iEi9iGyOqf1cRLaLyEYReUREqhy/u09ENonIehFZnbFGExGlGK8/yzwOzoiIiOLdCeCyAbWlAE5R1dMA7ADwnUF+/wJVXaCqC9PUPiKiYRnqmjMOyLKLgzMiIqIBVPVlAM0Das+qat/81hUA7PnoREREw8TBGRERUfK+COApx88UwLMiskZEFrlWICKLRGS1iKxuaGhISyOJiAYaKhCEsouDMyIioiSIyPcABAHc7VjkfFU9E8DlAL4iIu+xFlLVxaq6UFUXTp48OU2tJSJKDhMasyujaY1aIPBNik/78jiS+zwBO2UtUGY3u7DDjugrardT1tQxpbbkcIdZD44rMetds+x6qDy+/aFy+zE7ZtvbVLHBTtBzpRGWNNvJfUUHms26ljra3t5uL++1O613kv0c+sfZ4/9wkSsR0yyjsMP+ges5LG63952w3Z3w+uwUyt7qQrPe3FBlr6cwfj2eWsd+U2on343fZZadfdN6nL3+xrPsbZq0xu4EsbsME7fZr5+i1+2+6Z5hr8c/vsism0l/APwfajXrmzfPNevH77aTBz09jsRTRyIpfH677lJsb1frRfGvxYrldvpixRL7jaGiptesd0+zE26b3mcv76mz97Xvn/qMWb/vhkvNOoL2TlLYEf96Fnv3G/VE5AsAPgTgIlX7+LOqHor+v15EHgFwFoCXM9ZIIqJB8D5nuY1nzoiIiBIgIpcB+E8AH1ZV8/4HIlIuIpV9XwO4BMBma1kiIqKBODgjIiIaQETuBbAcwAkiUiMiVwO4CUAlgKXRmPxbo8vOEJEl0V+dCuBVEdkAYCWAJ1X16SxsAhGRaahrzmLTGjnFMfMyOq2RiIhoNFDVq4zy7Y5lDwP4QPTrPQBOT2PTiIgoj/HMGRERERERAeh/toz3PMs8Ds6IiIiIiMYIBoLktsymNQoQLojfI1xpjcFSO1WusNNOj/P47XiwcLG9npJDdiKhdJjXeaPAY49lg8V2cpo1TVfK7LZ3nGKnoE1+yU7Em7SuxX5Ml16fXS+2U9ykwN41fJV2HxR0JfdKl6C9fEmTvS+0nmI/t7OfsZevWHfIfuCg3f+Bo6eZ9eIWx765y37OK/fFL99wnv2Y8ybbz+H+U+3nxOOz+8zjt+sVU+30wkBFlVl3qdh0xP5BwN6uwjo7PbLlnVPMerDYbn/lPePN+tQ6e18Wv90ehB0xlOEk59E7/pp1nWLvOzgc/74zaavd9vp32M951wx7Pys8105fnXZPlb3+hWYZN/3iH8166Wy7zyp22++ZPLBKFI9X6lCuSuY+Z7zmLPN45oyIiIiIiCgHcHBGRER5TURuEJFxIlIoIs+LSIOI/FO220VElItirzPjNWeZx8EZERHlu0tUtR2Rm0fvA3AsgG9ntUVEREQGDs6IiCjf9V1E+0EAf1PVtmw2hogol8VeZ8ZrzjKP9zkjIqJ894SIbAfQA+DfRGQygN4st4nynCaTukCUQdwzc9uQgzMRuQORqSD1qnpKtHYdgH8F0BBd7LuqumTIdYUBb298Clhxk/030ldtJ5UVtNmJZ55ev1nvneJIPKuwU+W8rR1mXR1pbZ5g4rv5lMl22pn3zmqzPn6tnZQnITtNTTvtpElnC8N2CqIrrdE19bi4NbmXunrsFYVK7LoW2Osv32MfAA81NNrr8dn7jrfdfs69x9r3ki1uMsso6oh/Xk4+rsZc9nMzXjfr1734GbNetct+znsn2m1pKxtn1ie0233pm2D3/favzTDr3l57+emv2/tUy0e6zPrCWQfN+q5W+zVRs8JOfZz5it2ewib7NYEy+/UfrLYf1zexyKw3fsHerspl8WmTnTPtdUx73W5j2zH2e9ekH9qTHnpm2H1f3GynvkrI3hdq32X35Qlr7W1VT5WxcnPRrFDVa0XkBgBtqhoSkW4AV2S7XUREuY7XnGVeItMa7wRwmVG/UVUXRP8NOTAjIiLKBhEpA/DvAG6JlmYAcNxggGhwTZ0+nhWjvMYBWXYNOThT1ZcB2DfVISIiyn1/AuAH8K7o94cA/CR7zaHRald9B97xk+fwlxX7s90UIspTIwkEuUZENorIHSIywbWQiCwSkdUisjrgt6fEEBERpdExqnoDgAAAqGo3cmriJY0Wexoin2Ne3mFPnY/Fc2uUDxgIknnDHZzdAuAYAAsA1AL4pWtBVV2sqgtVdWFhUfkwH46IiGjY/CJSiujnZRE5BoB9ASoRUZ4balouB2TZNay0RlWt6/taRG4D8ETKWkRERJRaPwTwNIDZInI3gPMAfCGrLSIiGgV4/VnmDWtwJiLTVbU2+u1HAWxO4pfjSp4u+wBmaZudYCaBYMIPBwAVGw6b9fDESrPedcZss17caKdKlrTaCWkltfEJaWWPVNnL7qkz69Jj9432OlKgHX2jIUcqY1mZvR6Hjjn2i9Q3xV7/lOWOF7U4EgOr7JO5pQftXTU4zk7cK6iwz9KG/Haip2eKndBX2mj3p6/KTr8r6IlPVDz04FHmsv91+iyzPqHJ0Tfj7b4scqQvlh6x+7LtOHv5WcvsvpGNZtmp/ss9Zn3mODsRs7bbTpWcVdlq1ideYL8vfO8L9jGi39W+36yv3Gk/L7Om25fYHjPensY0yW/vg10r4/u/4cwKc9lgub1/F/js56pnur1/t5xg75ehM+y+979mvwdOdLyja6HdzuL2+P1e7LeErFDVpSKyFsA5iExn/JqqDj0vjYiIKMOGnNYoIvcCWA7gBBGpEZGrAdwgIptEZCOACwB8I83tJCIiGhYROQ9Ar6o+CaAKwHdFZG52W0VElJue2vz2bZw4xTHzhjxzpqpXGeXb09AWIiKidLgFwOkicjqAbyLyN+zPAN6b1VbRqJPMx1Sm7VOuGmrXfHJjLW7+dEaaQoaRpDUSERGNBkGNXAF/BYCbVfVmAPacTiIieguvOcu8YV1zRkRENIp0iMh3APwTgPeIiAeAfYEe0SD4MZWI0o1nzoiIKN99CpHo/KtV9QiAWQB+PtgvRO/hWS8im2NqE0VkqYjsjP7fvMeniHw+usxOEfl8KjeEiCiTeM1Z5mX0zJmEFEXN8SmDwQl2YmBBg50wpuWl9vq77QRDdST0BSba6+mcYXeLeuzlyw6028ufHf93u22efbC2ZK99PE59jlvxONIX4bHXIx7HNjlSHw//25lmfcZ7asz6yVW1Zn3Xb+eY9XC5nXCHAvt4gfgCdj0YnxIHAKieaK/ekU4ZnFZl1gPldnsKeuw3KzX6v2qX3fZgib0vlDbZz235YXtfCFTa6wkXuI7x2vXGU4vM+vh9dnua53vNetEyez0HZ9qpjMVNdnsOnmnftD4Usp+T805w1I96wazvntVp1q8/cqlZL/bYyZ3bu6aY9YkHG+JqLV8qNpcNjLP7bNobdvJl83xHQuRM+/VQvtyewVfaZC/fM8lx3K6hySyrTLaXzxHRAdmvYr4/gMg1Z4O5E8BNA5a7FsDzqnq9iFwb/f6/Yn9JRCYiEt2/EJFLO9aIyGOq2jLS7SAiovzHM2dERJTXRORj0bNYbSLSLiIdImIfVYtS1ZcBDLyvwhUA7op+fReAjxi/eimAparaHB2QLQVw2ci2gPLJ/z21DR/9/WvZbgYR5Shec0ZERPnuBgD/oKrbRrieqTH3+DwCYKqxzEwAB2O+r4nW4ojIIgCLAGDOHHuWAY1erslgf3hpT0bbQTRQMkmiDATJPJ45IyKifFeXgoFZP9H0xxFdjKGqi1V1oaounDw5t6eGEtHYxGvOMo9nzoiIKN+tFpH7AfwdkWAQAICqPpzkeupEZLqq1orIdAD1xjKHALwv5vtZAF5M8nGIiGiMymwgSFjh6Y0PR2h4pxl4heoe+wJ8b2ObWddeR3jGxPFmueiQvZ7JTXbAQqjCvphfeuzAkfJD8TX/5fZj1oes2TFARe0ks94+137qpj+236xr0O7L4HEzzHr1B+3gj4umvGnWN3aYs3YQqnKEvdQ7nsMiR7q1OE6rh+1AA/HbIRyucBhPpyM0przcrBe3OoJIrHUH7GUd+RLonGUHbXiC9v7nCdpHtUL24qiosdvTPcU+kd4x025PoNJ+3Elb7fVX2rsUeifYjxt80+778jMGXgY0PPMK7H3ztAq7oft67deiqmPf9Mb323G32/tll6OPCxu7zXr5Eft1UtBjr2f8bns93jY7EGh8hR1QginVZrl7avzjhnMrqH4cgG4Al8TUFECyg7PHAHwewPXR/z9qLPMMgP+NSXK8BMB3knwcIiIao3jmjIiI8pqq/nOyvyMi9yJyBqxaRGoQSWC8HsADInI1gP0APhlddiGAL6vqv6hqs4j8GMCq6Kp+pKqpOaJARJRhvOYs8zg4IyKivCYiswD8DsB50dIrAL6mqo7zuYCqXuX40UXGsqsB/EvM93cAuGPYDaZRq9/1OcmkLhBlEPfM3MZAECIiynd/QmRK4ozov8ejNSKivHb/qgOYd+2T6A047o87BAaCZB4HZ0RElO8mq+qfVDUY/XcnAMYjUtL4MZVGm18t3QEAaO22r3mm3MPBGRER5bsmEfknEfFG//0TgKZsN4qIKNfxmrPMy+g1Z+FCD3qnV8TVOy/tNJevOGKnqZU70hpdqYwuwUnxbQGAUJndLe1z7ASzCY4kwaL2+GNs7TvtNhY79v2mk+3Is3d9Yp1Z7/qsHdG3q9VOWZtWXmvW51XYn1v290406wd+e7xZn1DrvKTDJN12epyW2H0vAUfkYTi545tSZ29vqNhOEi2rSzytsaDDToL0+uxtKm2y294x207i65liL+9Ky5u00a4X9CTZZ44uCJTZO3PFIVcipt0P4xz3aW042n5fCKndIK8kdwzq9FI78XRb93Sz3uO3O1pL4qeQFNS3m8sWV9jr6Drafr/wBOznqvKAnVjbckKpWZewXa/a2WPWXemr5Ufit9WTWwdpv4jINWc3Rr9/DUDSISFEQ31Mjb3MjGfZKGfxesicxkAQIiLKa6q6H8CHs90OGv34kZbGGl5zlnmc1khERHlNRI4WkcdFpEFE6kXkURE5OtvtIiIiGoiDMyIiynf3AHgAwHRE0hr/BuDerLaIRqVkrr7ZWOO4BIOIaBAcnBERUb4rU9W/xKQ1/hVASbYbRUSUDclMVGQgSObxmjMiIsp3T4nItQDuQ+RzyacALBGRiQCgqs3ZbBzlD16dQ7lquNeO8ZqzzMvo4CxUJOiYbaWS2QljnTPs5h16z2x7/VPtNLiCI3Ya3MwX7aQ//WaDWf/A1J1m/e93vtesd8000uPE3slbTjHL8NjhhXh248lmffvlt5j11dPspL/Xu48z64Gw3fcP3HWRWZ++ZJNZx/hxdt2RcOlKEJKQIxrQlcroSe5Ij3Z1mfXiVtf67bIEE38TU0cbwwX2Ospr7RtIegJ2Y3xV9vo75tj1Ajugz5n6GCyznxNx3Oeyd5JjRQ5en6MvO+z1rHIsf47j/IgrxXG2106PrSywX4yVJfb7l/ji4wq12G577wT79Va5v9us+8fb72lFdR1mvbjakSjp2Addrzf12n3WOT3+/cW132TJJ6P//9KA+pWIfJ7m9WdERJQThhycichsAH8GMBWRP2KLVfU30SOO9wOYB2AfgE+qakv6mkpERJQ8VT0q220gIsqm2OmJnKiY2xK55iwI4FuqehKAcwB8RUROAnAtgOdV9TgAz0e/JyIiyiki8gkRqYx+/X0ReVhEzsh2u4iIsoHXnOW2IQdnqlqrqmujX3cA2AZgJoArANwVXewuAB9JUxuJiIhG4r9VtUNEzgfwfgC3A7g1y22iPKS8uS+NAsnsprzmLPOSSmsUkXkAzgDwBoCpqlob/dERRKY9Wr+zSERWi8jqYK99XQ8REVEa9V0J+UFEpuY/CcC+cI+IiCiLEh6ciUgFgIcAfF1V22N/ppFDRebQWlUXq+pCVV1YUFI+osYSERENwyER+QPeTmksBm8lQ8PAcwiUD1yZbJQbEkprFJFCRAZmd6vqw9FynYhMV9VaEZkOoH7IFXmAYJmxR2yvMBfvqbb3nuBkO5URIcfyjlQ5X5WdYPiF2SvN+vVvXG7WC6bab9eFnfF/+/3H2JF4YZ/dloq99sFdT41df+TdU8z65eWHzfqhYKNZ39Izy6wXXWonWfbsmm/Wy7ccMevOlEWXsCut0VF3fO7SbkckoeOdqqQpPnEPAPxV9kunoDu+PeLY1nH77bTQ7sn2vuCfYm/TuP2OeERHH7S8096mdxy3z6xvf/J4e+12812BpKh/h92e4Dj7OZz6qv2caIm9vU91nGbWzynZYjfIIeCYXz+9qNWsXzx9u1lfdup5cbXSw/bsAVeyZkmL/ToPltv7SMf8iWa9t8rue9dz6JtUbNYL2+x9ZxRckvBJAJcB+IWqtkb/Zn07y20iIsqKZKY18pqzzBvyyKGICCLz87ep6q9ifvQYgM9Hv/48gEdT3zwiIqKRUdVuRA4gnh8tBQHY90YhGgQ/phJRuiVy5uw8AJ8FsElE1kdr3wVwPYAHRORqAPvx9n1kiIiIcoaI/BDAQgAnAPgTgEIAf0Xk7xtRwoY64cA8EMo3DATJvCEHZ6r6KtwHi+w7EhMREeWOjyISZtWXPHy4L1qfiIgol/CCaCIiynf+2OAqERl2OpWInCAi62P+tYvI1wcs8z4RaYtZ5gcjaz7lCk5rpNEq9gyYdTaMt4HIHQkFghAREY1G0eumn4imNVaJyL8C+CKA24azPlV9E8CC6Lq9AA4BeMRY9BVV/dCwGk05ix9faaxhIEjmZXRwFipRtJ0YHw9Wvt9uhjr2h4+dvtasH11qJwk+fPgMs96w304knOTtNOueQjtVrmR+q1mfWBafDFjbMs5cVgvtBLqSlkKzXmikAgLATXsvMOv/eOrfzHpA7b73OP4EffGo1836y9+zE/3aPuOYOaTJpi/a6XQIOZIKXTmxAUfaXKHdzwVddpydKy3P6jb12G0p6LHbHqhI7mXZ7UhxVK+jD3rt5eeWNZv1rqdbzXqgqsSs+ybYfekJ2O0prXGkU1Y6UlDr7fU/VXOSWf+fycmlNZY54iarvN1m/WCvnZBYUh//+tdCx37j0DHT3lbX38qCXrvtgXLHLzjKZfZbKVrml5r19oW9cbXQY7nxMVZVVUQ+AeCbANoRue7sB6q6NAWrvwjAblXdn4J1ERGlzXAHWbzmLPN45oyIiPLdWgCtqprq+PwrAdzr+Nm5IrIBwGEA/6GqcUcJRGQRgEUAMGfOnBQ3jdKB5xBotOIga/TgNWdERJTvzgawXER2i8jGvn8jWaGIFAH4MABrWsJaAHNV9XQAvwPwd2sdqrpYVReq6sLJkyePpDmUIfx4S6ONPxg/I8m6vMx1yVlLt2PGEaUNz5wREVG+uzQN67wcwFpVrRv4A1Vtj/l6iYj8XkSqVbUxDe2gLHDNnCfKNX2Dq+FOa7zlxd2pbA4lgIMzIiLKa2m6JuwqOKY0isg0AHXR693OQmSWSlMa2kBZEnuWoY1nFogohTg4IyIiSkI0iv9iAF+KqX0ZAFT1VgAfB/BvIhIE0APgSmVOdV6wzj34gm+HO/FZJqKRyujgzNstmLguPq1MHO9mPdX2KdiHN5xp1ksqffYDb7ETA3vn20e7Dgbs9LX3HrPTrB/ommDWm7vjk80CjXbamZbayX3dU+w+GL/PLDvnwxeKnRJ3TGG9WW8OVpj1Sm98KhsAvNlsXy8xTRzPSYEjtS5opyMiaPePhux0x/As+znxtHfY63dxJC16AnZPa0H88r7JdqohHMGUFbX2tvrG2ZeIFvQ42uKx6/OOi5uFBQAYV2A/t64EzcJWe/mCNsdzDnufqvmAvf73fmyTWX/tbvv1377a3gd9C+zXebE4khAdDvvtfWp9i536WtLYHlerv3CmuWzrfPu58k63EyJLVtp9GQja+6t/vFlGQXygJACga6r9p6Fpob1vPvqe38fVPl1hv7fkA1XtAjBpQO3WmK9vAnBTpttF6cexF41W/e5zxh05pzEQhIiIiIhoDON4LXdwcEZERESUAOaA0GjFm0mPHhycERERUcJ+/sx2rD3Qku1mZMVQZxd4LynKVbH7JtNGcxsHZ0RERJSwm5ftxsd+/3q2m0FEw8RrznIbB2dERERECeAJBxqtYqc1WmMzBsrmjoxH6YsRzNYz2X67U0egn7fJTlnr9dljzcITusz6GTMPm/W/HbTT4Gp32mlwxdPsRLXiV+JTIgum2zt/yW57Y4s67OULuuyEuyPt5Wbd5cQiv72ekH1LnjJH+mKb43GnqSMBMGCnMrrSF11/EKWizKzv+Zid0Fn15slmvfrRrfYDhB1vVin4C13QayffFXY7Eiu1yCz3Vtn7fdUe+7mqWT7DrL/xbjvVUIKO56THjvrrPGWqWS/otrd3+vP229Cq188w6+Pa7PV0OV7/V++/2KwvnvOsWX+pZ65Zf7nxWLPeHbDfj0rUeG0l+bdPdtmvq+4ZjuckbO+Ywcn26xw+x/tOu6PeZNfDyo+sNDbw4yuNVpxyO3rwzBkRERFRCvDkA40GPJyW2zg4IyIiohHp9gdR1+6YKZFH+KGWRquhpjVS7uDgjIiIiEbkE7cux9n/+3y2m5F2/FBLo1X/m1DH78nct3MHB2dEREQ0IlsOt2e7CRnFKHIiShcOzoiIiIiSEHvigWccaLQRHl3IaRlNa/T6FOP3xqeG9UwpNpefvN5OrfME7bdCV2BY76RSs7597nFm3UqUBIDx5zSb9a6tE8x6oZG0qHZQHrx2sB7GGf0FAPDYGytb7JTC0Hn2Rm3w232ztWemWT+25IhZ1wb7OYQjfVH9jmTAAjsNLnD0NLPeMbfErJc22P3TcrK970x+zk7F83Y7+n+CnZxY2Bm/z4aK7GMgHr/dN8FSV3KnI93Rkdzp8dnL+6bbr6t5Ffb+vU/tvtFC++2jfY5d9/bafV9eb7dzwquHzHpo+kSzXlpn99uGh08y65+7wm7n1jp7XwsG7eex+hE7MbTlnPha00L7uSo5Yrc9VOJ4r3Mk2YZL7fVXVDmSNZvttvdOtPsmMNu+pujYwvh2FvNvP41BHKgR0UgNeeZMRGaLyDIR2SoiW0Tka9H6dSJySETWR/99IP3NJSIiomzJtXshLd1ah3nXPom2HvuAX7rwxAONZuY1Z7n10h7TEjlzFgTwLVVdKyKVANaIyNLoz25U1V+kr3lEREREtt+/uAsAsKu+E++Ya89iSQd+kKXRhvvs6DHk4ExVawHURr/uEJFtAOw5b0RERJS3kv2A1+MPobTIMQ93FOIJMyJKt6QCQURkHoAzALwRLV0jIhtF5A4RMQ9ZicgiEVktIqsDga6RtZaIiIgyYuXeZrz7hhfQ7bevUx3KrvoOnPiDp/HIupoUtyx7hhqb5tq0TyIafRIenIlIBYCHAHxdVdsB3ALgGAALEDmz9kvr91R1saouVNWFhYV2sAARERHllv97ahsONvdgW23HW7Vkhh59v/fctvoUtyz7nttWl+0mECVlyAMLjLPJGQmlNYpIISIDs7tV9WEAUNW6mJ/fBuCJodbjnyDY+7H4h7zuogfM5f/3gU+Y9Zkv2Ql64UJ7rFnSZKfBVR60IxID5Xa3dNbb89mnttgJaaHC+AkQhV12G4N2aCK6pxWa9dJGe5uqdthtua9zslkPOGLfVrbMM+tl1XafFc10nBVN8ihieFKVWW881e6gnqn2JJPKffbjjtvviOJ0JA9K0JGE6EgMFaNe1GX3Wdgx1afkcIdZD0xO7uCGb5KdoFmx097WpzynmPUTQy1mPVhdYdbLjzhSIsfZ+36g3HGMyOtIuey0EwNdR5qmv2Y/V2uOPdqsi8+RyrjO3tcmvH7QrL/5s+q42mkza81l9+46xqxPWW2fsWiZb78vdE+3t7Wzzn6uihrtfbDikL2egrPt1EeiXNXU6cP3/74ZN3z8NFSW2K+bZHBaIxGlWyJpjQLgdgDbVPVXMfXpMYt9FMDm1DePiIiIckUuTNvr9AUx79on8fiGw/3qd7+xH79auqNf7eZlu/HU5iO4f5V9ECVZ2d96ouHJhdcuJSaRM2fnAfgsgE0isj5a+y6Aq0RkASLvVfsAfCkN7SMiIsopIrIPQAeAEICgqi4c8HMB8BsAHwDQDeALqro20+3MVb2ByNn1ksLhBYUcaOoGANy8bFe/sJHvPRI5RvzNi48fYQuJiLInkbTGV2GfyV+S+uYQERGNCheoaqPjZ5cDOC7672xErtE+O1MNS6dUHHuf/99Po6TQg+0/vjwFaxtcqq+jGWpaI89NRDy8tgazJ5bhnfMmZrspFPXUpiP41/dEpvNbJ9F4Yi13JJXWSEREREO6AsCfNWIFgKoBlwKMWq/uco1HB2F86OsNOK7/HWDL4TbcOGCqYrr4gvb1srFS+fk1HM7fT8PffGADPnHr8mw3g2I8sDo1U3sp/Tg4IyIiSo4CeFZE1ojIIuPnMwHEfhKqgXF/0NhbzTQ0NKSpqan13NbMphR+5ObX8Jvnd/YbyCRzNkyMc11/Xr4PX79vXb/ahoOtOOH7T2PZ9swlSzLxkYgsCaU1porHB5Tvi59jvqz1RHP5yn32egq6Ambd22YnialrXrvjwF1P9XizPm6/nRKpBfYYN1QV/7jqmBNRVp/cEbSeanubwgX2A/zk7k+Zdd+xdvLdrKl2Qt+LjSeY9Q8fu8msr5u7wKwX7rZT66Sl3ax3HGUnZZa6/rY5+tnjd/Sz2L8QmGCnRPqq7JeOpzz+eSmrtY/Gevx2PTjefsyCVvu5ClbaqYyudMTO+fZ+XLW2yKyLz16+Z2qJWfc6+rioy64Xdtn9oEV2slpwop1a6e20UzG7Z9jtnLzc0T+z7X2h+lV7n9VSu/9D7fH9ufCU/eayuwvstMaSRvs5L2q1979x++w3tUMX2dsULLefE1+V3TefPma1WS+W+OfKk9+5duer6iERmQJgqYhsV9WXk12Jqi4GsBgAFi5cmMOnUUbYtAR2hdZuPxb8aCm+c/l8fOm9b78eAqGRPbY1kPvBo1sAAL++8oy3amv2R/7mvbSjARfMnzKix0zUSLeNiPITz5wRERElQVUPRf9fD+ARAGcNWOQQgNkx38+K1ka9Z7ak52zP9/4eCfP4v6e2p2X96RR7rU4y1+3wvlKUSdrva+57uYyDMyIiogSJSLmIVPZ9DeASxN9K5jEAn5OIcwC0qap96nVUiJz66vQF0eg4Qz1Snb32Pf36WB8lxTHjod8yg5y2u+6xLYP+bjCU2HVxueJ7j2zCvGufzHYziGiEODgjIiJK3FQAr4rIBgArATypqk+LyJdF5MvRZZYA2ANgF4DbAPx7dpqaWqHhTsNz/NofX9mT+CqGESWnqrjjtb3On9/5+j7nz57ZcgTHfu8pbD9iT7Xv9zjDPAsx2MBxOO5+40BK10e5b1d9J1q67EsPaPTi4IyIiChBqrpHVU+P/jtZVX8ard+qqrdGv1ZV/YqqHqOqp6qqfbHeGHd9ElMY36zrSHr9Hb63z8YlcpYt1tJo8MnGmjbnMnsbu5JuE6WOqppncg+19qDTN/iZ2Hzx/l+9hItvTOxy16EOcHz9vvUpaBGlAgdnRERENIjhnRna3dAJAHhyUy0CI5wieMer+4ZYYvA2DvbBtKM3gPZeO2hsMF+LJj7y/lDp19LlR/OAM0T3rDyAhT95Dttq+5/dPO/6F/DxW17PZPOyajhTja199uktR1LQGkqFjKY1hsvC6DmjO65e7rVPyfqq7CNd3qZOsy4B+0iJdNvvnKGJ48x6SZP9Jh0stRMSxfHGbKXWOTYVxW12Yl1xs92W7ul2Qlx5rSNR0mMn8c17zE6D2/PxaWb9Hz7yrFnvDNmJeA0Lysz6jP2OXc9rHy8IjrP7p2KdY/kSe9/xOxIMtdBuT0GH/aZX2GknCYox7Ucd2wRHiKjrL704PjwUBu0PPf5T7dRH6bC3tbTRXo8rNVEc9+jpdiSJFrfb6y9sdxzh9Nj91nSKvV3TnrUTRsOFdvrqwmvWmfWd7ZPt9jxsPy78jg913vj+KfY4kmbtlyHEb/dN5UH7dR5yvEcVdNj1iafb8e0fvshOX71n90Kzfnpp/HSq9jCP/Y1F22rbceL0cejyBfHr53a+Vd/b2IXjp1aav/OXFfvx0o7BbyUw1NTB2MdK1mn/86xzgOUPhlHf0YsplSWo7+jFl/6yZoi1caSWDmf8eCkAYN/1H3yr9lr0nnt7Grpw4vT+n+e2H0n+TGu+y7U90xcM4XBrL46qthOYxzL+9SQiIqI46w60Rr9KfErg5b95BQBw78rEr3+6e4V9i4l+Yj5Zho3jPK/sjL85duyAa7BpjbHLDZyq+P2/b8ZZP30egDupMtc+9I4VPGNpe3VnI756r33wMVlrD9gHPVPh2oc24YJfvDiss9b5joMzIiIiGkRufQr++v2p+eBpGeoMXqzRMDgIhsL40eNbUd/hOD2fB5K8nHBU2n6kPe4G8K599Z9ufwOPbzicksd9YkP6QmZfjZ757HXc83Us4+CMiIiIMuKyXyd9r24A/YeHuxsiZ7cGXms0UKY+tA87xTIDXt7ZgDte24vvPzLwbg/5YzQMkkfqsl+/gn/5c/9cof1NgwfSxF1nOUr6qaalG37H5RpjBQdnRERENIjBRzkhx/WnlmSuBeqIme40nCj9dOsb/L3n58vequVCM2PPkvVNAU3mORot0jX4fmpTLeZd+2ROJj7WtSd+BtQ1NguFFTvr7eyGRK3c25yWtNJOXxDn/2wZvvOwfd3zWMHBGRERESVtw8FWAMBVt61Iy/qHTmgcXCoHSukYHA73/mhPbowMHmrbet6qdceEB9238uBbXw8825LrDrf2YN61T+KJjUNPy0vXQPg3z0fCZQ40xQfYZZt1baWLq3veHHCAZDj79if/sBwX/OLFpH9vKPuiA77nttnXd2ZbOKx4fMNhhNN8sCOjaY0F3jAmjIvf2XtCdhpc6Dz7/iL6nJ08CEfinvPwiteue3z2/NciR91fZbfHSu4Tx5narml2mlpvlV0P2WGNaJ9j/yBohyZiylPNZn38Tjvhrt5vJ1weU1Jv1s/87Eazfvi1OWbdlU7n6bWPI9Re6riQNOx4zn32espr7e1tPdrRn+X2+q3EQ0/QfhF7XKftHdOvw2V2W3xTHCmCjvcOR2AgitodD+xIa1TH66es0V6PK8WxrNaREllqv65cqZJmSgCA1uPs53xb61Szvv/wJLM+P2RPoeo4dYpZnz0n/jVx592XmssWOnbXpgVVZr3k03bk8Qdn2FOX6v12St6Lh4816395+CKzXrXDkbh5avzrVkbLHBoatiWba3H67Cqs3Gv/HRmp2MFLtvcmVcSNBqzPtC3dg4cbpGKQ95V71gIAzv2/F95KL3z3z5YN9it4fns9unxBlBdn9GNf0vpu+v3Qmhp86LQZCf1O7Ee8+iTOLOW7yL429OnFw229mFnl+ByRRg1GGvZ/Pxr5G9bWk5shIfevPojvPLwJLd1+fO7ceWl7HJ45IyIiIqd/dN0zaoTjjGR+fThjmtgP7Uu3juweTok+/Cf/sBxH2hIbIEgSKZhDaepy3Kcnxn8+ZB8szSfffGCDWW/t9mNjTWtc/av3rkvqZuijycB9dm9jl3m/wXSfBUpGLkwLHkzfgNIaWKYSB2dERESEPQ2d6A24k9OGOw3PJd3XQcV+0FuxJ7mzewNv7KuqcbNwXJNyBrsuKLZNqe7PPr9augMA4q6ZGipAIheM9MO5L2jvv1cuXoEP3/RaXP3xDYdx60u7R/agKRQOK476zpP4v6e2pWX9/3732qSWHwtJmLmIgzMiIqIxrtMXxIW/fAnfftB9diXuBswZ/OA2nM/sj6ytGfbjvfhm4pH6uaqzN/cCLRI12H3p+iQzkMvFm1L7giF8+rYV+PETW9+a7tobDEEV+MNLe0a8fivxcOnW5K7lysSZrP3NuXdtX7ZxcEZERDTG9UTvNbR8dyRwYPW++DNNb6Tp2rJEDOdaree22ddCD+vxI43oXxvGB9fYX0nltMa4x8n1+WEpNBpO7rR2+7F8d1O/s5lr9rfg9d1NuP3VvVgfDdd5ZN2ht37+g0fjryF+enPi03N/Gw02GQnr7O5wglJuf3Vv3H3a+vzP41uSXl++4+CMiIiI3vLarkZ8/Nbl2W5Gyo/a/2XFfry+K/G0u+G2ZbBF9zR0xiyXvgHUaB+bxQ4uR9ttAB5aUxOXiPjJPyzHVbetwOn/8+xbtT+9tu+tr33Rs1yxZ2z/vHx/3LqTSTFs6Bz5dVGxbeyzwbh2byg/fmLriJJD7191ANc9lv1BXKZeV0PG9ohICYCXARRHl39QVX8oIkcBuA/AJABrAHxWVQe9IrW6uBNXHx0/5/eOve8yl5/2+xK7TQE7Na13pp0k2D7XTn1rPs3u5Tkn2kcm3jvVPgoxpdBuT6HEz30OqJ1YZy0LAJ0huw8qvPac9hKxn4I7Dpxv1nGXncQXtsuoLrTvjdEcrDDrZ46Lf3MBgFc+dapZL26xj4GFK+zknstPsV+sIbXXM67A7rflL5xl1qs/c8Cszyyzk0S7QvH72sQi+yiTq41bmqeb9SPN9v4darOPsUyda0/LOaXcnt5Rv+oosx48scqsd02192Wv335dlbQ4UhYdb3b+SUmmRzmmwZQ02g/Q8vhMs273MiD+JrPeMdvuh57W+ITEgoX2ftPeZSdxXnbiVrteZU89m+S1X59rPfZz+9G59r75yBMXmPUjF9jvU/MK4rer2PGeRrnvUGvP0AsNIZtn2bYcbsPJM8bHDX7+++/DvxGzNZBK5nqcJZtq8YFTp+OpJM58jEQinyE7egMIhRVVZY4E7GG47Ncv45jJ/T8PNHT48NTm2n7pdjvrOvC5O1bi8a+ej+qKt9//OoypmN83nrf23gCe3hLpy9htXbWvZWQbkALf+lsklKQvSRMAdtRF3ptjB5rWFMNkpx0OyrETpPI6spd2NODmF3bh3kXnwOtJ3znM/3ooct+z6z58ctoeIxFH2iPvjek+W5vImTMfgAtV9XQACwBcJiLnAPgZgBtV9VgALQCuTlsriYiIKGmX3PgSvvtI5m/oOvBD5nA+zMR+iFQFbn1pN+55wz5gFqtvimZq73OGhD/VCvqfIQPsIIZUTGv88RP2AZxEvPOnz2HBj5aOuA2xth/pwJObavvVrrlnLX7w6Bbsirnx8W2v7EFtWy+eH3Am6Ov3r49b570r45/zw0kcQHh0/dtTBZO5iXOmwzBefNOehjswnGakUvm6+Oo9a7FyXzM6e4PYUdeBnz29PW5KbdBIiBwN9jZ2Ye2B/oP9e2PuIZhOQw7ONKLvFVUY/acALgTwYLR+F4CPpKOBRERENDw76jrjBjRNnb6EbvKbiIMJXsyvGHlk9/VPbU9qoJnuKUitg9zT7BuOSPdUt+n2V/c6HmfoB+oNZOZDc18/BR33ohypocZQWw6/PbspNplxW60966lPpqeGxg5eY33CMcX4p08OnuiYaPNX7LFnhSTr07etwC0v7o67118y4Tq5lA55wS9exMd+b99GJN27RkLXnImIV0TWA6gHsBTAbgCtqtp3/rkGgDlHSEQWichqEVnd2ZKbN5UjIiIaK66+azWuuWcdmkZ6RF7fviFyIr5677qRPV6CdtR14vjvP5WS6Zn9DPi0fmCEKXNpvebMqCVypu5bD2zAvGufTHFbcueasdin8PLfvJK1djQncF+6Pnsb7Vsg+Iw0xliqii7f0ImdgyW0JkqhaO+JPNbAvSyYxEGZZMZmHb0BfO2+dWjt7t+XO+o6UNMyuhMgExqcqWpIVRcAmAXgLADzE30AVV2sqgtVdWHFBMeFTERERJQRfYOWVAQtJDO9bOB0tz6JnKFI5gP+vSsPwB8Mj3jw1O/xUzS+yNRAxWpv32M3d/nxs6ftGy8/FHP7gZqWbty8bFfKkh9jB4d9q+y7lihu2Vw6hYLIQGfetU++dQ85AHhqUy3mXfskfvLEVgRCYZz6w2fw95i0Rdc91wDgzB+ndjqpZUNNG66+a1VK1/nA6v7T+tqj1wje9soe+KPTF8OqCZ9RHyiZPe2vKw7g0fWHseBHS/sdaLrkxpdx/s+WDevxc0VSaY2q2gpgGYBzAVSJSF+gyCwAh1y/R0RERLmhoePtDzL3rjyQ1NmvfjJ5n7MMnnzp9sefbUjHoCqtUfrQfgOtWGf+eClueTH+xsuxgwl/MIyr71yNnz/zJmpa3h6Ab6xpxck/eNq8Dso1iOsLw4jtw1QGMP4mBZHxQ+nbtNh4+ofWRj72/vHVvWjvCaDDF+wXf//r53bi0fWHsHx3aqYNJmtvY1fSN1+P9ZqRbPqfD240z9j13QoAiPTRu29Y1m8gOxjVyJTnlXub0e0bXpDU60Yf1ydxfWGuSSStcTKAgKq2ikgpgIsRCQNZBuDjiCQ2fh7Ao0OtqyNUghdbToir+wJ2MzrPtRPMTrvc3tEvqbKPELgSEicX2Kl1Ex2JZ91huz0hxxi3y1i+3GNPI7GWBQCP2Ketx3nso5WutriSJldOON2su9IaGwN2KqOrjztD9nb94uN3mfWNPXPM+uaOGWZ9bom9L7jas7HdTuhTR8rQ7lV2e8rO3WXWZ5W1xtXCaj8nHrH/Op09eZ9Zr5hu7zudQbuPa3vHm/XyAns6xd5pdjvbT7SnRVz9rhfMereRWAkATYFys/7shlPM+sxn7Pa0HWU/t5W77PW3nGq/2Xu77PWU1tv7ghYO+XbZf/0b418rvirHJ5JS+3X+1Ca7bzbOsF8PLidU2ReaF3vt5/aEz9lH1a+e9rJZn+qN75uCHDvynSoiMhvAnwFMReRA72JV/c2AZd6HyN/EvguCHlbVH2WwmQCQ0NSe7zwcTUH7h+yloLl2ldjP+pkcnP3EuJYnZWfOYrcpgQHfN+5fj3mTyvG19x/nXOYnRiiIKvDERvtMpWXVvuZ+1zb9bc1BvFkX/xnptlf2ossfwl+W70dLtx/fvvQEVJZEPjDEfkAfSioHu8ncYHq4ZwE/9LtXE1quPSZtsqHDZw6C06GjN4DKksJBz9b1CSfYBwNvB9DnP/5mX0/Z5/Hofvfb53fimxcf3+9na/a34B1zJ6A38HY7txxux52v78OPRhBuY3n/r17CxusuTek6MyWRM2fTASwTkY0AVgFYqqpPAPgvAN8UkV2IxOnfnr5mEhER5YQggG+p6kkAzgHwFRE5yVjuFVVdEP2X8YEZAGw+NHjgQa4b7sf3kR4XqGuLP+KuqVjxMDyy7hBufG4HvvvIJqgqthyOv23FHx2hIMl4Y0AoRMBxPVNP9Kzib57fiT8v34+bXnj7QGUgNPgzdtmvX8Enbn09MkDK4GA7dkA21MP2BkLmYG9rTHjI+oOt+Oq96/qtN5u3jgCA/3k8MrDZXjv0QNWVCpkqgw2A//GWSMDGwDCdXQ32SZGBzrvePij84ye2orat/0mLduO2DKPFkIeCVXUjgDOM+h5Erj8jIiIaE1S1FkBt9OsOEdmGSCBWag/7ZknyJxbiByypukap3zqT+DSfzMNbMd/OoAVjxfub7LCGBseUqtg1JDOt8Z43DuA9x1Uj0VTy57bVwT/gLEq3P5RQQMRgBk5HTPa6xVX7WtDc5c9oREg4iTOwscmCrrH4l/6yGnXtPpw68+3ZKa7UTMvjG1KTlBqrvSfxwD0roMNKUv31c4lNSxzKcI9p9AZCKCn09mtbbMjP7pgBXX2HD9/+20b89V/ONtf1+q5GfP/RzVjy/96NkkJ71syvnn0Tl5w8DV6P9Lv3niXdh2mSm6dDREREAAARmYfIwcs3jB+fKyIbABwG8B+quiWTbUtWX3pcMslqLskMjsJhdU9Liz3j4VjnugOtiT+Ywdpe68Oka8DZl1DXb1kAh42zb/HLJdfX3f4QigvsD5YDXXNPfDLmnoYunPzDZ5J6zD5f+stqvHPexGH9riW2P3/7/E78v4vc0zZH/lgxX6dpkJ8MK7W0pctvTqfNlHXGlNRkzjzF9tVwwlys32jo8GFyZTH+9Nq+fvXDrT2YUVWKB9f0v6ZysFs1/PCxLdjT0IUDzd04fmplv58te7Me//ynyGVRv39xN4JhRWXx28OjFXuacM7Rk7DDmOabLhycERERJUlEKgA8BODrqjpw/uBaAHNVtVNEPgDg7wDiPn2KyCIAiwBgzhz7+tZM+f7fI9eetSVxBN7FjnG3vbjDPcVKHV8PJR2zD7MRBm/dh+v+1am/Ce5Q0fl/fWM/ntlSh2e21OHC+VP6/eyPr+7F7Ill+OFjW1DqOCNhie3PXy3dkd7BGYYe5Lvsqu/E0dX9r2eua0/tTaGBt0NTMsFM8hzhSHSkA1nrDOz/LtmGw2292DBg4Og6W5toGxo6fHhy42F8/l3z8Lk7VuKVnW8Hn/Rdj9cRc4b5ysUrsPG6S3DJjfY11+nAwRkREVESRKQQkYHZ3ar68MCfxw7WVHWJiPxeRKpVtXHAcosBLAaAhQsXZvVmUKv2tST/S/rWf/qXjU9Jro3zB3PnHliDUQX8xjVVSQdbJPEp9pF1/UOwv+m4sXW6/eGlPYP+/IZoLH9PIPGkvaFO0LrG152+ICqKC+LuE3awuRuzJ5aZv7M6Zt9O5tnaWtuO//jbBnz70vggOwAIxMwxtdqb6ZtYv/Onz2Guow+GMtIT5jWtb4cPxT43aw+04Et/WTPk79+3Kv6gw1ObjyTdju1H+h/Q6DvrtTPmBt/X3LMWb+xtxtlHT+o3MBvMF+5YmXRbRiKjg7NAyIsjXePi6v9ynH0H7hkn2X8sQo6XbWvITmsrETudrs2xfKXHno7gdyQANgbjt8nFlb7o0hK021jmsbepPmC3JRC2294zw16/eu0+PtgzwazPLrWfq/EFdqpkr9pxkMUe+6jtKZX2HO0JBY6bMzriJk8bZ9/xYdWFx5h1KbNP6y+sOmDWLSWObXIlStb7K8266zkcV2Dvr4Fix3PuSFMs6LXfnb0d9noO9tr7gj9sv61UF9lHBmfMthM3i1vs9QdOc6SjzrP77WNnrzbrrmTTpfvsP8RY4kiVPcdOxAu1x/dzQavdlxJwJEQ63i4O11WZ9aJSe19raDvarBcW2h+mqivs19UDTfZlxvOmxt+zJ5jpTyYZIpE5O7cD2Kaqv3IsMw1AnaqqiJyFSPhWdvK0B5GuZyhV6x3uLpTM7yW8rEZCB0bqtldGHt6RTam6nnCo9Ty/3T6j2t4TQEVxAb79t/43Tv7wTa9i3Q8uiVu+ozeATYfiQ1QGWrGnCW/sacbz2+veqh2K3kLg58+8af5O7HTcdL2W/v3u+IHNppo2/MNN8emRDR2+frfJSMZIn1fXjMK+oJJYO+o6EBwiPGa4Wrr6/w28cvEK7Lv+g299v622/a3wltgB21DWDpg+ne6/bjxzRkRElLjzAHwWwCYRWR+tfRfAHABQ1VsRuc3Mv4lIEEAPgCs1HSkZOSoVW9rU6cOSmJtWJzXgSua6IvPMX+KPlaxkzi7l4i6TyvuTDUfflLaBARgt3faBqVOve7bf96pAW3eg3yAMiHyIT7Vkptc+tdm+7cGSTfFnj+5avm+YLYqw2vWpNGw/8Ha6Z6zIzc0zc4sBIHI9X5+v3bf+ra9vfsG+JVIi0v3S5OCMiIgoQar6KoYI61LVmwDclJkWpUGiHzwEaOyMn8VhDXiSvQzsHT95bpiNSo412LDuA/WqcUNeF9e2DhxsXXPPOnzoNPc9C7M9ELLsbbTPqicrmXuwxXr3Dcv6nQkZzN/Xxc+U2XSoFaf/6FljaeP319szbSwjHUgnc6+2dEfhD0ey29+bxEGKkTrzJ/EzO4CR3WsvHTelj8XBGRER0RiUrqO/dW3xU6tycJwBwHF9nNFY15kNS50jRv8vK/bH1fY2dqHAI/2ulzrS1ovbXtmTdEx9Jhxojp/G3eVPzQdt/4BbGLR0+TGh3J6Gbxn4XH79/vVxyyRz779kBqLWM5Wu15d9QCS7Qhk8y9vS7cdn/mgF5NpcTRtJk9O9uYnchJqIiIjyTDJHfw8aH8pd/vhqfIDESD/MpOvDUKJnzpI503ONEZUOADuNRL4LfvEi3n3Dsn61bz+4Abe/ujerNza+zrhWKFVcT+XAM10X3/hSUuv98E2vDbNFI5eDM1Cdhntd2mCSSbD84p2rseVw4oPkgV7YXm8eJEj2KRjJU5bup5uDMyIiojFgR11Hv5sQJ/OBMrlrpRJfb6LX5aTtw5AVKz7CVQ48A9THmmZn6UsBtG4MPNp85Z61cTXX/hEYkCrR2OnH757fGbfcwebuflHnfRIJ/kgXa5OsQX66JDNt+O43Eg80y0XJ3Lx9MCN5fvLqmrPqok58cU58wkxHuNRcfo9/slmfXZiao0mVXjtJsClUYdZdSYghtce41YXxc4i9sN+0XemFu7vsPni90ZG+5rH/gM6rsPvMX2mnx7WebKcU9gbtdh7qqTLrrmTAtqD9nJ9VYUf2Lu881qwf9tmPWyB2PxQ66re8/y6zvtM3zawvazrerDf3xqdfVhXb+5lLgeM5DDrSGg932vvllHI7iajIYz+371tkTxOYWdxq1le0HmXWXQLh8WZ9fpU9f/7dN8e/VwDAH/edb9aDW6eY9Tc7ppr1sNpv8D01duojAg1meepE+wjgzDnxHxTqu+11H6y3kynRab/e0GPvC74ex1t6of2+491jvz5b3mkv/5Xjl5n16d749RQKj/1ly+HWHjyw+iDmT3t7f1NVXHLjyzj36Elv19L0+GbIRhKPdqlxP6FkrmkZ5F608cuaN31K/PeTYQ0oYgVC4X73mXszgze9TZcnjTOOrn3BSvD75dIdcbVUXfeWStb+OfBWCGl9/Iw9UnKsm7SP1I3Pxe8TQPLXtY6k03jNGRERESXsK/esxboDrfjG+98+iNR3Emb5nrcT/UecBpjEtRzJPJQ1KEnmuqZkjohby2byjEcfXzCE7z2yGQ+uqcH08SUZf/xMcnXvDx/bktDvfy7D95xKxMaa7J21y2VHHNdfpkOyr9oRvc55zRkRERElqic6kIk9wmx9EEnXGMSaNtXRax9BT+QGtQCwMonrr5JJvkv0mjOX13al5vZ1qm+fZXL1Vb6wB++5eu6H8tVIZg3zmjMiIiIakXQMzpIJrPjkH5aP7MHSxOyXJH7/Z09vT0k7YpuRjTN3mWRdv3ioNbnp/9Rfaq7CGt1W7m3G1trEg0ZGMjUx3deDcnBGRESU5+xLqxL/gHGNEeyw/mDrCFqUG35rBE5kQ+xz0Z2iaPpcdcEvXoyrpSNBcCx5dmvd0AuNAT9+IvGU0WSuTc00Ds6IiIjy3EjPnO0wYuDzgTUFMxsnrvzBcFKJmPkm388W0uiQ6AmxdO+tGQ0EaQuVYknTaXH1Vp+d3OdKuXsleJxZd6XQecTuxhml9gWcc4rtqRquVMYST8CstwXL4mo1PjuVbV/nRLPeHbDT1Lr8dv2EiXby3ZEeOyWuZ7K9TVPnNpp1l2Zf/LYCQNDRZ5OK7D/0E712/Y2GeWa9psGRcudQXm5fnNociE9ZBACP4yW4aYWdHmktvr/S8Qe32D5sIwV2fXyVfZ+hqjL7deJ6PRR47PVPKbKv03jgwJlmve6Avc9Kib29pZV235eXxN9QEwB8Yfvt6aYT7jXrS74b/94CAH/efpZZD/jt9Rc32/usFtnJifUb7X3wcGV1XE1C9uQTb5f9mGUN9vJhR4ijOt7RS+sdf0o+ZL/O/3v+EvtxHQmX+4Px+5qPH7ZyivWhw/UMudLQxopsXP90o5FKOJY8sKom202gMWYkU2l5E2oiIiIakYBx7y3XIKS2LXMJa7loQxaS9+5avj/jj5lL7l99MNtNIEpYuqP0OTgjIiLKc+8zrvO58JcvZb4hRESjXF7dhJqIiIjS44HVB3HD028iZFzpHntzYyIiGr50T33m4IyIiCgP/OeDG7PdBCKivMf7nBEREREREeWArE9rFJESAC8DKI4u/6Cq/lBE7gTwXgB9V85+QVXXD7YuX6gA+9riE95KC+3pFu3+ErPuSgyr7Rhn1nsD9mZuCU8z63MntiT1uK5ExabO+ATDUMgeD/vr7LRDrbAT97zFdiLe2t5ZZj0Y8Jr1X3ztTrO++NB7zfrGTfPMuvMwgmP4vxp22uHJF9uJTadMqDXr+2viE/EAQLx2ImFnh71PvdZ7lFkPtBWb9QLX9hp1b5fd9+GAKxXQbntHod328mI77bDEa+87lYX2xf67uqeY9YWT7Qu1fZPs56QjaPeZP2T3g6udVYV2klKvI5LwpNJDZv20GYfNelOvndB58MBMsx6ssvtfPfbO4KmIf18L++w+CDn2p3ChvfyEnfbrv2K3nXbadIb93vj145836361H/dA0E6mnFnQGlcL87aoRERESUtkWqMPwIWq2ikihQBeFZGnoj/7tqo+mL7mERERERER5YZ0pzUOOTjTyFVvfYdjC6P/eAMbIiIiIiIaU3LiPmci4hWR9QDqASxV1TeiP/qpiGwUkRtFxJzLJCKLRGS1iKwOttk30SUiIiIiIsp1OREIoqohVV0AYBaAs0TkFADfATAfwDsBTATwX47fXayqC1V1YcF4+7oqIiIiIiKiXJcTZ876qGorgGUALlPVWo3wAfgTgLPS0D4iIqKcIiKXicibIrJLRK41fl4sIvdHf/6GiMxLd5tCYV5tQESUGVm+5kxEJgMIqGqriJQCuBjAz0RkuqrWiogA+AiAzUOtq3vnkcZVl1+/P/ptNYDG4Tc9fbanfpU5u60fdf5kRPfLGfb2XuX8yZrhtiXdsv7c7nXUl6fn4bK+vbck/Rvrh/tQ/bZ1t2upV4a7+gxaa5c/d3u/b1P93M5N4bpyhoh4AdyMyN/CGgCrROQxVd0as9jVAFpU9VgRuRLAzwB8Kp3t8nqYjklElAmRoU/6JJLWOB3AXdE/SB4AD6jqEyLyQnTgJoh8+vnyUCtS1cl9X4vIalVdOLxmjy5jaVuBsbW9Y2lbgbG1vWNpW4Gxt70jcBaAXaq6BwBE5D4AVwCIHZxdAeC66NcPArhJRCQasEVERKPYSdPt29OkSiJpjRsBnGHUL0xLi4iIiHLXTACxN/+rAXC2axlVDYpIG4BJGHBmUkQWAVgU/bZTRN5MQfuyfnZ7FGFfJY59lTj2VeJGZV999mfAZ0e+GufskkTOnBEREVGKqepiAItTuU6eAU0c+ypx7KvEsa8Sx76yJRUIkmIp/YOU48bStgJja3vH0rYCY2t7x9K2AmNve4frEIDZMd/PitbMZUSkAMB4AE0ZaR0REY1qWRucRY8YjgljaVuBsbW9Y2lbgbG1vWNpW4Gxt70jsArAcSJylIgUAbgSwGMDlnkMwOejX38cwAu83oyIiBLBaY1EREQJil5Ddg2AZwB4AdyhqltE5EcAVqvqYwBuB/AXEdkFoBmRAVymcJCdOPZV4thXiWNfJY59ZRAezCMiIiIiIsq+jE9rHOrmnaOdiNwhIvUisjmmNlFElorIzuj/J2SzjakiIrNFZJmIbBWRLSLytWg9X7e3RERWisiG6Pb+T7R+VPRGs7uiN54tynZbU0VEvCKyTkSeiH6fz9u6T0Q2ich6EVkdreXrvlwlIg+KyHYR2SYi5+brthIREY0mGR2cxdy883IAJwG4SkROymQbMuBOAJcNqF0L4HlVPQ7A89Hv80EQwLdU9SQA5wD4SvT5zNft9QG4UFVPB7AAwGUicg4iN5i9UVWPBdCCyA1o88XXAGyL+T6ftxUALlDVBTHpUfm6L/8GwNOqOh/A6Yg8x/m6rURERKNGps+cvXXzTlX1A+i7eWfeUNWXEbnGINYVAO6Kfn0XgI9ksk3poqq1qro2+nUHIh/wZiJ/t1dVtTP6bWH0nwK4EJEbzQJ5tL0iMgvABwH8Mfq9IE+3dRB5ty+LyHgA70Hkuiioql9VW5GH2zqW5PuslOFI5my4RPw22n8bReTM7LY+/ZKZ6TNY/4jI56PL7xSRz1uPNdo5+uo6ETkU3b/Wi8gHYn72nWhfvSkil8bU8/p1muyMqrG+X7lkenBm3bxzZobbkA1TVbU2+vURAFOz2Zh0EJF5iNys/A3k8fZGp/mtB1APYCmA3QBaVTUYXSSf9ulfA/hPAOHo95OQv9sKRAbaz4rIGoncHBjIz335KAANAP4UnbL6RxEpR35u65gwRmalDFeiZ8MvB3Bc9N8iALdkvKWZdycSn+lj9o+ITATwQ0RuxH4WgB/m6ZToOxHfV0BkJsmC6L8lABB97V0J4OTo7/w++tlhLLxOk51RNdb3K1M273M2JkXjlPMqhUVEKgA8BODrqtoe+7N8215VDanqAkTubXQWgPnZbVF6iMiHANSr6ppstyWDzlfVMxH5Y/EVEXlP7A/zaF8uAHAmgFtU9QwAXRgwhTGPtnWsyPtZKSnkOkN8BYA/R2dIrABQJSLTs9C+jElypo+rfy4FsFRVm1W1BZGDltYgZlRz9JXLFQDuU1Wfqu4FsAuR12jev06HMaNqTO9XLpkenCVy8858VNf3Jh/9f32W25MyIlKIyMDsblV9OFrO2+3tE50GtgzAuYi8mfTdliJf9unzAHxYRPYh8gfkQkSuU8rHbQUAqOqh6P/rATyCyB/SfNyXawDUqOob0e8fRGSwlo/bOlaM1VkpQ0nmbDj7MCLZ/hnr/XZNdDreHTFndthXSHhGFfvKkOnBWSI378xHsTck/TyAR7PYlpSJXoN0O4BtqvqrmB/l6/ZOFpGq6NelAC5G5KjQMkRuNAvkyfaq6ndUdZaqzkPkdfqCqn4GebitACAi5SJS2fc1gEsAbEYe7suqegTAQRE5IVq6CMBW5OG20pg3Vs6GpwX7Z0i3ADgGkYCwWgC/zGprcshYmlGVDhm9CbXr5p2ZbEO6ici9AN4HoFpEahCZM3s9gAdE5GoA+wF8MnstTKnzAHwWwKbodVgA8F3k7/ZOB3BXdN64B8ADqvqEiGwFcJ+I/ATAOkSDFvLUfyE/t3UqgEcixxtQAOAeVX1aRFYhP/flrwK4O3qQbA+Af0Z0n87DbR0LxuqslEHFng0XkX5nw1W1dsAZYvZhRLL9cwiRzzyx9Rcz0M6sU9W6vq9F5DYAT0S/HWxfyvt9bLAZVdyvEsObUBMREY1i0anGOxA5C3oIkVkqn863g5/JiJ4B96hqR/TrpQB+hEgfNanq9dG0vImq+p8i8kEA1wD4ACIhBL9V1bOy1f5MiU49e0JVT4l+/3Mk0T/R4IY1iEyNBoC1AN6hqolenzVqGH01vW+qnoh8A8DZqnqliJwM4B5EDgbMQCQA4zgAgjx/nUZnVN0FoFlVvx5T536VhIyeOSMiIqLUGguzUoYh2bPhSxD5gLgLQDciZ5PzWpIzfcz+UdVmEfkxIgMNAPhRPn6AdvTV+0RkASJT9PYB+BIAqOoWEXkAkeniQQBfUdVQdD35/jpNdkbVmN6vXHjmjIiIiIiIKAcwSp+IiIiIiCgHcHBGRERERESUAzg4IyIiIiIiygEcnBEREREREeUADs6IiIiIiIhyAAdnREREREREOYCDMyIiIiLKmuiN1IkIHJwRERERUYJEZJ6IbBOR20Rki4g8KyKlInKMiDwtImtE5BURmR9d/k4R+XjM73dG//++6HKPAdgqIiUi8icR2SQi60TkguhyXxCRh6Pr3ikiN0Tr3ui6N0d/5xtZ6A6ilOORCiIiIiJKxnEArlLVfxWRBwD8I4B/BvBlVd0pImcD+D2AC4dYz5kATlHVvSLyLQCqqqdGB3bPisjx0eUWADgDgA/AmyLyOwBTAMxU1VMAQESqUruJRNnBwRkRERERJWOvqq6Pfr0GwDwA7wLwNxHpW6Y4gfWsVNW90a/PB/A7AFDV7SKyH0Df4Ox5VW0DABHZCmAugC0Ajo4O1J4E8OxINogoV3BwRkRERETJ8MV8HQIwFUCrqi4wlg0iehmNiHgAFMX8rGuYj1egqi0icjqASwF8GcAnAXwxwfUR5Sxec0ZEREREI9EOYK+IfAIAJOL06M/2AXhH9OsPAyh0rOMVAJ+J/v7xAOYAeNP1gCJSDcCjqg8B+D4iUySJRj0OzoiIiIhopD4D4GoR2YDIlMMrovXbALw3Wj8X7rNlvwfgEZFNAO4H8AVV9TmWBYCZAF4UkfUA/grgOyPfBKLsE1XNdhuIiIiIiIjGPJ45IyIiIiIiygEcnBEREREREeUADs6IiIiIiIhyAAdnREREREREOYCDMyIiIiIiohzAwRkREREREVEO4OCMiIiIiIgoB/x/w/BvfEe4HEoAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 1080x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAEGCAYAAADhfO2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABanElEQVR4nO3debxcdXk/8M8zM3dNbjaSQFiDQlHUgjTFBWsVlSJa0dZaaWux2qItttraBVrrbn+I4sbaIJsVEUQ2ISABAgQISxKyJ2Qjy71J7r5vsz2/P+bcMLnzPPfO3Dvbnft5v1555d5nzpz5njPnzD3fOd/zOaKqICIiIiIiotIKlboBRERERERExM4ZERERERFRWWDnjIiIiIiIqAywc0ZERERERFQG2DkjIiIiIiIqA5FSN4CIiGi6mz9/vi5evLjUzSAioiJYs2ZNm6ousB5j54yIiKjEFi9ejNWrV5e6GUREVAQistd7bFKdMxE5H8CPAYQB/FRVrxhr+upwvdZVzcqon/Q77eb0VWKPuhSIWVfY92xLOvWEc4+3qDPas2l4rt2eA2G7PhTLLIbseSfr7Lciar8k5tYNmPWqUNys98Zrzfpw3H5dVWcdu7fFs6evqTLWAYBIKJlTe6Tdrod7h816sr7ank/SXoDYTPt9qeq12+mtCDHKGrLXjdcWDEftukfs+Q+dWGPWqyL2NpJIOttm0mm/XYY60yPuzCdhTy719gP1zjZVG3K2NecFks5+Hle7PpSoMuuDMbuO4cz5ROzd1t2ONeGsnJwV9n6WEs7cPwcTvYgmB52NgYiIiCwT7pyJSBjAtQA+AKARwEsi8oCqbvGeU1c1C+846eKM+tJlPzOnXxSuN+thp9MWU/tAZljtg7aOpH2Quj9uv+5Xd3/UrIe+dZRZr9rWlFGT+jpz2r43HW3W9/2pvUwfP2OtWT+uptOsP9H2BrO+t9Pu/Q0O2p2bRMJe994B+anHtZj1o2r7zfqOTvMML2putds5a+WrZn3ojBPNenjAfs8PvdN+zxettNsZGrLnI8nMzlxihr0uw/1OJ2znPrvukGp7/tu+ebJZP3Zhl1nvHbI7cwMDdl2cDnZswFnedrsTU93tdNre2m3W37ooc78CgNNnHjTr8yJ9Zn0gaS9XR3yGWd/Wa++jmw4uMuvJnTMzagvX2uts1lO77Xn09Jh1eB17jzpfMuRJ6Kh5GbVVbb8q6GsSERFVoskEgpwNYKeq7lbVKIBfArgwP80iIiIiIiKaXibTOTsOwP603xuD2hFE5BIRWS0iq6OJwUm8HBERERERUeUqeJS+qi5V1SWquqQ6bA/pIyIiIiIimu4mEwjSBOCEtN+PD2o5q/aSBRwJ5/qJJOx6wg0Eseffm7Q7kftb7eueTjnUa89o2LjIv9a+zqXx/XY/+YRjW816fdi+Xqkt1mDWowk7tKSvzw4K0Xa7nRHn+v5klb0yd0Xmm/WWGZnX4wBAd+Nss37aNvv6I3Mdw7+2zFPTbrc/FM3+2jIAEGt6J5zk0Dn29rTIeU1tPGS/prNNaZ+9e7dU2dtIbNAJtvAub/J226i9LUe8E+cFjoxIFPg7KPfjy3hZLxwGXj1fnOt0cw0ckUK3k4iIaJqbzFHLSwBOFZGTRaQawCcBPJCfZhEREREREU0vEz5zpqpxEfkCgN8iFaV/s6puzlvLiIiIiIiIppFJ3edMVZcBWJanthAREREREU1bBQ8EISIiIiIiovGxc0ZERERERFQGJjWssdCSbkxcjvNRez4xJybuUNxODEw22SmO0tNs1s1XdaLdkrPshL7eITuJb03niWa9PmKnOM6psaPyZswcMuv9rU5aY7/d/oQdSIhYmz2frm77CQ277FRJae0w65qwUxMjPfZyhXoGzPrCTuc2D3E7zS5+1AyzbrU+svOAOe3chpPMesu77ITLhXe3mXVtsNsS6bHXZTxpJ3S6OXz2KoYk7WeIE5RZ1edsO/YmkjdhbwHyJBSy52+tBnW+DpNQgb8ncxJuvfRFTdqfmV6diIiI8oNnzoiIiIiIiMoAO2dERERERERlgJ0zIiIiIiKiMlDW15wRERGVgojcDODDAFpU9c1B7U4ApwWTzAHQpapnGs/dA6AXQAJAXFWXFKHJRERUAdg5IyIiynQrgGsA/GykoKp/PvKziFwFoHuM579XVe0UHyIiIkdFdc4SbiqjXR9SO81u77Cdljdzrz0KVGMxu24lCfbbqYm1e+z0wqMX95r1WMJue6jKXtYZYTvFcVGDPf/tc+rNerLHjtYLJezUt8hAbiNnZxx0kvWGh82y1NjrTVq7zLrOmmlP32enOCbnNpj16Gz7deu7jZRIJymv9qVdZr3v2DeYdT1pkV2P2Os4WWNvC2HnPVEnrlG8sEMnuM9LfYz02/W4HR7pp0c6ks4zEgUevZ1MehGMmSUvrRFOWqM46a7ufPKUpuimOCbs9FKznbm+gWVGVZ8WkcXWY5Ja4E8AOLeojSIioorHa86IiIhy8wcAmlV1h/O4AnhURNaIyCXeTETkEhFZLSKrW1tbC9JQIiKaWtg5IyIiys1FAO4Y4/F3qepZAD4I4FIRebc1kaouVdUlqrpkwYIFhWgnERFNMeycERERZUlEIgD+BMCd3jSq2hT83wLgXgBnF6d1REQ01bFzRkRElL33A9imqo3WgyIyQ0QaRn4GcB6ATUVsHxERTWHsnBEREY0iIncAWAXgNBFpFJHPBg99EqOGNIrIsSKyLPj1aADPiMh6AC8CeEhVHylWu4mIaGori7TGqJOy6EnCi4/Lbf4xJ/Js3+A8sz7zgJ1UhnjcrieNdjrTzmiy23jSzA6zfnBwtlmPONF6XpJdXcROmqydaac7xmvtlMKqPnv+4SG7LvbLor7Ffl2ZN9es97/Rvk6jrsmOBpQBO/XRE+q25zP4Fnv9Q2ZllOrbOu1Ja+2YwvkP7bTnPcdOjhx6/VH29I6cUxkd4qU1OrtDZNDbz3OL9Ut6C1AioVD2K85NWfSm9z4b85TKqM58vLRGiJP0abUzP00sGVW9yKl/2qgdAHBB8PNuAGcUtHFERFSxeOaMiIiIiIioDLBzRkREREREVAbYOSMiIiIiIioD7JwRERERERGVAXbOiIiIiIiIykBZpDVWi50MFnJT3Ow+ZQJ2mqI3/5iGzfruXjv9rv7AkFnXRA4xd2pPG5tlt/GYmh6z3huzk/7qwnYMYjzHmDgvJC4+20msdNZlTZe9XLVt9gvUbjtoz76uxqyHYvZ82s6y0xS7TjPLOOZ5+32JDNr17lPt+cx6NXP9J4+3EyVDPYNmPXmMnUwZGrTf25o2ez7zX7bTHTvfaJYRiuYnBTHkpDVWDTj7ibN/OmWEvJjIAsv5dY32q7dQEXv/EWd6zTEK0UtlzJnz+UVERET5ManOmYjsAdALIAEgrqpL8tEoIiIiIiKi6SYfZ87eq6pteZgPERERERHRtMVrzoiIiIiIiMrAZDtnCuBREVkjIpdYE4jIJSKyWkRWRxP2tTFERERERETT3WSHNb5LVZtEZCGA5SKyTVWfTp9AVZcCWAoAs2uPKc2V/ERERERERGVuUp0zVW0K/m8RkXsBnA3g6bGfVT56knbiYWOrnZZ3amu3WdeEk2CYNJLNqnJb5Qur7LTG9uqZZv3QkJ3QVx2y2zizatievtqO3IvNdNIga+z5V/XZKYszm+z5a3+/WceQnZRZ3V5v1ud12cslSXu9DSy0TyKHh+16TbuTMGh8/RBqbDWn1d4+ex6HnOS+BXaKaP9pc+z5O+fF6w/abR+2Z+OeX48M2PWk3XyEo853M/kJicybsOSWSBgK2culVlqjN1bBS2X0YlNzJCFn/k6KY97SHYmIiCgnEx7WKCIzRKRh5GcA5wHYlK+GERERERERTSeTOXN2NIB7g/vwRAD8QlUfyUuriIiIiIiIppkJd85UdTeAM/LYFiIiIiIiommLUfpERERERERlgJ0zIiIiIiKiMjDZKP288HqIYXEe0dzS1KJO4llHwk7u0wN2iiN6D+T0ughl3/edccBepqPCdqLfSXVtZr0uHDXrO3oXZt2WsUSq7FRGcdIdB4+zo/v6m+xNb0atve6TTrJhqM9OZYwttFMrQ3F7W0hW2Wl2HW8yyzj5fjuqMNKRmTapfU4CpcdK+QSgHZ1mvf/oRWa9+zR7WWub7WUN26sS0TleGqE9n5Ad6ImQl9aYJyHY8w/DXp+hXFMZrSjOsZjTO9GUzroUL8XRWdZSMdtZZimcREREUwHPnBEREREREZUBds6IiIhGEZGbRaRFRDal1b4uIk0isi74d4Hz3PNF5BUR2SkilxWv1URENNWxc0ZERJTpVgDnG/UfquqZwb9lox8UkTCAawF8EMDpAC4SkdML2lIiIqoY7JwRERGNoqpPA+iYwFPPBrBTVXerahTALwFcmNfGERFRxWLnjIiIKHtfEJENwbDHucbjxwHYn/Z7Y1AjIiIaV1mkNXoSTipj0kkqSzqpbF4m297ofLNef8Dps0btGDqprrKnnz8vs+YkOM7cP2jW98eMeQA4OtJt1rf3H2PWk050WmP3bLM+MFBj1r3EulkNQ2Z9Rp0dAdgWsl931r7jzXr1i9vNOrp6zHKkyt6053bb69lLyxtYaB17AeF+J5Kw1fii3UkL9V7Towl7S+4/1p4+OdNO0ByosbfB+n32Oov02e2Mz/ASA70URyeF0g0wLE0ioZf6WFBeKqO37XhyTLLNmZegO31cD+BbADT4/yoAn5nozETkEgCXAMCJJ56Yj/YREdEUN+3/0hIREWVDVZtVNaGqSQA3IjWEcbQmACek/X58ULPmt1RVl6jqkgULFuS/wURENOWwc0ZERJQFEUm/qeDHAGwyJnsJwKkicrKIVAP4JIAHitE+IiKa+sp6WCMREVEpiMgdAN4DYL6INAL4GoD3iMiZSA1r3APgc8G0xwL4qapeoKpxEfkCgN8CCAO4WVU3F38JiIhoKmLnjIiIaBRVvcgo3+RMewDABWm/LwOQEbNPREQ0Hg5rJCIiIiIiKgNlfebMS2WMacKp20llXUl7Mbc5yYYN++35Y+FRZnngdXai3/CccEbNC6CbuddOEbzuuXPN+h3vv8Gs76o92qx3RuvMek+fXU922mmNyQY7pXBe3YBZb6i2UxzDIXtFHHyHfVH84r12sqY2t5n1UFunWR863U6D7D/WTtxctMpOmwztP2S3Z9BY3nDmdgAASDrJek5Cn4Tt71LiJ9vruGGmXR8aspd1sN7eT2perTXrte12wmB0tt3+cNRZ3jylMnqJpPnipTi6qZJWcwrbxJzTFCXkJGgmS5OUSURENN3xzBkREREREVEZYOeMiIiIiIioDLBzRkREREREVAbYOSMiIiIiIioD7JwRERERERGVgXHTGkXkZgAfBtCiqm8OavMA3AlgMVI34vyEqtrxeFkYctLpGuCkuzliTppab7LarG/rXGjWk3V2n7XlD+wkQedlETJCH5N2UB4631hv1k98wE6O/OXvvc2snz97o1nvjtupjBvkOLMu/U4yYLWdPNgxaLe/Kmy3vzYSN+utr7fTEbuW2CmUcx7vM+vJnl77dfe0m3XATuKs2bzfrOuAna5pJjMmnPRPL60x5HxnUmVvxwuP6rGb4qQIeoGBzhJh6MSoWY912B8fkQH7FSReXgmASbXXc95SH43FVWfWGnLWmdh1dRJr80Wc9qizLav1GV5ebzcREdGUkM2Zs1sBnD+qdhmAx1X1VACPB78TERERERHRBI3bOVPVpwF0jCpfCOC24OfbAHw0v80iIiIiIiKaXiZ6zdnRqnow+PkQAHvMGQARuUREVovI6mjCGzhFREREREQ0vU06EERTFxu4Vxeo6lJVXaKqS6rD9nVPRERERERE091EO2fNIrIIAIL/W/LXJCIiIiIiouln3LRGxwMALgZwRfD//XlrURaSTopj1El9bE/MNOst7bPM+sy5dlKZlb4I+AmMVX2Z7anutduYdN6J2Ey7//zAs79n1r/ysafMelN9o1l/tuF1Zr2tocash/rttMae/lqz7plTZw9xnTffTllsPctOU6xvPsGsV63eYdaTDTmevU06iYc19vrRYSNtMtdURs9ce3s9oaHLrPdE7ffEO83t1ZMJ+z1PNNj7SU27s0M4+6cXYahetGGehCS3NNhSMFMQ8zl/Z/smIiKi0hj36FBE7gCwCsBpItIoIp9FqlP2ARHZAeD9we9EREREREQ0QeOeOVPVi5yH3pfnthAREREREU1bkw4EISIiIiIioslj54yIiIiIiKgMsHNGRERERERUBiaa1liWvOy1ncPHmHXtrDbrXqKiFx6nYj8Qr82sh2L2POra7ShISdhtOeY5O0HvmQ/a9wM/t36nWX9x4clm/fm4k8p4qMGsRwfshL7OhN3/n1EdNesLZvSb9aHX2/M/8M7ZZn3x/vlmfeA4O7lTQ/Z7WD00ZNZz4qUyeimOYXvdD7x+nllfXNNk1mdX2W3fjzn2/Ift/SEcsbfNRJXdzir7LYQ4wYBeaGKBgwqR1AJ/N5WHsElxPltUnLZrjgmU3vTe/B1mOwsbtklERFSReOaMiIhoFBG5WURaRGRTWu17IrJNRDaIyL0iMsd57h4R2Sgi60RkddEaTUREUx47Z0RERJluBXD+qNpyAG9W1d8FsB3A5WM8/72qeqaqLilQ+4iIqAKxc0ZERDSKqj4NoGNU7VFVjQe/Pg/g+KI3jIiIKho7Z0RERLn7DICHnccUwKMiskZELvFmICKXiMhqEVnd2tpakEYSEdHUws4ZERFRDkTkvwDEAdzuTPIuVT0LwAcBXCoi77YmUtWlqrpEVZcsWLCgQK0lIqKppCzSGqudRLJc9SftvubOwYVmvabNTpsLR+0EMyt9cSyRISNuzkmgi82w215/yE41rO606/9181+b9Ts+9wOz/qG56826l2T3XGKxWR/oqDfrds4f0B+1kwGPndFt1iNH2e/JttPt+XT+vp1aab4nAMLDTmpdwlmCXLZZL5UxR33H27trROw2zqkeMOutQ3ZiZZWTylhdHTfrCSfRs7rb2cgLHL8Y8nYub3onJtKbT8iJmyyrUMJcUxxzTGX0qPXeFjhts1RE5NMAPgzgfWouOKCqTcH/LSJyL4CzATxdtEYSEdGUxTNnREREWRCR8wH8O4CPqKr57YeIzBCRhpGfAZwHYJM1LRER0WjsnBEREY0iIncAWAXgNBFpFJHPArgGQAOA5UFM/g3BtMeKyLLgqUcDeEZE1gN4EcBDqvpICRaBiIimoLIY1khERFROVPUio3yTM+0BABcEP+8GcEYBm0ZERBWMZ86IiIiIiIjKADtnREREREREZaAshjXm2kOMOcljHclas7679yizXtNhlhGyw+kQitn1iJNCFzYCFSPDTuJbwq7HZtpvUV3vsFk/8SF7oT562qVm/f/efaNZP7a2y6wvnNVn1vcPV5n1RK9d7+6z3yvMtcsLau3X7TzKTnfsOO0Ysz5/g51IODzHTh6ss5uTn+TBkLPlO/X+Y+1cwJlhe1vw0gXrI3bS59zaQbMeT9jtiTrpjrVddl3i+Umt9IS99EVnPdTC3qH7nPlUhezl8uZvBp7mGO3ohAHmj5fimCOx0kvLKsaSiIhoauCZMyIiIiIiojLAzhkREVU0EblSRGaJSJWIPC4irSLyV6VuFxER0WjsnBERUaU7T1V7kLp59B4ApwD4t5K2iIiIyMDOGRERVbqRi3c/BOBXqmpfrEpERFRiZREIQkREVEAPisg2AIMA/l5EFgAYKnGbiIiIMozbORORm5EaCtKiqm8Oal8H8HcAWoPJ/lNVl020EV5eWEztdLR+J2GsK1lv1pu6Z5v1ut7ckhOt9EUAELVjyULxzPlYNQAIRZ1UNifxLD6rxqxXN9lfCJ+y1I6g/O7JF5j1fzhuhVnf1zDPrPcN2+1pj8806/Govem1D80w64sb2s16ddjeRoYW2Ul80V326yadPSE0q8F+wEqnA8wURx12NpxwbieuY7NySyNsCNvHnotq7W0kmrQTK7364HC1Wa8/YKc+Jquc5S1wIGHY+4QRuz1VYm9TnlDInr+V1qj2qgRq7HUpEXvD1LgTKZvMbWVK2G6QevPJU7pjsanqZSJyJYBuVU2IyACAC0vdLiIiotGyOTq8FcD5Rv2Hqnpm8G/CHTMiIqJCEpF6AP8A4PqgdCyAJaVrERERkW3czpmqPg3AuSMYERFR2bsFQBTAO4PfmwB8u3TNISIisk0mEOQLIrJBRG4WEefWwYCIXCIiq0VkdTRhD3ciIiIqoNer6pVA6s7jqjoA3iabiIjK0EQ7Z9cDeD2AMwEcBHCVN6GqLlXVJaq6pDpcN8GXIyIimrCoiNQhuMJRRF4PYLi0TSIiIso0obRGVW0e+VlEbgTwYN5aRERElF9fA/AIgBNE5HYA5wD4dElbREREZJhQ50xEFqnqweDXjwHYNJlGRI2EOwCoclLWvLyw1vgss97Xbqc4Ngw5aY1euJtbz34+XhKkOOsATnBcvM5OWYvMtpe16pCd0HfolpPN+pZ/3W7WT595wKw39s8x6/HZ9snZ7m67nY1ddrLmjCr7S24vqTA8006zGzi6yqxHvBG3TipjsrvHbs8xCzNnUe+cMU46G1TcftOT8+3Ux6SXFupssDUhe91EnNRBbx17KYUybLdfa531UODBZWFvx3V2OW+9RZx6yGt/OPMF4nX2/jB8jJ1qWlW92H7NAeekT5e9XSY7usy6JnJLpvQSLsudqi4XkbUA3o7UFvdFVW0rcbOIiIgyjPuXVkTuALAKwGki0iginwVwpYhsFJENAN4L4J8L3E4iIqIJEZFzAAyp6kMA5gD4TxE5qbStIiIiyjTumTNVvcgo31SAthARERXC9QDOEJEzAPwLUn/DfgbgD0vaKiIiolGm5hgVIiKi7MVVVZG68fS1qnotAOcO80RERKUzoWvOiIiIppBeEbkcwF8BeLeIhADYF6ASERGVEM+cERFRpftzpKLzP6uqhwAcD+B7Yz0huIdni4hsSqvNE5HlIrIj+N+8x6eIXBxMs0NELs7nghARUWUrizNnXvqiJ+akrB2I2vfCrmqzvyANR3NLcXNTGRN2XJsTcpfTa4acdEfP8Lwas17jJAPOf7bZrN89eJ5ZH/yLLrN+2vwWs+4l5XkJg73ddqLfwXo7ibM2YicPNsy04xf7FtTa0+8xy0CdPX0oZH+voTWZ25pW27tZqNduo9baSZzVdTGzPjOc2+2avOkbInY9Wm23pyVkJwxqlT29hp1YQ2cTTybz891RyPuEcZoTdhpUFbKTDSNhJ50ykjmfhL05ITrb3kaSEXt/0LCddhqKzzHrdRvshY235BhYqLl+WpeHoEP2g7Tf9yF1zdlYbgVwzajpLgPwuKpeISKXBb//R/qTRGQeUtH9S5DauteIyAOq2jnZ5SAiosrHM2dERFTRRORPgrNY3SLSIyK9ImLfdyCgqk8D6BhVvhDAbcHPtwH4qPHUPwKwXFU7gg7ZcgDnT24JiIhoumDnjIiIKt2VAD6iqrNVdZaqNqiqfTp+bEen3ePzEICjjWmOA7A/7ffGoJZBRC4RkdUisrq1tXUCzSme3qEYBqM53hePaAp56zcfxZ9e/1ypm0HEzhkREVW8ZlXdms8ZBumPuY07z5zHUlVdoqpLFixYkKeWFcZbvv4o3vP9FaVuBlHBdA7EsGYvRx9T6ZXFNWdEREQFtFpE7gRwH1LBIAAAVb0nx/k0i8giVT0oIosAWBfbNgF4T9rvxwN4MsfXKUvNPbld30pERLmbkp2zqNon/F4dnG/Wa9rsi+FDUftLT7XzDCDJyQd/eKEIMuyEjcSdujptD9nzj82xkwi8LOnZr9iXY8Tut0NXIn97yKzPqh6y5zPTXsleUEhbp31LojmzBsz6jJqoWe+aaweIhLfZu4KGnZPLc5xbJDnBK+a86+zwlmRtbrvloag9Omtulb1uasReBwuqe8163NnfhoedEIsa+z1MOEEn3v7j5O+420iphL0FMOrOqkQykuMyeevGm0+9HSwizueFeit/6poFYABAetKRAsi1c/YAgIsBXBH8f78xzW8B/E9akuN5AC7P8XXKyobGrlI3gYho2piSnTMiIqJsqerf5PocEbkDqTNg80WkEakExisA3CUinwWwF8AngmmXAPi8qv6tqnaIyLcAvBTM6puqOjpYZEr597s3lLoJRETTBjtnRERU0UTkeABXAzgnKK0E8EVVbfSeo6oXOQ+9z5h2NYC/Tfv9ZgA3T7jBZWbbIfusOhER5R8DQYiIqNLdgtSQxGODf78JakRERGWFnTMiIqp0C1T1FlWNB/9uBVDe8YhERDQtsXNGRESVrl1E/kpEwsG/vwLQXupGERERjVbW15zFnEiyjqSdPLazx05rrO1wEg/dRDInUTHXrqyRqOilqXkpbm4bnVA2SdjTJ6vtF4jNtlMcBxfaOY6z9tgpiC+sfKNZ/+D7Vpv1aMLe9BIz7HY2Dlab9e4+u/01NXYiYajerkeG7CTB+EI7CTHca6dQivF9h0bsZUrMsJcp1mCv+3B40Kz3x+3Ux6Oq+u35O3GkXj0idgJlrMNe92lJ5UcID9s3sA3F7OWNJ+z1lnQ2/oSzEyWd76C86RPu/J1916zC3EdzDZqMDNjrTOL2e5Kocz7SnXRX/0Ot4m42/Bmkrjn7YfD7swByDgkhIiIqtLLunBEREU2Wqu4F8JFSt4OIiGg8HNZIREQVTUReJyK/EZFWEWkRkftF5HWlbhcREdFo7JwREVGl+wWAuwAsQiqt8VcA7ihpi6a4RzYdwuLLHsKrbfbwaSIimhh2zoiIqNLVq+r/paU1/hyAd9EkZeE3Gw4AADY1dRf8tXqGYnhuZ1vBX4eIqBywc0ZERJXuYRG5TEQWi8hJIvLvAJaJyDwRmVfqxtHYLr19Lf7ipy+go98OpCKarPvXNZW6CUSHlUUgSMwJEks4CWOtCTtBr6l9tllf2GMnmzkhdIB46Y725F4CY8iIZgvFnYX1ymFn3lFvmXJLd4zOsjeBcNSej5e4t/hBO73w8VN+x6y/5ZiDZj05VG/W584aMOvtHTPNeqzfTkJE3Iu5tMteymVYnOS+KiOtMeykAtba6z4620mydNILm4cazHpdOObU7QOcwYS9zvrjdr26w053DA3biZhw1pk4wYBJJ9ownnSSR520yaiW6GMulLkPxWfY+5Wz6t392UtlFC+V0atPH58I/v/cqPonkfr05fVnZWx7cy8AIOqklBJN1nUrdpW6CUSHjXvUIiInAPgZgKOR+iO2VFV/HHzbeCeAxQD2APiEqnYWrqlERES5U9WTS90GIiKaOqLxJLoHY1jQYN+uqJCyGdYYB/BlVT0dwNsBXCoipwO4DMDjqnoqgMeD34mIiMqKiPyZiDQEP39FRO4RkbeWul1ERFSevnTny/j97zxWktcet3OmqgdVdW3wcy+ArQCOA3AhgNuCyW4D8NECtZGIiGgy/ltVe0XkXQDeD+AmADeUuE1EVCbUu7aEpq1lGw+V7LVzCgQRkcUA3grgBQBHq+rIhUOHkBr2aD3nEhFZLSKro4nBybSViIhoIkaubPwQUkPzHwLgXOlHNHW97X8ewyduWFXqZkw525v7St0EosOy7pyJyEwAvwbwJVXtSX9MVRVOpIWqLlXVJaq6pDpcN6nGEhERTUCTiPwvgD9HKqWxBkwrdi3f0ozFlz2Exk47iInKV3PPMF7c01HqZhBVDC1BoFZWMWYiUoVUx+x2Vb0nKDeLyCJVPSgiiwC0TLQRQ07KmmdPdL5Zj7fbnb+qXjsOzktOTITsv9lecqKf+pj9a7ppgUb6H+CnNcJJd/NS30I5pjKqk0xZ1Wb/ET/mWjtNMflNez51ETthsLnLSSScMWzWB9rt1MdIt7fJ52fnUyOR0E1rrLHrg0fZ6ybppDUOxqvMelfM3h8GE/b0SWcjbB+aYdarer2N1i474Yv+/uM9weG130t9DDmprJ6wl+LqTB+qzdyHNOSse+ezJVHrJFA6Kat1Lfb+gGEngjzktN5J0IRM2f7MJwCcD+D7qtoV/M36txK3qWz9avV+AMCmph4cP9f+LCUiosIY9y+tiAhS4/O3quoP0h56AMDFwc8XA7g//80jIiKaHFUdQOoLxHcFpTiAHaVr0dS1q/XI4V/bDvU4UxIRTX2luBNNNl+DngPgUwDOFZF1wb8LAFwB4AMisgOpC6yvKGA7iYiIJkREvgbgPwBcHpSqAPy8dC2auu5e0wgA6BtK3c/wWt4fiogor8Yd1qiqz8AfufO+/DaHiIgo7z6GVJjVSPLwgZFofZoYZtsR0XRQis+6KXsBARERUZai6cFVImJfSJkFETktbRTJOhHpEZEvjZrmPSLSnTbNVyfXfCIimi6yCgQhIiKaioLrph8M0hrniMjfAfgMgBsnMj9VfQXAmcG8wwCaANxrTLpSVT88oUYT5VEiqWjtHcYxs2tL3RQiykJZdM5iap/AG1K7efuH5pn1mhY72SzSbyeYqZOEKAkn2TBm17XeSYkzkg2rnFtpqJOaFh7yYtMczgBUb/5eYJ2XyjjcYKfNxetmmfW6vV1m/eVnfsesf/S85836vo65Zj0WtbeRhoX2io7vs+dT12anRErMjhJUJ9Ezl3PRIWc7q+m2650D9rrvGbL/4HrJl9WhuFmPhOxl7RyyUx9r2+12JuudRMJqJ5XV2wadejxpzyfhfI4kvDdFvZhIW8hpaE3EXp9GcOcY+6dd7zvOvhVXbYfzueCksroSOX6+JHOcvgyoqorInwH4FwA9AE4D8FVVXZ6H2b8PwC5V3ZuHeZWF/R0DeHRLc6mbQXn0g+Wv4NoVu7Dq8nOxaDZvaUSUi9Sgi9zSoyerLDpnREREBbQWQJeq5js+/5MA7nAee4eIrAdwAMC/qurm0ROIyCUALgGAE088Mc9Nm5j71zWVugmUZ09tbwUAtPVG2TkjmgJ4zRkREVW6twFYJSK7RGTDyL/JzFBEqgF8BMCvjIfXAjhJVc8AcDWA+6x5qOpSVV2iqksWLFgwmeZMS/e93ISWnqFSN4OIKlgpAkF45oyIiCrdHxVgnh8EsFZVM8YAqmpP2s/LROQ6EZmvqm0FaEfBrNrVhvPffEypm2HqHojhS3euwxuOacAjX3p3qZtDRJQ3PHNGREQVTVX3Wv8mOduL4AxpFJFjgiASiMjZSP2tbZ/k6xXdbavK91K6eDJ1zWhLr31NORFRtl7e14mD3YPjTjcQjeOWZ1/FtkM94047GeycERER5SCI4v8AgHvSap8Xkc8Hv34cwKbgmrOfAPhkEOVP47juyZ1YtvHgEbXmHnbAiKhwPnbdc/jDK580H0v/5O4biuMbv9mCNXs7C9qe4g9rNP4+JZwUlH61k8r2DthpjbXO95KhqJ0wljTj1ACxw+b8FEc7rA29J2TOv6bbnjY87Pzd9tLdwvYDGrGT7NpPtxP9YjPt+de22e2pb3PWZZXdnsGT5pj1E56wkwTvPfEMs37mCY1mfe1u+yL6RQt7zXpjwk5r9NofycPhVChupwKGB+11GY7a76EM2PXegRqzPqvWvhajK25fEO6lNfb029vO3H4nrbHa+c7H2Za9/SfprIe4E22Y1MKmKYXEXj8Rr16VuWDRGfa0w/PsZfUSMeN1TkLsMfZ7FWl3buvV4fyBSTpvivOZOd2oaj+Ao0bVbkj7+RoA1xS7XZXgykdeAQDsueJDGY+NnC0jIsq3aGL8z5difcPGM2dERERU9q56dHupm0DTzKpd7Xh8K28tMZ2p0SWTAkfrMxCEiIiIAADXP7mr1E1wbT1Y2Os8iEa76MbUvVc3feOPMLOGh8zTXbEGp/PMGREREQEA+p3LAEaU8so54bBaKpE9bf2lbgKVkUJ/FLFzRkRERERENEr6F1LWEMdCYOeMiIiIctLYMWDWW3qHMDjO2Tcioqms0Ofwiz+A1jgX6KUytifsKMGmvtlmvaYrxySnXLumToc5MuiktQ1kvkC0wX7RuiEnHc15TQ05CZfH2lGT3W+zk/tqt9vpbmE7TNFdVi/JcniOvYlFBuz5HPWInSS47vzjzXq4yp7P9u3HmvUFB+x2euvTG8MjTl1z2GXFSQZywv8Q6bO3neFq+z1scl43ErFfoCpsH1AN99lpkJEhL0nQTh70EjHFO45L2NMPJ+xtajhp12NqtyfsrOiws9NVOQ2dXWPfG2VuQ+Z6ax6wP+sGjvE+jOx1EK+zp6/qs+cytNhOKa3rtYfqxJtbnfbYzJR4BsdXtN3OMK+zv/M43nzcLDz4j39Q5BYREVUGnjkjIiKivNnUVLzgjo7+aNFei4imNwaCEBERUVkp1jUXpbTfGbJJRAQwEISIiIimmTV7O0ryug9vPIg/uHIFVmxrKcnrU+mZw7Rp2joyEKQ42DkjIiKi7BTp6GTljraMWvp9zu592buqdnI2NHUDALbwnmpENMrWA6nPhZiTs5Av7JwRERHRlPLIpkOlbgJNUdF4Elc+sg39w3YQG0+cUbr0odz/8esNAI78oqgQyuJ250NJO2GwI26nNbZ1Npj1YwacBL1wfvqgkrTnH3KCFsPDmdMPHO2kNbbZA1jVeYckbrel30l9izTZiXuz9jjJfc66DEXt6d20Q6c8ON9esLgd1oj5y5xUSeda8JCzfuK1dt1LEgzFnOhEL8XRCPRTOKmMznbjifR569hJL4S9zhINdhRnNGSnGoZ67PmHh+z0Qo3klspo7ScAgLiT1hjPLZUxqc7+76zOkJPiODMybNbnVtvXp7RXzcio1TXYqakDw3Ybh5xkykivs7062/3QXHs+1ccvsOfTbf/hSQ7ayZTmzYF5v+CKxONWmuruXL0f1z25C4mk4vIL3pjxeHt/FAuMtF2iESW/5kxEThCRFSKyRUQ2i8gXg/rXRaRJRNYF/y4obFOJiIiolPa22xH6RFNFLJ76Am44bn8R9+PHtxezOTSFFOvLqWzOnMUBfFlV14pIA4A1IrI8eOyHqvr9wjWPiIiIysVvNzeXugkFxSFtRJTO+kyQAg8NGffMmaoeVNW1wc+9ALYCOK6grSIiIqKS6x2yh0GXk4Pd9nBboomYjh30oVgCSefSHXpNsZI8c7oYS0QWA3grgBeC0hdEZIOI3Cwic53nXCIiq0VkdTTBD1AiIqKpIl7gVLJ8SOTxoLLQ15LQ1PTyvs5SN6FghmIJvOG/H8EVj2wrdVPKkvXpUvJrzkaIyEwAvwbwJVXtAXA9gNcDOBPAQQBXWc9T1aWqukRVl1SHnbQHIiIiKrpD3UP4+fN7S90MoqK56tFXxnzcOhj/+m+2FKYxZWAwmkrrumv1/hK3pPyV0zVnEJEqpDpmt6vqPQCgqs1pj98I4MGJNiIGO2WtOTbbrMe7q816eNhJ1vOSBL0gPi8Uz3lXkk4Xurov8wndpzqv6e33TlvUSRes7rUbOWuvvbDVPXaEXijmLKz3bYGXfOfMJznLnr62w25nbbsdbRgesuvxmXYCaChqfx/hJXG6vG+TQ5l1cb4DSVbbdW/7C9thge5XOOqkOMYjTtJkxF73NV3OOlMnrdFZNVX99nsVitn7v/cpmHBWUNxJa8yXGides8pJd2yoynzDOqvsL6iiToJmzNv/Q/Z7Gx30nmCXhxbaiZ71++ykXAzZG6E51KP8T7gQgE/f8iK2HerFeW86Gn3O5ylRJemPOtHBRGUim7RGAXATgK2q+oO0+qK0yT4GYFP+m0dERESF0jmQuh9JMgns7bBvC0E0nYx815TP4bLZva7i/nVNiCecMwdUEEOxsTvr6V8+jvxY6NHP2QxrPAfApwCcOyo2/0oR2SgiGwC8F8A/F7KhRERE5UBE9gR//9aJyGrjcRGRn4jIzuC67LNK0c5c3PtyU6mbQDlo6hrEqf+1DNsOFfZmuNNT4TtlqordrX1H1O5b14Qv/nIdblz5asFfn17zqzWNpW5ChmzSGp9RVVHV31XVM4N/y1T1U6r6lqD+EVU9WIwGExERlYH3Bn8PlxiPfRDAqcG/S5C6RrusfdcJAyjX0anl2q5iWb75EGIJxR0v7Ct1U2gCfrB8O8696ims3991uLZiWysAoLXXu4aBCmG8BEY7EKTEUfpERESUkwsB/ExTngcwZ9SlAGUjNk4a44MbDhSpJUBbHw9KqXhufW7PmI8XKjZ91a52XP3ETgDAvrShxA+sL96+RhNTllH6REREBAXwqIisEZFLjMePA5AefdYI4/6g6beaaW1tLVBTx9bRHx3z8aVP7856Xg9vnNwAmrV7X4sr/9FjO8actlAHSdPxHld0pJFtoFCbwobGrjEf39fRX6BXpqkiq7TGQutP1pj15qgd6VfVZaeyScJOmtKIc/rR+cbQS2VUJ/VRnPlEBjMv6qzusld5rMFepupue5mSVXa/ur7VvpB0xn77Qm9xLoRU55RtYpadlOmlHSar7OXtPsUso/6QvR7q2nK7EerwbHs+M5qGzHp0rr1cSNrrUxLOegtlvq63LjVs15PO9uqlNYaca1kl4bxuxH5PklX2e1jdbc8/V6Ehu6He/iYxexuPxp19KGm/54k8XbqbdOYTctIaq8OZ+25dtb0dx+vtZR1yVk7cWTfe50g4arc95rwuZtlpjdLeYU8//bxLVZtEZCGA5SKyTVWfznUmqroUwFIAWLJkyaSPBfe09eM9338Sv/jbt+Gdp8wfd/p8Bw/8/e1r8zo/KqydLX1YNLsWM2rK4lCwbFgd9EINYvvRY9vxx2cce0Ttsa0tBXo1moj07aFY393wzBkREVEOVLUp+L8FwL0Azh41SROAE9J+Pz6oFdSTr6QO6v7ipy9kNf14Z82oMv1s1R78zn89jPf/4Cl85taXSt2cslWMs6i7WnmWbCoqm5tQExERTXciMkNEGkZ+BnAeMm8l8wCAvw5SG98OoJuhWZme2dGGQ932aIbxFPq4OVbmceaTWf6vP7AZ0WD5XniVZ8NHU2Pt5nN7s+ZVrGuZaAJK8Nawc0ZERJS9owE8IyLrAbwI4CFVfUREPi8inw+mWQZgN4CdAG4E8A+laWqOinwQ8lc3vYC3/7/HEY3n3hEq9LHseNe8UeWzOmmFsnZfV9FeyzN6n1qztxP3r+MtNo5QpE2CA42JiIiypKq7AZxh1G9I+1kBXFrMduXD35RoiNuzu9rw3tMWluS1p6pC3wSX3EvOJ81670afqe0ZimFWbVVhGpClP73+OQDAhWdmZBlNe1LgPZBnzoiIiGhKKdQX2N61JDc/8yoe39pcoFfN3WSWnwPoxjZyBumGp3YdruXzUDyb9f9EEUNB1gXpkd2DuQWvTRfpZ1CLte+UxZmzmNrNODAw26xXdzkpdM7ek4zYfdAQnCS+uJM8WOOktXn3iTGCFr3ku75Fdhvnt3lRdna9rnnQrIe67bRG7y+ROGNG1EmJTNbZ7+HQXGfdx+zX7TvBft35G8yy2/5w1FtvXuKmM3+Pk06ZC3W2S08o5rym93madBI3+739x1mXQ158qbcOnPk4H/zqrIaQs1zxhLMNOh8ASe8FHDG1Ew+Hkva3mN78q40Yzfoqe6G8BMpEtZ3WGqu2P7s07Cyrsy14CbTJmXX2fMJOUq617fCrfSqSYlyu880HtwAA9lzxocK/WB6oasFvlFvpXm0rTFjH8i1HdvKHnNTsYrnhyV3jT0QAXrs2kIEgRERERI70MxyT1Ts0Nc4ejHdsOFaHlV22sZmBHXmc/5q0+/kBqVsaUPkq5q0VRrBzRkRERKayDZFLa9iq3e15m+3Pn9+Xt3kV0nhvy8jja/d14kBXKhGzuWdiyZjTTb5vQh1PJNHS66/7D1/9DPqHjxwlkQwasWJbC976zUcxGC3t2TVK4X3OiIiIqKSauuyh8jQ1/Ml1zx2+n90/3vFyiVszteQr3v47y7bi7O88ju4B/6zsl+5cd8Tv3/hNahjt1x7YjM6BGN741UewIbg2bDKGYomMYZTl+v3LdMbOGREREVWEZFKxsdG5uLuCjD+sMfOQe7DE1zaN5TsPbcGXflkenUcrQn8yw9hGrjHrGYoh6Vyv3jt05JmzkXCOfR2v5QXcs3bysfa/+/VH8cavPjLp+eTTE9uacfHNL5btvd6sVvGaMyIiIsq7x7cVLxEu37zDuAt+shJ/fM0zWLuv05miMmQ7rHGquHHlq7hv3YFSN+MI+ViHqorGztfOPr+4p7Q3/Y4mkplDlXNY0ERS8YsX9uX1Ju2fuXU1ntreekStZyiGxZc9hLO+tRzxEtwQ3usoFqv/WBZpjf3JGrN+oG+WWa9yrp3UsJM85iQMehuk5JjE5yWeWel3XrJjrMHphntlp40ybJ82l7jzjVmOW1po2E6P89Iaq/rt+Vf1Ou+VvSmg9Yxas17X7iRuOotb7wwriHjr2bs5ag7rzU24rHaSLJ1tJDKUW0qpl7iZ7MvtK5+qPu89dJIH51SbdS8NUpxVHIp76YtO3dlZvPTFAWdjG0jY9cGEk9bovG5NKHNfqYvY66wvbK+zpLdDJLx1mePXeV7CrbM/h520RvMP2VQ7OqwwQ7EEaqvs92vE5fdsLFJr8mfZxoO44C2L3I/gbYd6AQAHu4aAE4vYsClkquya2w714E+uew5PfPk9OGa2fQxQEDrqf0x8nd0/qsOZyEPSc77lcrPtX69pxH/euxGdA1Fc+t5T8tsOfe2MVGNHqkPb0R/FE9tacN6bjsnra41n68HetHYV/z3jmTMiIqIKc9a3lpv1Ty5dhcWXPVTk1uTP1oM9pW5CWZhMWmOpPbezzY2PT78u6/wfrcRANIHlZXB/uYl2qu58aX+eW1JaI8MtO4PrGPPJW8Ol6M+Od2aw0LepYOeMiIioAuxNuz5lwEl3e353aYdVlZOhWCIjJW+qGH9Yoz9FKaP0d7X24S9++gK+fNd68/F/vmtdRm0wWtz36LUTZ5PvFaQniSZVc7pu7I4Xi5McWi4d+WKcodrQ2IXXXf7QhJNL87FNZIOdMyIiogpwy7N7sp621De+be8bntTz0w+SJtrZeN9VT+FNX/vtpNpRrk77yiN4IYdbDPQNx7H4sodw/7rJh06MpSc48/LQxoOHa+kH5U8Y10H+z7JtBW2TJ999hT/83pP49drGrKe/Z9S0+ey8pJ/5ymWuz+1qy1sbRsu2HQe6Bif8pcqtz+1BUoGVO7JfjvR2DcVSZ9R4nzMiIiLKq2dyODiZiGg8iXO//ySefOW1g21VxeYDqSTFm5999XD9b255aVIBAxM9ZJ3KtwnI5uDwxpWvmnVrmFhjZ+qs63Ur8ndD72yVy5mbEeWSGvjSniNDbW5btTdv855ocueKV1rHn2iCNh8Yf8hyz1AM77ziCZz3w6cL1g5VxYXXPluw+WeDnTMiIqJpoC9PQ/iyOXg92D2I3W39+PQtLx2u3bhyNz70k2fwyKZDGQfkI2dUsm9D2mt1ZTdEqaM/mnE2AkhdA/XEtszrmg52pzpvhQpxWLO34/A9yHI10Rat2pW/G3aPZ0NjF36wfPu40+W6LLta+8qmAzWWtkmeHS6WclmXH82iQ3R7cJP4CX+xksWijl4d5uop8KmzcdMaRaQWwNMAaoLp71bVr4nIyQB+CeAoAGsAfEpVJ/Qp052oM+tdPfVmfdaQk0JX5SWY5TZ9yPkbIc6bqjl0cWu67Zn0HW9PH53tpKYNexF3dmO8REkZdN4yL1nPSy/0OOtsaKH9wNw32d/m9p9qp9l1brETPesP2e1vqLXXZ3yGs56H7IMZidvTq5GOlqy2E9Mi/fa8EzVOimOtE+3qvFfq7N1h5zgmFLPnX9tlf8PmbVNVPfYO5KVWVvc521TSSbl00hpjSSeVMWFvOwlnx+1z0hqHk3ZaY8jZyEPGB0Zt2F439VV2faDK3kbcQ1HvY8FJAA1HvQ81uyzV9jqgqeHGp3fnZT6jD1a6B2KYXV815jTAa8PTntjWjKNmOkmkOb42YJ8F6DeuU7r09rVYtbsdv794Hk6Y99rxxV/89AUAwJ4rPnTE9O/4f0/g3n945xEdqI7+KDoHonj9gpkTan+6P71+FU5ZOBOP/csfTnged7y0H9sO9eLOz70jq+kvuvH5Cb9Wrj5yTepg+5/OPQWRcOrz1uro5tI5WL2nAx+/YRWAzPcr3ybbZ/nYdaU7+6Kq+OnKV/HnZ5+AWbX5/9wuVXfOu+bra/dvwm2r9ua8TVzx8Dbc8NSRZ4vveKk41/qNJZtuxTCAc1X1DABnAjhfRN4O4LsAfqiqpwDoBPDZgrWSiIiIJiVf35CPnkvHQOaXfLc+t+eI30eGMwLAXaszz15l27KRg7PxFuXf796QURsJAYjmMIRyR0sfYmlfbrzvqifxvqueyvr549nZ4twbKEvReBIvvFreIS//ff+mwz//z7Kth38e2R4f3HAw4zmeYnQu8xUIsr8j/8Nmr12xM6vpntnZhu8s24qv3rdp/InL3vjvQ9ZDPkd9tzu6YwYAL+/rymI2JU5r1JSRT4+q4J8COBfA3UH9NgAfLUQDiYiIKL86jQ5VtqzQhtGWbzlymOCHfvLMEb+P7lxd80R2B5259C/TO4T50mncK3NnSx8WX/YQVu4o3PU4E5FLZ7yQI9vuePG1OPm1aQe+t7+QOkPxtLHeBp200ZgzCiCfugZSN0D+7eYjt+EPX70Sv/v10gbIfO+3r2Q13XAQXNHrjP5JN5E1OtGuyTd+sxkP5dAZTz1ny4SH/46WTVpmxrDGEpwnzGpAnoiERWQdgBYAywHsAtClqiPveiOA45znXiIiq0VkdTQxdS++JSIimtLShkD/m3FmKVvZhAmkXxOyPy3i33ocyDzTBqRS2TzZHC6N7hAefm6ej7Ve2pM6czX6oPOPr34Gn7n1pSNq3YOpA/9b0wJRCuXxLDrRoxX49k1HWLe/K/VDxjU+ivsKnBo5llfb+s36pqYe9GTR2Skn2Wzqxbzk7JZn9+DSX6zN6TkHu4ew5Nup+zYWo61eZ+y3mw8d/rnQ+0lWnTNVTajqmQCOB3A2gDdk+wKqulRVl6jqkuqwfW0ZERERFdYteeoQ5Do8smfIPts0nv+8d2Pma+f0ypN/7qamiZ9929jUnXGWcWRo5chZo+ns7jWp4a2j3xdr8yrmzcdLcaYkV1sP9uBHj23Py1Dlw53kHBR7DY1cqpjtmcNJydggU/997v/WFP61AzmlNapqF4AVAN4BYI6IjEQOHA+gdF9zEBER0ZiyGeI0Ua29uSXTZZPO+KQR2716z8Svrxo5I5LLt94/y0N8+SObDmHxZQ+hO21IZDkd/l9+z0b3bFE2VBXLtzSPmWo5Vidi9GPWlGPdl2/VrnY8vDG3oXJjmey1Ynvb+3HxzS/mqTWZEknFB3+8Ej96bAdeae4t2OuMpVBnsM7/0dO46ZnCn1UeSzaLVugTzNmkNS4AEFPVLhGpA/ABpMJAVgD4OFKJjRcDuH+ijWiJ2ol7sR47ZS3k/H3xUhPdVEZn7XqXCodi9iNJJ4XOao8446VDcXseQ3Ps+oxmuy19JzeY9ZquWrMe6bH/oIa8CNiYvfL7F9nJW0Nz7fYn6uwP2qGYvUkOtNnJnTXOXhR2Ej2jc+1tqro7xxjncPYbj/eeh/vtdSxznFRAZ7t3wgiRqHZSHJ2mh5233NuvEvX2e1XTbP+Rjzc46WxeMqCzI8ZidipjX8yef2vY3idmRew/wINJZ4U6ImJvyzXGGza3OnN4F2AnOwLAsJMK2hO2k+LCzrB8Z1FR1We3PZxjrLlYR7tFHB5VTCJyAoCfATgaqa13qar+eNQ070Hqb+LIUcY9qvrNIjazqO5Z24irx7hmzBpeONEo7JF7P40+oO8fjmNGzbiHNAWxzxi2me76IHRgZ2vf4cTg0e3/zK0v4ZVDvXj2snOzes187l53vLgPd7w48TN5v9lwEP90x8v4yofeiL/9g9eZ0yzf0ozz3nSM+VjmmTP789C78fBISMhE0xvzHSX/+Z+vLeiZvvR7Av5m/QG84Rj7GBoo3Mdwoc4ubjvUi289uAXL/ukPCjL/bGSzPZTDsMZFAFaIyAYALwFYrqoPAvgPAP8iIjuRitO/qXDNJCIiKgtxAF9W1dMBvB3ApSJyujHdSlU9M/hXsR0zAGN2zCZrOJ7dzXL/N0+3CZiI659Mdb5++dJ+8/H1acPGRo77drUe+SXWE9ta0NQ1mPUZyEKdeZtIP6UlGKp5YIz7zeVyrdb/PZ95tnLtvi7s7zyyEzz6WsZ4Fimc1oF3Lumd2Sj0EMz08JxrJ3jT8MluP+Vwa7SfrdqTUculo+1tL6O/Ty/FomaT1rhBVd+qqr+rqm8e+SOjqrtV9WxVPUVV/0xVp8bd9oiIiCZIVQ+q6trg514AW+EEYlWqQh2YNRsdk24jHdGSSGZ/gP3E1tyDMoplV+vkovXzJZlUbC/SkLnR29PmA5mdm289uCWj9sfXHHlGNptrp9Y35j/Bs9j+9+mJdcimki1GB/eu1Ud++fHV+zdnDHf1PptUNSM23/sY+836A1m3s1ByuuaMiIiIUkRkMYC3AnjBePgdIrJeRB4WkTcVt2VT013Omad8SB8KduPKyZ9ly/Uau4lauaMVzT1DUFU8tb318HIUetTw0pW7cd4Pn87o8Nzw1C68mHZftYPdg/j2Q1sx2ruvXHHE7+vH6DhlEwhi6cqy454uGs/vWTIgdeC/fn8XVDXvQyQtxbidwHiSk1zOrnFu5fGvv1qfUbPuXTg6pCO9VSPJqE++0oL1jd244uFtR06b5SKU4iwhO2dEREQ5EpGZAH4N4EuqOvpr3rUATlLVMwBcDeA+Zx6HbzXT2pr/e2SNdwA0UeWQZpfrAdNwng/Kn9jWPP5Ehm2Hchvy9qmbXsQfX/0MfrWmERff/CJO/a+HARR+qNWGxi4AQFPnkdcGXvHwNnzif1cd/v2WZ/cc/vnmtDTQ0dfhWUMVAeDlfZ0ZHZruHK55TX/u6HvrZT+PCT3tsIc2HsSF1z6L+9Y14a8LGARSTia7zt72P4+jqWvwcGLnRD29oxXJtCAaVUVHfxRr9nbilUOpM7/XrthpDmGczOdYyW9CTURERK8RkSqkOma3q+o9ox9X1R5V7Qt+XgagSkTmG9MdvtXMggUL8t7Osa4BKkddg4XpTFqsMxxtThDWWCmEo20xhuSl+8p9m7Ke14iW3uGyGe44nlzbub25N+NA/7GtzebB9LARypbe6Uu/7vCF3e24+vEdWbVhsh2N3cH1g3e+tB8rd7RNbmYT8PK+zqK/5mQNx5M454onzDNkuVAFTvmvZYd/P//HK3HWt5bjT69/7vAXBP5Qx0m9dEGVJtpolKbBOWY90m03z0tx8xL0vDfATWX03rB4bu9wsjqz7xtxUgRn7bbrgwvsZZrZZE+fmGlPH5vhrUt7PuLE1nrJg9U99vT9i5z+v7Mq+7rsVMaqTrv9M5wbONR12u+u136PON+2athODEzWZbYz5CRMyYAXj2inC3rbvUftJrpfyYScLyure5z2e/uDs469bc1LgwwPO9ty3F6wtsEZZr02ktvQl7jToIjzBtRF7APKGi/+0hB20hr7au0EyqawkwDqvGR1n932qi4nrbXHTp9LRu11KbV2GmwlklQ05U0AtqrqD5xpjgHQrKoqImcjtde1F7GZBVWog5psI8zX7M08GM2lTS29w7A+jrwzjV+5L/N+awBwzhVPZNQu+MlKfO/jv4s/W3KC/eLjtLOz327D/z515FBM69PxYPfkIuDzYf3+Lrx+gZ0ma7n9hX3YYFwH9t/3b86oXXjtsxm1rxrTAcCfL00lOJ5z6nycdeLcMduQrzPBk43gn6iPXfdcVkmVyRy+ZFjxytjXZZbD2fMR6YuVfv/EkY7f6r2d+PgNq0Y/LfthjcaylkNaIxEREaWcA+BTAM4VkXXBvwtE5PMi8vlgmo8D2CQi6wH8BMAntRgXo1Qga6W19w1nHDBd9+TYIQkZ99Iy3g7vGqZOo947FEdT16B5S4B/M66Nydbf3742q+uWrCkOdefvTGlnf+7XcwFAc8+w2wnoM76otDpm+bRmz/hnlXLdMzO3pdT/E709RLG0p3X8x9vGRoYEesZbZ01dg/jUTS+gN7gB/e9/5zH84x0vZ9fQIsmlg1mIaxXHUhZnzoiIiKYCVX0G4+QxqOo1AK4pTot8Hc5ZmMkqdTdT89AG6+lW4IDHCsEYT7bftn/suudw36Xn5Dz/fL0tXQNRrNr92onelt4hNNRUoa76tVELa/d14k+uew6/d9KRZ6W++8i2I8JX0t1YwtsdjCXXcIstB3vwpmNnF6g1+eV1GPO9/+xu7cNJR81AOLiB8A+Xb8fKHW14eNMhfGLJCWjtHS6LFMR0Lc59fkdTBe572RmmVSA8c0ZERFSB/uWudQWZbzH7Zr9anZ8Ex2wSATsKFKAy1mta1u3vSp0ddJ6wv2MA3/jNkdHy+TwxO3oI2NnfefzwjZ5H/Ml1zwGwh5j+YPl2c74/zvIasMnI9tYL6XJdc6Pv2jD6/mvlZNs4Z8A8421O6Y/vax/AuVc9he8/+oo57aObD02oDYUkAN7z/Seznj4xaoUUOi2VnTMiIqIK1DP02oFqPu9ZVcwRmtYB/c+f35vzAbWOOqAu9DUz6de+TMTvffsx9wD59hf2ZdSWb2nOyxnNV5p7j2h7POiJZHMPsXLwtQdyD1yZ6HpTVfQOxSadOJgP976c3zaMt3+kfwY8tysVgjJyi4VvP7jl8DpRVVwyKu6exsfOGRERUYVSVWxo7MKetv5SN2VCrHs6TSQRb/TBpnVAns9vw3O5RmU4bgdq7c7hPdt6sDA3jP7Pe+wwlHI1oVsmTLBzdudL+/GWrz86sSfn2T/fuR5bD/Zk/cVJLmfGxnv8slHbyE+fee2WCtePcy3oVGCuigIngpTFNWftQ3bKWqTPWXgn2SzppdM5G1nI+Sge/Q3b4flX5daXDcWMhJcc0wLjdU693l7Y6l77Qz4y6KQvRp2FDTnLOmhfcFy/144P7l58lFn/8vuXmfXF1fa9fr5436fNel2bkx7ZZScMhoft9aARZ1sbPX5hpDzTTtGzdljvPdeZ9pubqPESLr20UGc79j47nLc8bGyvACBGfDEAhJ170UjCXsexhiqzXtXnbLP99jY+2G/PZ2CmXe8cshNAo1X2/EPO58vcanvs/syIPW69PpT9ECnvNVvCdupZqNrZn+3N3l3HYS/dbcC5TiFavKhzyo8H1h/AF3+5DheeeWze5lmuySbWgamqQkQy0hkLffIvlzNzX7nXPtvzhV+sNetWdHqhzgT2R+3PjnL16JZm9zqrfe0DR9yjbcREb6g80fuqFcoHf7wSAPDVD5+OE+bZf/dGTHZ7GXn+gxvGvo5sT3v5DvnMRbGvs+WZMyIiogo1MkRt5F5Mlcw6gBpJA8xI2DMOTuM5fnmaq58/vxe9RmLhr3IcFvdCMHwsneqRw1inq0RS8ZGrnzn8+6YDr6VBrg9urD1aru/6H1+Tmn97gQJ3JuubD27B3/1s9ZjTjH9mbLxhjan/v/CL8kpgzNZ967IP+ChF0C47Z0RERBWo1KmKhWQdMFlnQO54MXV91ugD6bgR9251nPLp3hwT33I5o6MA/uaWl3JsUW6myt0g0t/r+9eNnxA40eUq9L2uCmm8JU4fmpiL+3Po9JSSNzR62yF7FFix32t2zoiIiCrcVD6QzJZ1wPnLl1Jpj98clW740wLHuksermArt77Qso3ll7qXDxNdzeX2/ownvRM6Xod09D3/bnx6NxZf9pA7vxGrdrVn1KaSl5z74u3vGDU8s8BvPjtnREREFSi9Q5bXY4kyOCi1mrB+jETBZ3Ye+U35T57Ymd8GjZKPa8BGx3eP/YKFf1MayzgyfjImes3ZQLSwZ1rzTZ2fs/GdZUfe108B3PzsnozpRr4MmaruXZs5xFh1/Jvc5xs7Z0RERBVoyAnzmSzvPlZFZRxdekEQpXDlI/Y9n3KRy3WCxegvl0GfPO8e3XwIZ3/n8Qk9d3vz5G6XUGzJI86cTW5eqsC3HjzybLR1z7upZu2+rlI3AUCZpDV2DNqpMhE7GBDqhdk5aY3qxNYlvY8aZ3oxxqgDgDhhRhLPPqu3us/+IzqzyV7YaINdrx+051Pd1G3WvTRCb1m9PVqdMTPzN9p/LK9acYFZf9+S3O5RUtXvJAk6qYyxmfYmH7LeK/hJi2HvQmBjPcQb7GTH6Gw7XTDp7JXiHWflFmrqz8f7sHbe25Bzw9bYfDth0Es7jQw4aY0DznsSteczMFRt1jvD9gIPxu31P6/W/na4JmR/SzozbH9QzQ5nbvtJ57Ml4XyoVYecVMaQk1hrLxLCXlprj31wkeyxY7nV+1ygsvXwpvwPRTvU4/xxLiLrhtHedSSjh2MVw1Pb7eThQinGELsrHt5W+BcpkM0HutFtJAxPp3tw9Q2l/w2bZFrjVBvTOcWUReeMiIiI8m+yN0MuV9aBdjncDJjKTzyRxId+8sz4E1aofe0DuP6pnbjjxdeGHI7Vt1q9JzMNdDR2zQqLnTMiIqIKt9EbPTFF8Yv7Iz208WCpm1C2bn52YsmDY+kvcLJnPr37eysyamPtPh+/4ch7wVnXGvLMWWGxc0ZEREQ0hb3aVvn3sZuolp7hvM9zqqcSqgI/fmxHRsc1I5UQ9rWr1pnrSlWKfig7Z0RERERUkQpxqexUP2+kUPzwscxgn8/cmnmvvE3GWfcVrxT3mspyU+j3n2mNRERERFSRCjGs8e41Uzsy/sH19jDYHcY1qt9+aIsx5fTxSrMdkFVI4545E5FaAE8DqAmmv1tVvyYitwL4QwAjXepPq+q6cV/ROD/Y019rTlrrnIn20hqT4dxSFr1URg07iYQhJxbPS3G0yk5TQjFnHk6y3uACuy11zpl2GbaT9ZJtzoWfdfZ7IjNn2NM7qY8hZ1z2sSvsZL1V+84w6/XO8O66vfYCxxbaiYGRfntGsVl2zJ1GnI3NSTC0Uivj9XaMaLLK216dl3S2HTfd0UsRdbbXcNTbBu26m8pYba8zLxEz1uCsn2pn/cTsenTIfg97zCqQqLM/YI6ZYW8jdWF7H6oP2fUZocz5DzlximHnTU/meCNbL63Rew910E5T1aiTRqqFiWYnIppKDnSVPrF0Mq5Zkf19/tr6nL8H08Rw3DmYKqBshjUOAzhXVftEpArAMyLycPDYv6nq3YVrHhERERFR+ai0gB0qL+N2zjQVyTJynrMq+DfVh9sSERERERG5ShEIktU1ZyISFpF1AFoALFfVF4KHviMiG0TkhyJi3mlXRC4RkdUisjqasIfQEBERERERlZNv/GZz0V8zq86ZqiZU9UwAxwM4W0TeDOByAG8A8PsA5gH4D+e5S1V1iaouqQ7X5afVREREREREBVSKa+5ySmtU1S4AKwCcr6oHNWUYwC0Azi5A+4iIiMqKiJwvIq+IyE4Rucx4vEZE7gwef0FEFpegmURENAVlk9a4AEBMVbtEpA7ABwB8V0QWqepBEREAHwWwabx59Qw3t/12x/f2Br/OB9AGAPjEBFs/dby2rFNFZppqSna3thh/eV8Y89GsuSebi5f8OvXe28mp+OVd99qPFbOsW7ObbOLLa6cynzSheZU5EQkDuBapv4WNAF4SkQdUNf1T57MAOlX1FBH5JIDvAvjz4reWiIimmmzSGhcBuC34gxQCcJeqPigiTwQdN0HqeObz481IVReM/Cwiq1V1ycSaPbVMp2UFptfyTqdlBabX8k6nZQWm3/JOwtkAdqrqbgAQkV8CuBBHfiV0IYCvBz/fDeAaEZEgYIuIiKawhtpsuk8Tl01a4wYAbzXq5xakRUREROXrOADpd6BtBPA2bxpVjYtIN4CjMOrMpIhcAuCS4Nc+EXklD+2rmDO+RcB1lT2uq+xxXWVvSq6rz30X+NzkZ+OOLils14+IiIhMqroUwNJ8zpNnQLPHdZU9rqvscV1lj+vKllMgSJ7l9Q9SmZtOywpMr+WdTssKTK/lnU7LCky/5Z2oJgAnpP1+fFAzpxGRCIDZANqL0joiIprSStY5C74xnBam07IC02t5p9OyAtNreafTsgLTb3kn4SUAp4rIySJSDeCTAB4YNc0DAC4Ofv44gCd4vRkREWWDwxqJiIiyFFxD9gUAvwUQBnCzqm4WkW8CWK2qDwC4CcD/ichOAB1IdeCKhZ3s7HFdZY/rKntcV9njujIIv8wjIiIiIiIqvaIPaxzv5p1TnYjcLCItIrIprTZPRJaLyI7g/7mlbGO+iMgJIrJCRLaIyGYR+WJQr9TlrRWRF0VkfbC83wjqJwc3mt0Z3Hi2utRtzRcRCYvIyyLyYPB7JS/rHhHZKCLrRGR1UKvUbXmOiNwtIttEZKuIvKNSl5WIiGgqKWrnLO3mnR8EcDqAi0Tk9GK2oQhuBXD+qNplAB5X1VMBPB78XgniAL6sqqcDeDuAS4P3s1KXdxjAuap6BoAzAZwvIm9H6gazP1TVUwB0InUD2krxRRx5D+NKXlYAeK+qnpmWHlWp2/KPATyiqm8AcAZS73GlLisREdGUUewzZ4dv3qmqUQAjN++sGKr6NFLXGKS7EMBtwc+3AfhoMdtUKKp6UFXXBj/3InWAdxwqd3lVVfuCX6uCfwrgXKRuNAtU0PKKyPEAPgTgp8Hvggpd1jFU3LYsIrMBvBup66KgqlFV7UIFLut0UumjUiYil7PhkvKTYP1tEJGzStv6wstlpM9Y60dELg6m3yEiF1uvNdU56+rrItIUbF/rROSCtMcuD9bVKyLyR2n1it5Pcx1RNd23K0+xO2fWzTuPK3IbSuFoVT0Y/HwIwNGlbEwhiMhipG5W/gIqeHmDYX7rALQAWA5gF4AuVY0Hk1TSNv0jAP8OIBn8fhQqd1mBVEf7URFZI6mbAwOVuS2fDKAVwC3BkNWfisgMVOayTgvTZFTKRGV7NvyDAE4N/l0C4Pqit7T4bkX2I33M9SMi8wB8DakbsZ8N4GsVOiT6VmSuKyA1kuTM4N8yAAj2vU8CeFPwnOuCY4fpsJ/mOqJqum9XplLe52xaCuKUKyqFRURmAvg1gC+pak/6Y5W2vKqaUNUzkbq30dkA3lDaFhWGiHwYQIuqril1W4roXap6FlJ/LC4VkXenP1hB23IEwFkArlfVtwLox6ghjBW0rNNFxY9KySPvDPGFAH4WjJB4HsAcEVlUgvYVTY4jfbz180cAlqtqh6p2IvWlpdWJmdKcdeW5EMAvVXVYVV8FsBOpfbTi99MJjKia1tuVp9ids2xu3lmJmkc+5IP/W0rcnrwRkSqkOma3q+o9Qblil3dEMAxsBYB3IPVhMnJbikrZps8B8BER2YPUH5BzkbpOqRKXFQCgqk3B/y0A7kXqD2klbsuNABpV9YXg97uR6qxV4rJOF9N1VMp4cjkbznWYkuv6me7r7QvBcLyb087scF0h6xFVXFeGYnfOsrl5ZyVKvyHpxQDuL2Fb8ia4BukmAFtV9QdpD1Xq8i4QkTnBz3UAPoDUt0IrkLrRLFAhy6uql6vq8aq6GKn99AlV/UtU4LICgIjMEJGGkZ8BnAdgEypwW1bVQwD2i8hpQel9ALagApeVpr3pcja8ILh+xnU9gNcjFRB2EMBVJW1NGZlOI6oKoag3ofZu3lnMNhSaiNwB4D0A5otII1JjZq8AcJeIfBbAXgCfKF0L8+ocAJ8CsDG4DgsA/hOVu7yLANwWjBsPAbhLVR8UkS0Afiki3wbwMoKghQr1H6jMZT0awL2p7xsQAfALVX1ERF5CZW7L/wjg9uBLst0A/gbBNl2ByzodTNdRKWNKPxsuIkecDVfVg6POEHMdpuS6fpqQOuZJrz9ZhHaWnKo2j/wsIjcCeDD4daxtqeK3sbFGVHG7yg5vQk1ERDSFBUONtyN1FrQJqVEqf1FpX37mIjgDHlLV3uDn5QC+idQ6alfVK4K0vHmq+u8i8iEAXwBwAVIhBD9R1bNL1f5iCYaePaiqbw5+/x5yWD9BcMMapIZGA8BaAL+nqtlenzVlGOtq0chQPRH5ZwBvU9VPisibAPwCqS8DjkUqAONUAIIK30+DEVW3AehQ1S+l1bld5aCoZ86IiIgov6bDqJQJyPVs+DKkDhB3AhhA6mxyRctxpI+5flS1Q0S+hVRHAwC+WYkH0M66eo+InInUEL09AD4HAKq6WUTuQmq4eBzApaqaCOZT6ftpriOqpvV25eGZMyIiIiIiojLAKH0iIiIiIqIywM4ZERERERFRGWDnjIiIiIiIqAywc0ZERERERFQG2DkjIiIiIiIqA+ycERERERERlQF2zoiIiIioZIIbqRMR2DkjIiIioiyJyGIR2SoiN4rIZhF5VETqROT1IvKIiKwRkZUi8oZg+ltF5ONpz+8L/n9PMN0DALaISK2I3CIiG0XkZRF5bzDdp0XknmDeO0TkyqAeDua9KXjOP5dgdRDlHb+pICIiIqJcnArgIlX9OxG5C8CfAvgbAJ9X1R0i8jYA1wE4d5z5nAXgzar6qoh8GYCq6luCjt2jIvI7wXRnAngrgGEAr4jI1QAWAjhOVd8MACIyJ7+LSFQa7JwRERERUS5eVdV1wc9rACwG8E4AvxKRkWlqspjPi6r6avDzuwBcDQCquk1E9gIY6Zw9rqrdACAiWwCcBGAzgNcFHbWHADw6mQUiKhfsnBERERFRLobTfk4AOBpAl6qeaUwbR3AZjYiEAFSnPdY/wdeLqGqniJwB4I8AfB7AJwB8Jsv5EZUtXnNGRERERJPRA+BVEfkzAJCUM4LH9gD4veDnjwCocuaxEsBfBs//HQAnAnjFe0ERmQ8gpKq/BvAVpIZIEk157JwRERER0WT9JYDPish6pIYcXhjUbwTwh0H9HfDPll0HICQiGwHcCeDTqjrsTAsAxwF4UkTWAfg5gMsnvwhEpSeqWuo2EBERERERTXs8c0ZERERERFQG2DkjIiIiIiIqA+ycERERERERlQF2zoiIiIiIiMoAO2dERERERERlgJ0zIiIiIiKiMsDOGRERERERURn4/yigTAjBJmBfAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 1080x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAEGCAYAAADhfO2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABbvUlEQVR4nO3deXxdZZ0/8M83uTd7mnRJ99K07GUrUAsKo4CKbCPqqCMz46Ayg87o76fjzG8GdWZwQx1FGUdFRUHQURAVBGmBAoIUQei+7226pG2WZt/v8v39cW9Kmvt5mqRtliaf9+vVV5NvTs59zrnPubnPPc/5HHN3iIiIiIiIyPDKGu4GiIiIiIiIiAZnIiIiIiIiI4IGZyIiIiIiIiOABmciIiIiIiIjgAZnIiIiIiIiI0BkuBsgIiIy1k2aNMnLy8uHuxkiIjIEVqxYUevuZexnGpyJiIgMs/Lycixfvny4myEiIkPAzHaHfnZcgzMzuwbAtwFkA/ixu3/taMtnFxd6pKw0o54bjdPlY4lsvp6sJK2Pi3bQelEWr9cnCmm9pSuX1qPZCVoPtXNiXmtGrTPJd/m4bN7Gfa2ltG5dfEZqTmEXrZdE22l9fBavdzjfpqjxfd+YzKf1tkQOrRcHtrfTo7QeMb7v44F2lmS30XpLIo/Wo4H1Zwe2t8D4fm5OZq6/Lcn3QU4W7/ftgX3WFuP7pjSXP4dx530k1NdCDnSU0LqB3yPRjNdj8cDxnM33caKLLw/j5UiUP4eRwPpDz3lbnO//khy+nxs6ed/PIvshHtgHlsX32YyCBlovDPS/wK5BBwL7MiB0+8ua2DhaL41kHm+1lZ1oro+FmiQiIiLEMQ/OzCwbwPcAvB3APgDLzOxxd98YfLCyUsy44+MZ9dOmVdPl9zWU0npJAX+TdPW0zbR+edEWWv9N3Rto/aXKObQ+fVwTre9v4m9YPnjaaxm1Xe30DCbeWsJ3278t+wtaz9rLBxmz37CP1q+fuo7W31O8nta3xfgb8unZzbT+RMt5tL6icTatXzGePye7Ovn+mRTlj1sbK6b160tW0/pLLWfS+pRoI62XBgZ583P30/oLbadl1Na0zqLLzsqro/U1TXz5tdXTaP2d5fw5rIvxDx9CfS3ky5uuo/VohA9u8iJ80Lm/tpTWS8ZlfogBAHWVfHlk85FD2fQGWp9c2ELr0/L58bz8IN//18/eQOuPV5xL63nkQ6eaav5akRv4UOWO+Y/R+hvyeP/jw3dgW7wo8BMuFvjQ4/v7r6T1d5atzqh94T38NUdERETCjicQZCGA7e6+0927ADwE4MYT0ywREREREZGx5XgGZzMA7O3x/b507QhmdquZLTez5Ylm/gm5iIiIiIjIWDfoUfrufo+7L3D3BdnFfJqViIiIiIjIWHc8gSCVAHpenDEzXQuLZQH7M6+V2tKYccINAPChy16i9ZdqT6X15w7y64kunFtB66GQiWtnb6L1X629iNaL1vLrvx5IXppRO21iLV12fc5MWi8o5OENd73vp7S+roNfL3NRfgWtb+yayB83q5PWSwNhLHNzamgd/NK1oFBIw92v8mtd7vyzh2n9+eZ5tH5uPr8mL3SNTWk2P9u7Lcb32+m5BzPbUn8WXfaCwr20np8do3V2DRMALNp9Dq2/b84qWn+tdS6th67rO3UC77MHWvn1U/sOjqf1SC5vfzIZ+IyIdzVExvH90xHjL2cHmvl1iUVR3scTzjMs/ljD99s/nvEirX938xWZxU7ez6bN5Ne/PVrLX3MKJ/O2T4/waydzwI+rkFfb+WvsTVMyr6MFgPXtma9fna4wYBERkYE6njNnywCcbmZzzCwHwAcAPH5imiUiIiIiIjK2HPNHm+4eN7NPAHgaqSj9+9ydx5mJiIiIiIjIUR3XvBN3Xwxg8Qlqi4iIiIiIyJg16IEgIiIiIiIi0jcNzkREREREREaAoY3TygKS+ZkRbMXTeUrclChPHisvqqP1aBZPJJuczdcfUt3J090iB3L547Y4rV92ytaMWnOcJzuGtFbwuMOfTP4zWn+1opzWf/OmH9D6osb5tD4nl6cvvrmUB3K2JnNo/czcA7Qeek5Ks9to/drzB3YbhlAqY0OiYEDrKbcuWu8KpEqy9V8wjqcyhvxZyRZaHxdpp/WmeD6tr2zkyZ2T81po/cpinlK6Ims2rYdYFj8eZpfV0/r5gT71QtZptD6tmPednbU8QTOUcnmog/epaDZ/bgujvC9sa59C61kk2fS00/nxcHZJZsonAMQDKaLrOni66/Oxs2m9JJv3nYNdPHHzjwfm0PqEAr6ewkjmvmlL8NcEERERCdOZMxERERERkRFAgzMREREREZERQIMzERERERGREWBorzkTERE5CZjZfQBuAFDt7uema78EcGZ6kVIADe4+n/xuBYBmAAkAcXdfMARNFhGRUUCDMxERkUz3A/gugJ92F9z9L7u/NrNvAuCpVSlXunvtoLVORERGpSEdnGVFEyia2ZRRP6W0gS4fSu67uLiC1uviRbTeBZ54VtfF09qunrCe1j/8/qW0fvPzf0fri/9wcUbto+94hi4bDaT//e2VL9L65UU80S/U9vNzeErktsKdtB4LpMTVJlpp/YoCngC4unMyrVfGx9P6F9ddT+vzpvA0u9PLqmm9NIsn9G3s4ol+mzun0fqGzhm0XpjVSesFpD43hydfvtzM0wjnFeyn9QhJ/wOA+i6e1rhmL0/0u/V83o+jNrBUw3njq2j9XTPX0PqEbN53vrHu7bR+9dzNtB5KMDzQzFNWY3G+fGMHPyZOnzCw99NVnTzx8IyJmc97dRtv457WCQN6zPZElNb3tZbSemecv9RnB/pUQwN/zpuaedppfkFmvw895snC3V80s3L2MzMzAO8HcNWQNkpEREY9XXMmIiIyMH8GoMrdtwV+7gCWmNkKM7s1tBIzu9XMlpvZ8poa/iGOiIiMLRqciYiIDMxNAB48ys8vd/eLAFwL4ONm9ma2kLvf4+4L3H1BWVnZYLRTREROMhqciYiI9JOZRQC8B8AvQ8u4e2X6/2oAjwJYODStExGRk50GZyIiIv33NgCb3X0f+6GZFZpZcffXAK4GwC8GFhER6UWDMxERkV7M7EEArwA408z2mdkt6R99AL2mNJrZdDNbnP52CoCXzGwNgNcALHL3p4aq3SIicnIb0jitZNLQ2pyZkDZtWmaCI8CT7wCgPMrT1BqSPEns9AhPEpyQw9PjynP4+tuSubT+66vupvX3/v4fM9eR4Os4FOPpaG8q3k7rITOi9bR+IM73wdsK2mn9ydbptL4x0M6GBN/3b8jlaYprAqmJIeeN4wmGbUmeWhcS6lNXFfJkwIoYT9GrifOEvgtyKzNqf2g7nS47LtJB6+eQdRxNQVYXrcdn8JTCkMfqL6L1SyZW0HoopTCUTrmzi19TM2tiA61PzeGvCxMCx/P6HJ64mXCj9ViC75+WGD9Gzyzm6ZSz8upo/amqczJquRGeiFnXwY+fcbm8jxQH+s7uGp6C+pY5O2j91QOn0Prc6fw1MJ7kn+clSD2UBHmycPebAvUPkdp+ANelv94J4IJBbZyIiIxaOnMmIiIiIiIyAmhwJiIiIiIiMgJocCYiIiIiIjICaHAmIiIiIiIyAmhwJiIiIiIiMgIMaVojkoZkR+ZDNsd5Otr69lm0flXRRlqvjPGkslB9bj5PlQsl8T1Yxe8jGkoSnD4jM8XtlUNz6LJ52TzFbVYeTwsMpSO+pWAbrW+LFw1oPSx1EAgnD65oLqf10rI/0nrU+PaeMoGnTZ6Zd4DWSwLpiyGh57bB+H4I7Z+qWAmt745m9rV9Xfw5PDef3iYp6PTcg7Rel+AJmnmRGK2/Ws/74KlFPKGvJNJG65UdpbReFuEpiz878EZazzae6jc3kPQZtQSth5INI4H1N3ZlJscCwA2T1w7occsD6ZTL88ozaiv3z6TLXjuHv6aFEjHruvhzPm8aT5Ss6eDHf2k+32edcf6nYf5E3mdZ8uiO6MCOTRERETnOwZmZVQBoBpAAEHf3BSeiUSIiIiIiImPNiThzdqW784/cRUREREREpF90zZmIiIiIiMgIcLyDMwewxMxWmNmtbAEzu9XMlpvZ8kRz63E+nIiIiIiIyOh0vNMaL3f3SjObDOAZM9vs7i/2XMDd7wFwDwDkls/043w8ERERERGRUem4BmfuXpn+v9rMHgWwEMCL4V8wWGfmybqzi3gK3YRIC60vbTuD1kMpdJeM30Xrf6jl65kbSK3rSERpfVn9bFqvOpSZ6Le/he/ySDFP1gsl7k3I4Ql6oUS/kJ1dk2n9tdZTaT2U3Nce2Dc54Al3H/vJP9L6e967lNZbkzzRc1tsEq2XZvN2rmrjz9UZgTTIkMZEPq0XkPTIgqwuuuwP97yZ1v9m5qu0HtqmKZFGWs/P5n2nObAvQ89hLYppfUcj3/evFvG+84Gpr9F6KBEzVA+lX+YFtve9k1cMaP1rW3lK7DvHr6L1mPNjurzgUEYtfxZvYyiVcV4R75cF2TwJcW4OT7hsCzznTxy6gNYn5AxslgNrfyyZPaB1iIiIyHFMazSzQjMr7v4awNUA1p+ohomIiIiIiIwlx3PmbAqAR82sez2/cPenTkirRERERERExphjHpy5+04AfE6MiIiIiIiIDIii9EVEREREREYADc5ERERERERGgOON0h+YLIcXxjPKm1qm0sWrcniC2czcelpv7OIJer+rPJ/Wz53Ak9AmRnlS2dYkTzY8YxxPSItPyxz77qkbT5cdX8ST+EJe3MsT8fIDyYCh5L6o8TTFUCrjrGgdrS9pn0frv6i7lNZj8/j6Q4+7sW06rU/NLeTrT/KuvaTyLFqPzuT7ISSUbLiocX5GbU5uDV124aTdtP7NDW+j9fsueoDWqxM8TXFybjOtF0c6aH1PK09BvGzidlq/ZtpGvv4svv6ySBOtdzlP9SsM9OXmZB6tXzuJ5xFdkFtJ6xu7+OvOxUUVtB5qZyhF890lmSmRscA6VnecQutlEf4chtZTE+evmaHlrxy/mdZ/V81nrO+s533k2tmbMmqRrCRdVkRERMJ05kxERERERGQE0OBMRESkFzO7z8yqzWx9j9rnzazSzFan/10X+N1rzGyLmW03s9uGrtUiInKy0+BMREQk0/0AriH1u9x9fvrf4t4/NLNsAN8DcC2AeQBuMjM+71tERKQXDc5ERER6cfcXAfCLbI9uIYDt7r7T3bsAPATgxhPaOBERGbU0OBMREem/T5jZ2vS0R5bwNAPA3h7f70vXRERE+jSkaY1Z2UkUj89MNptdwD+cfHj5G2g9UsiTBy+evYfWt9TylMW6rgJan5LDU+XOKeHpjqEkNLZ8Z4Lv8rdP4alpL9aeRuvte3hC38riWbR+WdlOWt/WyvfNDRPX0PrT9efS+pVlW2l9bTN/T/Lhc1+h9fPy9tH6rvYyWt/bwdPjnv8l7zslu3gq48/efQmtT5nYSOs1DUW0HmvPTHE8c/ZBumxFLW/7lJ/x1NG/W/Z/aP3uj95N66GUyA7nSZMhNxSto/XCQBrfI828j4Ts6uR98JLCHbQe6iOLG3gq6/w8/rpQms1TWffG+PNS6jyVcX+MJ7A+15A5k+3ScXybpkd5Au3p0Vr+mIGEzlVN59F6QSD58sw8/pp2xaQttF6Wx4/nSdHMVMlIIAn2JPd9AF8C4On/vwngI8e6MjO7FcCtAHDKKTyxU0RExhadORMREekHd69y94S7JwH8CKkpjL1VAuj5KdnMdI2t7x53X+DuC8rK+AdQIiIytmhwJiIi0g9mNq3Ht+8GwG6utwzA6WY2x8xyAHwAwOND0T4RETn5De1NqEVERE4CZvYggCsATDKzfQBuB3CFmc1HalpjBYCPppedDuDH7n6du8fN7BMAngaQDeA+d98w9FsgIiInIw3OREREenH3m0j53sCy+wFc1+P7xQAyYvZFRET6ommNIiIiIiIiI8CQnjmLZCcxsTAz8ay6kyePnXM6T2Wr7+BpdhtrptB6cV4nrTd08vVsM54eNyGHp7tNDaQ7NiYy13+olSdEToi00PqswgZan3Ypf8yaDp4iWBLhSXMTcvJofWcgQW9GHm/Py3VzaX1uEU+bOxQrpPVQ4t6cfJ48+Nt9F9D6xI080bOzhCdrJg/l0PrBZAlfvo0fOtktmevfV1LK29LI930i12g9p8lp/e4DV9H6hBz+nIf25byC/bQeC3yGs6xjKq2/VMcTRs+bvpfW5+RW0/obA31te4w/h383aSmtT8/mqYFlzhMM13XwxNNQiuOEbH7sfnX6koza8s5AEmQWf66+X/sWWp8Y5a9FJdnttL6xZRqth/b9zkA66pRc/rrD0lQ7k5qYISIiMlA6cyYiIiIiIjICaHAmIiIiIiIyAmhwJiIiIiIiMgJocCYiIiIiIjICaHAmIiIiIiIyAvQZp2Vm9wG4AUC1u5+brk0A8EsA5UjdiPP97l7f17oSySw0tGUmGO7LKh1ImzE+jyeSnVHKU+gOtI2j9UhWktY7Eny3LK08ldZPncATCZmLp/IEyrWtPCEu7nz8vLWBp6kVRHlK4Zomvv7TC3la22/38tTEkrwOWi8vqqP1ui6eyrineTytv3HyLloPtX//7om0PmFmIE2RB3fiTQs203p+Nt+fK6tn0Hpre25G7c2zdvAH5ZuEP628kNYTeTzFsSWW+ZgA8PYJG2m9NJsnA5ZFeBJfLNAHQybn8fTCQuPpiCGNSZ6ymLqvb6bVHTNpfXYRT4lsSPD9OTXSSOur2mbT+twifgwVWDSjdnr0EF22Is5TQdsTPEV0VStPfVw4voLWx0X5cbuhne+zrU08rXVaAe8jEct8LXXn+1dERETC+vOu634A1/Sq3QbgOXc/HcBz6e9FRERERETkGPU5OHP3FwH0Pi1yI4AH0l8/AOBdJ7ZZIiIiIiIiY8uxXnM2xd0PpL8+CIDf/RmAmd1qZsvNbHm8kd84VUREREREZKw77kAQd3cAfpSf3+PuC9x9QaSEX38kIiIiIiIy1h3r4KzKzKYBQPp/fkW8iIiIiIiI9EufaY0BjwO4GcDX0v8/1p9fKoh0YcHUzOS0aBZPZWtPZKadAcCEKJ8e+abi7bT+q8QCWi+O8Oi+Ofk8fXFzTXD2JjU+JzNVMrTug108UTKfB9NhVnEDrc8u4KmJO1om0XrU+L6fkM8T/aqai2l9Sn4zrc/Ib6D1tdXTaL0kmydxVqKU1nPH8xS6rFgRrc/9+y20HuqDobTMWII/Mfm5memOxRHexi1NvD9Nft8eWt/XUErrZYF0xOfrz6L1eUUHeH3cQVpvc/4yUR7lffn8Qp6OWBHjfXBGlAe9vtBWPqDly3N4e0Kpj7Mj/Dn8fStPTjwjj++fydm87zcmM9MpN3TxFMScwHF4TlElrbfl84TOmTk8DbIxkZmSCwBr6nnqaFuMp0SG+nJzPI/WRUREZGD6PHNmZg8CeAXAmWa2z8xuQWpQ9nYz2wbgbenvRURERERE5Bj1eebM3W8K/OitJ7gtIiIiIiIiY9ZxB4KIiIiIiIjI8dPgTEREREREZATQ4ExERERERGQEONa0xmNi5jQVLz8rM9UMAObk19B6cRZPDCvM4umLM/IaaL09yRPJollxWr/qlK20Pi6QYDYpmpnidl4eT7KryeVpjevbZ9J6CHtMACgp4SmIoW198ySefPm/dW+g9fICnhIXSoOcUswTBje28BTHBSUVtB5Kg7zsQv5cbenk639g66W03nowcG++aODWflmZ9YcPLKSLRsbxfv/OM9fSeug5mRDh+3Jt6yxaf62+nNYvL+JJljngz2FDsoDWyyK8D4aOz9OjjbT+xlzeZ2tJCiIAvNzOt3deIN11d9xovTHOt2tuAb9jSGV8PK0zof7XluDpixcWVND6H1vOoPWLAvt+a+A4fOPEXbQec55kGXp9+dXeizJqHYkh/fMiIiIyKujMmYiISC9mdp+ZVZvZ+h61b5jZZjNba2aPmllp4HcrzGydma02s+VD1mgRETnpaXAmIiKS6X4A1/SqPQPgXHc/H8BWAJ85yu9f6e7z3Z3faFNERITQ4ExERKQXd38RQF2v2hJ3754L/icAA5t3LiIi0gcNzkRERAbuIwCeDPzMASwxsxVmdmtoBWZ2q5ktN7PlNTX8GmsRERlbNDgTEREZADP7HIA4gJ8HFrnc3S8CcC2Aj5vZm9lC7n6Puy9w9wVlZWWD1FoRETmZDGmcVm5WnCYw7mrnf5RqY8W8Dl7f1j6F1l/YfxqtXzJ1D62vaeKpb6cX8rS2M/MO0PqLTWdm1KZGeDLd6TlVtL6zczKtl+S30Xoo9e3K4o20XtE1idZ3BR73jDL+6W5JhLcnpLyojtan5DbRemi76rp4muJdFW+n9X8qf4bWs/5YQutz1vCEweqLeXssmVkrW8XX0VSeT+t1c/k2Tc3lfedvx/HEvScDyX1/sMx+CQBtSb5NMeOJngWB9MVQPZSa2BYIvgxZHeibb8rnSaih9Z8djfL15/LjfH6g3prs/2dcofTSTS1Taf0dxetofWHhTlqfHamn9bKSFbS+rH0OrdfFi2h9b8cEWr94Uua+3xGJ0WVPdmb2IQA3AHiru9Pe5e6V6f+rzexRAAsBvDhkjRQRkZOWzpyJiIj0g5ldA+BfAbzT3eknUmZWaGbF3V8DuBrAerasiIhIbxqciYiI9GJmDwJ4BcCZZrbPzG4B8F0AxQCeScfk/yC97HQzW5z+1SkAXjKzNQBeA7DI3Z8ahk0QEZGTkO4SKiIi0ou730TK9waW3Q/guvTXOwFcMIhNExGRUUxnzkREREREREYADc5ERERERERGgCGd1piNJIqzOjLqM3N5wtiudp4keE5RJa03xgto/bJpPM1uRS1PZbxg4n5aD1nfzu9DypIpQ6Is5g9AQTZPvgtt6+VFW2i9IcGXD5mZw9MU28bl0PqZuTyxMmRCNk/uK83mqY+hfbymdjqtt7QHkgedd/mJ1/A+dTB/Bq0Hni6w0MrmU/g+O3QJT0Hc0cj7/ZWlm2i9NtlF64WB1MS4Z9P6uo6B3U/3HUUbaH1bF09TbIu00HqBGV/eedpfeZT3TZ69COyO81TMAst8LQKA8pxaWt8fWM/5OTyBMYbMeiit9Yrx/LgtyOL7YEYglbE0i3fM6Vm8jdu6+PG2q5Mn6E4MJG6y151nInxZERERCdOZMxERERERkRFAgzMRERnVzOzrZjbOzKJm9pyZ1ZjZ3wx3u0RERHrT4ExEREa7q929CambR1cAOA3A/xvWFomIiBAanImIyGjXfbHp9QB+5e784j8REZFhpvuciYjIaPeEmW0G0A7gH8ysDABPhBERERlGfQ7OzOw+pKaCVLv7uena5wH8PYDuOMLPuvvivtaVBUcBSZAry2umyzcmeDra3o4JtD4uwv/WTs1povXrp/O0uSlR/qFqLJByx7YJAKriJRm16VGesrY6kJQ3K5BMd17eXloPqYmPo/VQOmJhFn9OqmKZ2wQA+2PjaT20b96QX0HrDck8Wt/WyhMAQ6mMRfn8cUMJhrnZPDkx0k7L6ChzWm+fnpmWN/0Fvg7r5CeuqxuLaH1p45m0Xpfgy7NkVACIJXk/Djkvbx+th56r8ihPO9zYNZHWF+TyPt6Y5Ps4Cp5IyHMNgdOiA3sPXhrYbyEHErzvnBrNfF4uyA0kzSZ5P25L8gzKrV1TaH16pILWQ0Ipru8vfY3Wn2iaT+sbOzJTTTuSBwfUlsHk7reZ2dcBNLp7wszaANw43O0SERHprT/TGu8HcA2p3+Xu89P/+hyYiYiIDAczKwDwjwC+ny5NB7Bg+FokIiLC9Tk4c/cXAfCPtkVEREa+nwDoAvCm9PeVAL48fM0RERHhjicQ5BNmttbM7jMzPqcNgJndambLzWx5c31o4pGIiMigOdXdv4707Fd3bwPA734uIiIyjI51cPZ9AKcCmA/gAIBvhhZ093vcfYG7Lygez6+fEBERGURdZpYPwAHAzE4FwC9AFRERGUbHlNbo7lXdX5vZjwA8ccJaJCIicmLdDuApALPM7OcALgPwoWFtkYiICHFMgzMzm+buB9LfvhvA+v78nsMQc/aQXXT5gixej2YneD2Lp6aFEg+3dEyj9fl5e2h9WfucwPI8za4tWZVR6wJPyuP7BZiXw9uyP1FM6w2JwsD6+ePOy+GJaqdFeXpcWfY6Wn+6+Txan57P0ylDiXuhVMk/bjmV1q2V77e3XbqF1lsDqXhvnbyZ1n/eNZvW5/6mhdaz9mQ+5y1vLKfLRiYFUgE38/TF+Cn8RPeBrlJan1u0ldavGc+fw5o471Mr28pp/aqijbTe6jm0XpbNE0DbnKcybovxdMfSLJ4wenYO7+O1iVZaLzB+Jr809LpDq0DU+Ow49rhtztdSEkgRLczix0kXeCJma5L3kdZA8uXbC/lxsqGLp6NeWFBB66tIHwm95gwHd3/GzFYCuBSp6YyfdHe+E0VERIZRn9MazexBAK8AONPM9pnZLQC+bmbrzGwtgCsB/NMgt1NEROSYmNllADrcfRGAUgCfNTP+yYuIiMgw6vPMmbvfRMr3DkJbREREBsP3AVxgZhcA+DRSf8N+CuAtw9oqERGRXo4nrVFERORkEHd3R+rG099z9+8B4PN4RUREhtExXXMmIiJyEmk2s88A+BsAbzazLIQvIxQRERk2OnMmIiKj3V8iFZ1/i7sfBDATwDeO9gvpe3hWm9n6HrUJZvaMmW1L/0/v8WlmN6eX2WZmN5/IDRERkdFtSM+cdXgUWzumZtSvL1lNl39HMU+V29o1hdb3dfF0t6jxdMemeB6t1wSSEJuTfPmY8zEuS2B7ooWnGl5SsIPWf95wCa1fHkjiKwykvsWyeXJaWyAlsjHJkwQrYjzhcm5uNV9/IB1xd5zftzyUoBnJ5c/htOk8ifP3e86g9U0lmf0PAC6asJfW4wW0HOTTJmXUDs3j+9gDyXrZ7Tz9b9n+U2j9r05bTutbOvm+PC+QLrolzpdvTOTT+hNN82n9ymKe4rihazqth5JK2WsFAJyRxxNGC7IqaD0auNdwWXaM1msSPG1yejZPcaxJ9P9exgXGE2VDqYwFgSTIskBi5ewI35e1Sd72kJzAa+a8nEP9Xv4Xgdei4ZAekH2rx/d7kLrm7GjuB/DdXsvdBuA5d/+amd2W/v7fev6SmU1AKrp/AVL3VVthZo+7O4+uFRER6UFnzkREZFQzs/ekz2I1mlmTmTWbWdPRfsfdXwTQ+9OfGwE8kP76AQDvIr/6DgDPuHtdekD2DIBrjm8LRERkrNA1ZyIiMtp9HcCfu/um41zPlB73+DwIgE3jmAGg56n4felaBjO7FcCtAHDKKfzMuIiIjC06cyYiIqNd1QkYmB0hnf7I7+7d/3Xc4+4L3H1BWVnZCWqZiIiczHTmTERERrvlZvZLAL9FKhgEAODujwxwPVVmNs3dD5jZNADsYttKAFf0+H4mgBcG+DgiIjJGDengzB2IkxCEbZ38wv835e+k9VDIxCWF22l9SRMP4WhP8gv/CwIXsk+JNNJ6RSwzBAIIh1swL7WcSeubm3n4yRl5B2j9nNz9tL6uYyatH4yX0HpFlAdtRAOBBq2BfRkS2scv1p5G61bBQyn+/PyltN4YSPL4xZo30PqOffxT6+JAjkLrrP4nhWTx3AnE2wOHXyn/MN7bB7aP5+bU8NUHwiQOdo2j9f3tvI/kZfO+sDhxAa2/ZdxmWq+J88edk8vbH3MebrOsvZzW5+ftofXtMb6eykBYTYHxIJLGwOvR9Eh7Rq0iXkSXzbEWWl/eNYHWy7KbA23hHTYULNLmvK+F+sjGQOgSa0/EeMjJMBkHoA3A1T1qDmCgg7PHAdwM4Gvp/x8jyzwN4Cs9khyvBvCZAT6OiIiMUTpzJiIio5q7f3igv2NmDyJ1BmySme1DKoHxawAeNrNbAOwG8P70sgsAfMzd/87d68zsSwCWpVf1RXfnn3aJiIj0osGZiIiMamY2E8B3AFyWLi0F8El35/eVAODuNwV+9Fay7HIAf9fj+/sA3HfMDRYRkTFLgSAiIjLa/QSpKYnT0/9+l66JiIiMKBqciYjIaFfm7j9x93j63/0AFI8oIiIjjgZnIiIy2h0ys78xs+z0v78BcGi4GyUiItLbkF5zlm1JjIt0ZNTrEoV0+SdaeMrinxVspfWGJE/Qa09Eaf3iogpaf755Hq3PzOHXdMc8EVg+82//1kCCY2jdjV08pTAkGkhICyVNPt9wNq3vjfKUuL+a8CdaX9VWTusXFlTQeihBc2c1T4OLTeTJgL+rPJ/WTymup3Wr54mHhXv55xRFlXx/5lfxtMmu0sy+VryXJ+VF2nhbOgKf58eNJ+uF0gtr4sW0HkrcnJrTxB84gB3LALC6gSeDzivgSaL7AomE+zp4auJbSzfSelmEt7/V+X4uzeLtD+23WA5LTQ+/7oDs5lAy5UCFEmJrErxfhsyO8OMkavw1rTqwb1j6ahK83w+TjyB1zdld6e//CGDAISEiIiKDTYEgIiIyqrn7bgDvHO52iIiI9EXTGkVEZFQzs7lm9jszqzGzajN7zMzmDne7REREetPgTERERrtfAHgYwDSk0hp/BeDBYW2RiIgIocGZiIiMdgXu/rMeaY3/CyBvuBslIiLSm645ExGR0e5JM7sNwEMAHMBfAlhsZhMAwN15IpOIiMgQG9LBWWFWJy4p3JFRX9fB093m5tTQehd4Ol0oSexNxdtpfWfnZFovyOaJZ6FUvOcaeLrjn09YlVELpaB1OE+UzA6kL4ZSFlHKy1XxElqvaOZJeZFx/HG3dU2h9aY4/xB6ffssWq+L8YTOWB1fT3ZJjNYb2vnyp/CugJItPEGuZGcXrefWtvP21LXQeqQuMxkwMiXQGPAUwa4SfkI7v4D3y9C+X9c0ndYvKtkbaA+3oGgXrT988A20Hk/y9j+0ny8fcnbJQVpf1Tab1idFm2m9LZFL6+y1CADKInw9NYFU2dYkX39DIjPFcVnLHLpsKMmyOcmf2+JA0uTeGD+eQ0LJnaHXqcmBfcO2NeEjamLG+9P/f7RX/QNIDdZ0/ZmIiIwIfQ7OzGwWgJ8CmILUH7F73P3b6U8cfwmgHEAFgPe7O89lFhERGSbuzkfFIiIiI0x/PtqMA/hnd58H4FIAHzezeQBuA/Ccu58O4Ln09yIiIiOKmb3PzIrTX/+7mT1iZhcOd7tERER663Nw5u4H3H1l+utmAJsAzABwI4AH0os9AOBdg9RGERGR4/Ef7t5sZpcDeBuAewH8YJjbJCIikmFAFwWYWTmACwG8CmCKux9I/+ggUtMe2e/cambLzWx5Yx2/jkFERGQQdf/xuR6pqfmLELroU0REZBj1e3BmZkUAfgPgU+7e1PNn7u5IXY+Wwd3vcfcF7r6gZAIP1BARERlElWb2Q7ye0pgL3UpGRERGoH6lNZpZFKmB2c/d/ZF0ucrMprn7ATObBqC6r/V0eBSbO6dl1M/L20eXD6UvRkky2NFckFtJ66HUt3iM/81uzOaPOyW3idYfPXRxRu2ScTvpsqFUtrxsnqa2o3ESrZfn8wTKUPpaSH42Ty/c0pH5/AHA2oYZtD4ln6e7TchppfXC3bxLdpzP0xqbD/EEvVfbymk9EPqIRD5/zrM6+P73bL68dWTut0gzT1nMz+LJkc2zePpfWyvvI1Wd42g9ksUTNw928eXjgTTS0PLnlByg9VeqefbCuFyeMPiWSVtpfWMLT5tsDqRTtid44ml7gp8g2dRyGa1PyGmj9fMLecpl6Nja15WZnDgxyvt9VYynqR4KpJq+IZCgGVIW4a9RZdm8PU+3nEProW3Ns8wDK5RuO0zeD+AaAHe6e0P6b9b/G+Y2iYiIZOjzk0MzM6Tm529y92/1+NHjAG5Of30zgMdOfPNERESOj7u3IfUB4uXpUhzAtuFrkYiICNefM2eXAfgggHVmtjpd+yyArwF42MxuAbAbr99HRkREZMQws9sBLABwJoCfAIgC+F+k/r6JiIiMGH0Oztz9JQB8/hXw1hPbHBERkRPu3UiFWXUnD+/vjtYXEREZSXRBtIiIjHZdPYOrzIxfzNcPZnamma3u8a/JzD7Va5krzKyxxzL/eXzNFxGRsaJfgSAiIiIno/R100+k0xpLzezvAXwEwI+OZX3uvgXA/PS6swFUAniULLrU3W84pkaLiMiYNaSDs1yLY25OZqhj1HgiXsx580L1GdF6Wv9D2+m0fk4+T4kszOJJhU/Vn0frFxdX0PrCwh0ZtS9vvZ4ue8Gk/bS+taaM1t9WvoXW93WMp/VQ+uLZpVW0Xtc1sA+Wzy45OKD1hFLrWufyOMX8XF7vqOdJfNFdvG5JescHRJt4Cp3VNdJ6iMcy25kV5f01OSmfryNwPjt3PV++aiqfndUZDxwneQ20/scDPGWxrJA/V6E0yOxAvb6Dt39J1Txar6znCYZTSngC6MQ83s7GLv64jR089bGjiKc+vnP8KlpfGUgGZUmLU3N4amIo2bA9yfvx3lhmEiQAtCV40mcoDbYtyZefEEhxDPlT06kZtdbE+gGtY7C4u5vZ+wB8GkATUted/ae7P3MCVv9WADvcffcJWJeIiIjOnImIyKi3EkCDu5/o+PwPAHgw8LM3mtkaAPsB/Iu7b+i9gJndCuBWADjllFNOcNNERORkpGvORERktLsEwCtmtsPM1nb/O54VmlkOgHcC+BX58UoAs939AgDfAfBbtg53v8fdF7j7grIyPktCRETGFp05ExGR0e4dg7DOawGsdPeMueHu3tTj68VmdreZTXL32kFoh4iIjCIanImIyKg2SNeE3YTAlEYzmwqgKn2920KkZqkcGoQ2iIjIKKPBmYiIyACko/jfDuCjPWofAwB3/wGA9wL4BzOLA2gH8IF0lL+IiMhRDengzODIscxUvFD6Ykgo2eylljMHtHyoHiVtBIApuTxprSrGU+U2tk3PqJ0zkacaVrTw9LWLpvNEyfZEIKUwi7d9fztv46GOQJpiIPmuupMnA+5v4eufXsTTDguyO2ndYvwyyPZGnjaXW8eXjxXz90GRDl5P5AYuv8zhyX3e2sbrLZn7LSvK15EVK6X1vEOhNvJ7wVc1F9H6+ZMP0PqGxmm0HrJl18CWzy/p4PVcnhha08DbH6vjz3lrPu87TR08eTCZ5M9tZ4y/7sQL+fL3V11G61Vt/JhgSaiNCZ4cGTInv4bWFx84l9b/csZyWg+9RoXSHadE+XEbSn1kabBZNnrHIu7eCmBir9oPenz9XQDfHep2iYjIyU+BICIiIiIiIiOABmciIiIiIiIjgAZnIiIiIiIiI4AGZyIiIiIiIiOABmciIiIiIiIjwJCmNXZ5BBVdkzLqZZFmunwoGSyUPFbVNY7WY0meyjgu0j6gx63u4KlyjV08ga22JTMJMSsrSZedNY6no60+OIPWyyfU0XpedozW9zSNp/XJhS203hLjKW5FUZ6UV9daQOu5kTitb41MpXWP8IS3wq08nXLcbr4/a+fzZMOcZr58dievB3Xx/eyJzPV4kq87kc8/G7FAUzr5U4jOZt5fV8Zn0vr4Ip402drOn3Mk+b4snMjX09nB0ylDYq38uc3q4vun5iA//oMC7S+dzF93WmO8PdWt/PjPC/RxZncbT2WdkddA641xflyV5PBEzF2dZf1uCwDEA0mWBwOvpSHr6jOTadsTA+sHIiIiojNnIiIiIiIiI4IGZyIiIiIiIiOABmciIiIiIiIjgAZnIiIiIiIiI4AGZyIiIiIiIiPAkKY15mXFMC+vMqPekOCJZFMjPMHwxbYzaT0/q4vWLy3eQ+tbO6bRelUnTyrLy+apbPEIf9zGSGaKXigdcXdDIIovYHMlTzsMKSjk6W5NnTzpr6Gd10vz+XrKivl2dcZ5FzvQzvdxTi1P1izdkaD1cRt4amXVpRNpveE03p68Q/xxs9t5ul6knvfNrKLMhE5M4s9tx3j+mKG0RuO7AFbNUxbbx/FtLcrniZuJOG9PpJAnU7bW85TSrJxAQwMswjc4Or2V1kPtTNTx/eD5vD1NTbz9re08rdEDyYZFgWPrxb2nZtTaA8mUh6aTfnMUJTk8aXZL0xRaH5/LkzVDiYpVbcWBx+Xb2tqVuV3JQEqmiIiIhPV55szMZpnZ82a20cw2mNkn0/XPm1mlma1O/7tu8JsrIiIiIiIyOvXnzFkcwD+7+0ozKwawwsyeSf/sLne/c/CaJyIiIiIiMjb0OThz9wMADqS/bjazTQD4nZFFRERERETkmAwoEMTMygFcCODVdOkTZrbWzO4zM3phjZndambLzWx546GBXYsiIiIiIiIyVvR7cGZmRQB+A+BT7t4E4PsATgUwH6kza99kv+fu97j7AndfUDKRX8gvIiIiIiIy1vUrrdHMokgNzH7u7o8AgLtX9fj5jwA80dd6GhMFWNQ4P6M+Kdrcz+amrK/jKYvnTjhA6883nE3rkUAsXkMXT3GLB9LaQimOp4yrz6jtaeLJfQnnyWZtzTyBDs08ZS0yiae4dXTw5au7eBfIz+UJfc0dvD3RCD8rmhfh+2ZnLU9TDCUV5tbx9VgD7ztly/n6W3nXQdsUvv87S3iKXvJN59L6tG++nLmON51Gl+0q5o+Z0+y0nuDdEh74zCOUspgYYIpeMsGXj1bxPhXjgYFI5vLn0Lv4BsRrebJhIj/QSQKpjOjkx6018L4fWHtwPzfk8/0Ast+y2wOfh03n5armIlqPF/L1zCjkKaIrDs6k9eI8ntxZls+TMvc2ldB6krw2OpTWKCIiMlD9SWs0APcC2OTu3+pR7/k2990A1p/45omIiIiIiIwN/TlzdhmADwJYZ2ar07XPArjJzOYDcAAVAD46CO0TEREZUcysAkAzgASAuLsv6PVzA/BtANcBaAPwIXdfOdTtFBGRk09/0hpfAuj8lMUnvjkiIiInhSvdvTbws2sBnJ7+dwlS12hfMlQNExGRk9eA0hpFRESkTzcC+Kmn/AlAaa9LAURERCgNzkRERAbGASwxsxVmdiv5+QwAe3t8vw/k/qA9bzVTU1MzSE0VEZGTSb/SGk+UeDILdV2Z6Xe72ybQ5WcX1NH6uNwOWo8leZxaeyKQphZwoLmY1qcV82TAnfW8/edPzkyPnJDfxtfRzNMFQ0KpjGWlLbTeEeNPdWMTTyNsaOVJeegKjOcjPGEwt5inwXVVF/DVBB42GQ0kv2Xz5zyLBwMim3cdxHgoHtrLeXafT+bbFZk2NaNWcwrf9+1lfJvy6vm+7JzB0xcj+XxjEzH+XLFkvaPJyubtSebyenYgBTERaCcifB8nc3k7Q4mHobsoWiCdMv8gX0+smG9XaD0dJfx5ySZpk8VnZCa4AuFUxmg236rCaBetv7xtLq3nFfLl9+/lrzux6YHX0k5+gOZGA8/t6HW5u1ea2WQAz5jZZnd/caArcfd7ANwDAAsWLOAdT0RExhSdORMRERkAd69M/18N4FEAC3stUglgVo/vZ6ZrIiIiR6XBmYiISD+ZWaGZFXd/DeBqZN5K5nEAf2splwJodHd+I04REZEehnRao4iIyEluCoBHU2n5iAD4hbs/ZWYfAwB3/wFSacbXAdiOVJT+h4eprSIicpLR4ExERKSf3H0ngAtI/Qc9vnYAHx/KdomIyOigaY0iIiIiIiIjwJCeOXMYTU481METAyfk8GTDc0r41P1QKmN9Vz6t72rgKYsTCngSYl42T2WbO56nSla2lmTUWrt42lleHl93PJBk136Ib1OsmLe9qZmnIybjPIEumh9oTxbvMt7O652NebSOKN+u0OcFnsXb6SU85S6nkafctU7h648X8qC0RGkgha6Lp9kly0ozHzMjQDu9iil8Hx/K4fvSAn3Bsng9OxBSmvBAemEBT6BsaeR9reS0BlpvauLLJwPpkVmB7cqd2srXE0hNTNTzvpYTSDZtyc+l9ZBQCiUC7clpzKy3tvPjP9bOn6zi8fw1sKKOv3Z5KFHyIH+NzT/I+3Fj1SRaT87l+zI/l6VBKnxQRERkoHTmTEREREREZATQ4ExERERERGQE0OBMRERERERkBNDgTEREREREZATQ4ExERERERGQEGNK0xlgyC1XtxRn1KfnNdPn1ddNo/ZTielpvifH0tcYunuKWTPKxaWGEJY8BjYHUx9oWnoRWSlIf6xv5siHxVp7iFi3hyXp1DTy9MFnPU+IigSS7WCtffsBCoYyBxMAkD49DThNPNrS2Dr6e3MykTADoKOMJcrFxvKGRfJ7WGHpeWueOy6hld/BtzWrlGxtp5ctbKEEzxg/jSJS3vb2NHyfjS3g6YnMgmTKWCDxZAXmF/Lhqb+bt6Qj0wYJi3vc7c/hzGEp3DKUvJibw/ZycxNuflcX7VOeZmcdWsiGQXhrQXMWP5+ymwEv3OP6cWyiVlT/lsARfvmsvfw3MPjdzRXwNIiIicjQ6cyYiIiIiIjICaHAmIiIiIiIyAmhwJiIiIiIiMgJocCYiIiIiIjICaHAmIiIiIiIyAvSZ1mhmeQBeBJCbXv7X7n67mc0B8BCAiQBWAPigu/M4s7SkGzrjmQ8ZSllsaOfJZpXVc2i9tJRHj509sZrWqxozkyMBoDXOU+IONGYm8QFANDtB6xUVkzOLgfTCUPoiYjzzLNbO0wLRFRhv5/M2xmt5+lpo+ZCswkDCXSDVENFQjCNPAOwoC6RN1gwscDTBuxryD/LHjTcF0ukC6+kozazl8nBRFO7nz2088JQ0hp7zgITxbYrm8ES/RCDVMBJ4brOyQs8hF0o1ROBxvZO3vzPUdwLriXfyPpI3u4XW2xsDiYqB9ntjINmUNDM7cDwno3zdFkiUTeYH9kEgsTIrkEzZHkgvza0fWNZize7xGbV4IOVTREREwvpz5qwTwFXufgGA+QCuMbNLAfwXgLvc/TQA9QBuGbRWioiIiIiIjHJ9Ds48pfsj5mj6nwO4CsCv0/UHALxrMBooIiIiIiIyFvTrmjMzyzaz1QCqATwDYAeABnfvnh+1D8CMwO/eambLzWx5vJHf8FhERERERGSs69fgzN0T7j4fwEwACwGc1d8HcPd73H2Buy+IlAQuphERERGRUaW2pRP/+us16Ii9fh37vvo2lN+2COv2NR6utXTGcfcL27G+spGtRmRMGVBao7s3AHgewBsBlJpZ91XmMwFUntimiYiIiMhQ+/HSnfg/D646opZMOh56bQ9iif6HQV115wt4ePk+/G7N/sO157fUAAC+9tSmw7WP3L8MX39qC274zktwD4RHiYwR/UlrLAMQc/cGM8sH8HakwkCeB/BepBIbbwbwWF/rSiSzUNdakFEPpTK2t/FIPK/n6WidhTwssrajkNaL8nlCYjyQkFZWzNPdKg+V0PqsU2ozavsOZqaaAeFEuVmn1tD63v0TaB3OU9ayAgl93soT1bLzeFpjMrDvo8V8X3bGA+P/dv64yVz+ot8yLdDO9sD+zOOPW7iP75+CGv64sQK+fNtUXi/ek7kfukr5c5sV43+Aqt7At9UDaYQI7eNAqmHHQX48YCovJxOBfbCtlC8/iR+HrYEURAv0BY8E0hEDfTxaxdMsYxMCyaOB14vSSfw4b2nl7Y8HUhyzOzOfl8Q43pYJU/mnxY1N/LnyQ/w4zIrw5zxRGEhxbOd9p3UWb2e0iS9vtG8OLPHxZGFmswD8FMAUpK6/vsfdv91rmSuQ+pu4K116xN2/OITNFOkXd8fXntqM91w4E2dOfT3B+suLUgOn79x04eHar1bsxW2PrEN9Wwz/cMWp/Vp/U0fqvYdZ5uvBH7cfOvz1a7vqerQJIIsDAP6wtQb50WwsnBN4DyQyCvTnzNk0AM+b2VoAywA84+5PAPg3AJ82s+1IxenfO3jNFBERGRHiAP7Z3ecBuBTAx81sHlluqbvPT//TwExGpLrWLvzwDzvx1z/+U5/LNrSlbqtS33bUuyYdf5vS64+TM3Q33/ca3v/DV/q1nkdW7sOuWn6LJZGRrD9pjWvd/UJ3P9/dz+3+I+PuO919obuf5u7vc/fAjbpERERGB3c/4O4r0183A9iEQCCWDI+fvVKBvXVtw92Mk0ryOGYSHmzsQF1r5oCt53Vm3Zo6YviP364/6vq+8dQWbDrQhNM+9yT+7oFlKL9tEb7/wo7g8it21+GqO19AW9eRM4Q+/fAaXPvtF/u5FTIWHGo5OYYqA7rmTERERFLMrBzAhQBeJT9+o5mtMbMnzeycoW3Z2NXUEcN/PLYBf/b15/u1fGtnPOMaqu5rq7ri/b+2qj8SSUdn/MgBSyyRxFcWb0LDIJ+N6q2lM37EVMLjcelXn8NFX3omo/7xn6/MqO2o5tPGe0q4Y/XeBgDAs5uqAQD/9dTm4PJfWbwZO2tbsXF/U8bPOmIn9jmUk9eyijpc/OVnsXjdgeFuSp80OBMRERkgMysC8BsAn3L33u8KVwKY7e4XAPgOgN8G1nH4VjM1Nfz6YknpjCdQ3+vszJINB7HwjmePGPB44L14VzyJJ9buzwibOOf2p/G39752RO3Srz6H2x5Zh7tf2H5iGp/2kfuX4cx/f+qI2uJ1B3DPizvxlcWbAr81OP7vg6vw/h++Qs949SUU2HHhF5fg3Xf/8fD3z22uzvgd9pu91zcW8kDWVzZiyYaDw90Mqr0rgVpyhqkxPa01pK0rjj2H2uDu2N9w9FtnHWrpxMPL9g5p+Et3OuiJ+lBiMGlwJiIiMgBmFkVqYPZzd3+k98/dvcndW9JfLwYQNbNJZLnDt5opKysb9HaPRF3xZMYbtI//fCXKb1t0RO3vf7oCF37pGdS1dqH8tkV4aVstPv3wGlQ3d2LR2tc/Cfceb/+XbDiI8tsWoaK2Fd9csgWf+MUq3PXMVnz1ydRAqHva3Ss7U8EUK3bXwd1R3Zx6Y7r5QPMRbfjqk5vwx+1HBn3dfN9reNu3/pCxXWf9x5O476VdR9T+sDVzAH7XM1sBAO1DcIbn0VX7cOpnF6MznsCmA6nPEwZyZikU0tGtvi2GVXsaBtyu3u/PnQ7h+tafqZm/WbEPH/3Z8mNa/4l0w3dewq0/W3Fc62jvShz+YKK+tQs3fGcp9hzi03k/++g6nP65xQCAxvYYHl6+FwCwak/94bO2Bxs7UFHbijd/43ks+PKzh3+3uqkD6ysbccEXlxz+PWbefz6NN3/jedz17Da86Wu/x/bqFrR3JVB+2yLc8J2leG5T1eHpxhd/+Vn862/WHj72Qlo647jyzhewJn0mdazoM63xREp2ZqNjx7iMuk/toMtnV/J0NJ/Ikwfbmnm645ZD02l9+izeKVq7eBJaSE4OTzZjKZSzp/PHrGkuonWWbgkACCX35QZSFpt5kp0FhueJ0PKhTyWreTtPO3s/rVcsn0nrwYS+rEAKZSDx0APb1TSPf/KT8yo/FHJa+PpztvN6vDAzeTC7k++0ZJRvUzxwO8DoAd4v40V8/d7Ejx/k8rbHuvg+iOby462zmPe17FrezshsPp0lUR1Yvp3vH/5qAeQ28+VjEwe2ve2BVMlQgmlWcaBPTc6shxJimwJJkAWFfGsnTuaf/DV18NfAUJJtSGs974Q2lf/ht/0kVXKUfvptqdi5ewFscvdvBZaZCqDK3d3MFiL1QejR34WMQS2dcZx7+9MoyY9ize1XH64vSk872rC/EedMT6Uhv5ge2Pzbb9YCAD7/uw1o6Uy9Nn364TWYWJSLRDKJi055PcH30w+vAQA8v6Uae9JvCv/n96mzYZ+59mz8ctnrbzRvuX8ZnttcjS/d+PoM1Kd6nNnYUdOCH/5hJ374h52o+Nr1h+tswAWkBj1ffGIjPnL5nIyfvby9Fm86LTVWr0i/mW5qf/31wt0x5zOLccmcCfjlR994uL5idz0AxwUzSxHJPvpn6y/vqMWkolycMeX1BMavPbkZiaSjvvX1x+o54Fqy4SBu/dkKLP3XK49oS3fSYvcg6kdLd+Fz17MMnLBEeuTUcyDdbVvvqY79eO143w9extaqFqy5/erDZ//uXLIFD/fYX8w//yrVJ7riSeREXt+Hq/bU4/yZpcgOvNcYbK2dcSTd8cDLFZhYlIubFp5y+GdLt9Xgu7/fjlsun4Orz3k9Vvns/3wKU8bl4tXPvg1PrDuA9ZVNePM3nsc7zpmCL954LqaMy0N1cwcmFubiF6/uAQBsq2rGHYs34YUtNXhtVx1+vWIfinIjWPWfb8elX30uo10PvbYHtz2y7vD3z22qwg3nT8M//O9K/Ns1Z+G6/1kKAEccE7/fXAUAeHXXIeRHU++J1lc24ZYHlqMwJxsbvnjN4WXbOgNpymkrdtdjV20r7lyyBT+75ZJ+78+Tnc6ciYiI9N9lAD4I4CozW53+d52ZfczMPpZe5r0A1pvZGgD/A+ADPoZu3hRLJPHjpTvpDYWrml7/wGF5RepDhsb2GJZuyxzkdC/bc9c9szH1xm97rzf0N9/3Gj5y/3JYj1s4dA/evvC7jXhy/ZFTyOKJ5BHXmnVPwfvSE0dOLyy/bRE+9dCqIwZPzBvueBZfTU9N3FGT+UFUz+uhtlY1Z/y85yCvO2Hw1V7Tr/7i+y/jL77/Cv69R6CGux8+C9bTX/3oVVx9VyoM445FG/HQa3sO/6wrnsSBxu59m6rVtXbhkZWp29X2fN6Wbnv9TOGdS7YcsY6jdemejwfg8Bv8e3udTQSAd/z3kaEd/TlQllXUozH9nHRPwTsyjv/oa/nfP+0+/PWK3fV4990v4zu/39aPR+6/lXvq8b3nM6fG9gyr6T4Te/4XluC8zy/BnUu24jOPrMPuQ6k+sLOmBR+89zW8uqvuiDNtB9PPX1VT5gd+T2+owt//dDmqmjqw8I7ncOpnFx/+2Yb9TXghfZ+5X6/YByB1nPznYzykpefADABiCcfPXtmNP2ytOSLhs7nj9eNjfWWqP37u0fUZQS6tXeHB2L0v7UL5bYvwyo7Mz7GWbqtFRW1rn89r99nwmuZObK/OPM5OFhqciYiI9JO7v+Tulk4w7o7KX+zuP3D3H6SX+a67n+PuF7j7pe7+8nC3ezBUN3Xgb+97Dav21B8Oz9he3YLTP/ckvrxoE274zkuHl31i7X6U37YIl3zlucNnwT70k2WHf/7Be19De1fiiDfvH7l/OZ7bVIWnN1T1u039nRJ32ueepPUuEt/+29VHzgB5x10v4qM/W35E1HtNcyd++OJOAMBbv5k5zXH9fn4vQ6bnQJKFkjzU44zf42v249pvL8VT63nIQWN7DD9augu3PbLu8Bv5OxZvpMsm0298ew4KmztenzkRS7y+b8/49yfx81f3ZAySu7FBWH8l3dHayWds9Ba6Zu7xNXzWTrfOHvv1n365GgD6NXWuM57ISIWMJZL45EOrjvjgAQDec/fL+MbTW1B+2yJ86YnUPt9V23pEWM1f/ziVJZToNSdz1Z4GxBJJXEX60pee2Jhxlmv9viP719p9jViyMfO4+ckf+fPy4Gvh6Yo9ratsxFefTIWz1Pe4Bi0ZmFWVcVa0l40HmvDe77+Mx9fsP7yPbvrRn/D8lmp84+kjQ2CuuPMFzPnMYtQ0d+KORRvxrSVbkEg63vTV5/DY6ko8troSZ/3HU1heUYc33PEs3vatF0/aG5oP6bRGERERGR1+8IedeHFrDV7cWoP5s0rx249fdjhlr1tHLIG8aDY+8YtVh2v3/XEX3nxG5jV2139nKXbWHHlfqlseGNj1QYOVztdzkLSlqhlbqprxn49v6PP3ym9bhJ1fuW5Aj/XAyxWvP24iNf2ud6Jkt+4zcj0HST3PzC0j4Qd76l4Pa2jpMQjqfjN/f4/HP5r7X67AaZP5JRlMsp95/csr6vHY6szBFfv9nTUtvQaQSWSbDejat+4pr70Heiv31OOsqcUoyHn9rXJ3oMun334G/u9bTwcA3P/HCjy2ej8eW70f2++4lk45vfelXXj3hTPoPeL21WdOF7/7he14+7wptL29B76v7jyEX5JrwdgtCwYyVGknZ7lqmvnU/IHc+67nWfJvpa+5XL67/ohlPpz+4GbhnIkZv7/wK88ePuP7zvkzsL+xA//+6Hpcempq2ff+4PX74D2zseqIqaDM85urUZwXwYLykXNjc505ExERkaMqv21RRkhHz+l73YOyzzyy9ohlniaJdC9sqcGP0meZeuo9MDsW7LqZkDX7+n826z/ItK/eU/cA4D090gq7xXqdVui+7m0gfryUn/HoPlu3Ync9YokkWjrjqOhx4+U/9RG48Lnfrjvqz492JjJ01qyutYueMUn08yxGZSDpb2s/pqmd/rkn8ZlHjr5NIT37wwMvV+A9d78cvOH1t57Zenj66R09kjZDZ2SBVAjInUu2ZtTZIGhrVQve9b3MvsTOBH15Uf+TPuOJ/g/PntrQ/8j5mgHcP+yDvdJRj9qG9ZmvHz13QXcYT3Nn/PCU557auhJobIsdkejaO9Tnw/cvO2JANxJocCYiIjJKPL3hILaRa5oGQ+8wjH/51Zojpr4BwCcfWk1/t79nZwbT7/qY+tbT1qrMwQY7EbSSnLH5cI/pm0Bq8NLQ1kXjynvrfjPe0H70MxPPb6nBB+75E869/Wk09TiT9OM+phf2NSCuburEVXe+ELypNxtv1bXy7VpWcXwR5qGpc739cvnew1M0j1X3NWnrK5uCU+Pe94OX6XN4zX+Hb3zNpk6GzvayAW7vaycBPvU1ZCO5PvFEeN8gDW4eJB+ADNQFX1yCG/7n9SnWfU21HAmGdlpjliPBEt7aeDMsM/guJcHTdLwj8AuB5ffvzTxderTlLZ/PgfZAcmLxeP5ixpQU8E+KDjWRFDQA2XU8TXHKeXxu/v7dgW2NB7Y1UM+exF90iwKpcjv3Z6RHAwA8P5AwmMNfBLvG8c8R6s/kSX8dEwPb1cnXf2g+b0/xDt6nsrv4erLIfktGeNtjBYF+HA0kQebzetEu3sacRr5801z+uIkSXk8mAi8T2Xz9iUJ+wa+zRD8AyZLA8lmB4znwdyheGPhjnMN/YXwJf1MyeTp/4d56kEedZwWeL5bMeMq4erIksLGdT7uYUszb0hbjx/9FkytpfUIO39aSbP6689u959N6YQ5/g1hJXgMtqpu/DoePpkMDeqanHa/+XrfRHTDQG3vzGDo7Mhq9vOMQrjtv2hG1f/nVWlw698hpVLc/th5fuPHcw1H+QGpa1nsumpkxH+35zdW48qzJR9RWpKeG3f/y0QdkfYWb9PTF9HVA/0huKD1Q/b2uKYQNuLpvUt0b67KHBnB2p6dfvLYHf33J7Ix6bUsXFt7xbEZ988Fm/HYVfy1m4v0ddYJPgdwySB/GfO/5HX0vNMJ1n/k9GQZkPenMmYiIyCgTD1yjdDStnXH8+XdeykhO/NHS16cgrtzDP2A4mopDxz9d8WT3772u/3l2U1XGdLQHXtmN3h5Nv8nvPdb48P3LMpbt1p2WF3IsA+N1JHkT6PveZz0NRjjDD/7ABxBsOubLJAUwpOd2HW2gFbqMbiCBKJ/vx7WL3b6yeHPfC50goWmrJ5Mn143MG333RYMzERGRUeYJcj+pvvxp5yGsq2zEB+99DfvTb+BbO+NHvCF8z90vI56+tqm/QmfUpG9Lt9Vi9d6GEZs6N5BmsWX7uiaup+rm0F0uM/UcNB1s7Dh824b+6tnWZRUD/0AiNJhlBnLtowxM9y0jemO3nwglWQ4HDc5ERERGGRYJ3xML+Lijx5mc7lhwNiUxnnS8467wdTW93UPCP6T/Xt15iJ6hYfdLG8nYtMTdAzir+pH7+5/cWdXjTfmlX30uI/Ch5z3beuq+T1ZvFbWtGXH3MvL1HCT3vObx2m8vzVj2C7/beDixs7KhHRd8YQluD9z/bbApSl9ERGSU+ddfr0VhTgTXnz+t74XTdtb2743yWf/x1LE2S/rA4uK/+uRmTCrKvL766gEMkAcLm9YYOpvGBmeDdeuD7puKhySSjvLbFuGBjyw8or7wjmfR1BHH7IkFR9SvuPMFvO/imSe8nTJ0WJhKb91nqD/xi5VobI/hgVd24ws3njvYTcugM2ciIiKj0I9fOvYzVv/88JoRO5VuNJv72cW0XtvS//tIDSXWRToD6YFs2dsHcL3V8WLX2n2r1xm07qTLRhKa8itNzx1VjpaW2tnjQ4Oe19lu2N+I8tsWYe2+hsFs2hCfOUsaspszE9iSgeS+UOpbdisfUyaK+PKhVLnCiTxNsfVQAa2H0iCtk7cnWZJZP9TK151M8nV0tfNUNi/l8/0b2/JpfcJ0Pqe5YQe/6V6ymKc5xdt5l2mM8e2K5PJ2JgIJlx5YvquU7/v2s/jBFd2by9cfSIOM1vH1J3kYJHICs0liBZnPowc+AmmdHkhHDOz7wvH8Iu7WEt7IlnpeDyVlhj6p8cB6sgP9Hlmhj0359kbbAsdV4APVRClff2wW7wtZgfY0NPNjJSTWzPuU5fDXnVpy7La083WE2nigcRytt7fy56S+hR+H44v4a10oDTb0uhMr5etZeEpm3HF9INlRBs+KXjdyHciNeHvbWduKuKZxSR8ayM2HQ2P6JeQ+VEPpibWZt04IXe/V0Nb/REs5OS348rMZqbas69b3uDn5c+l00Gc2VuH8maWD1jadORMRERkF1pFPcz/10KpjXl/S/bjvFyWj2ycezOxfR7tx9XDqK8VSxp7+nAE7lpvGHy8NzkREREap367ej6aOGGLHEK2fTIajwkUA0JCMx1f3/+beIsOp9y0uuj+M6oy/PiOm543DQ+mPJ5oGZyIiIqPY+Z9fgjd//Xn6s6NdV5Zw13VnMmD3jaBIcpGj6Z1Gu2ZvI7riSeyoyQxHcnc8+FpqCv8Abu93TDQ4ExERGeUONHbQgdbdL/Cb+ALp+HANzmSAdLZVTha9p23//U+X40tPbKQppEPZrzU4ExERGQN+s7ISAPC/f9p9uPaNp1Npde1dmcE2//3sNr3RFpFRq6opM0hsbWUjsnuNzl7eUYt4cnBu+8D0mdZoZnkAXgSQm17+1+5+u5ndD+AtALqjbj7k7quPvjLAowN4pc/nKWjexceU+RN5ml1HINmsoz0QxRdQPKWF1tta82i9a2tm0lpyFp+vGonylMKiEr5NLft4iltom3KjPHnIAgGX1sy7hufyzpldG0hHBK9HAkFI3sHbH5vI909uPl9RVylPm4s08mTAgX5MEUpgzD+U2c5YIX/MaDM/Md4e5/XWGp7Elzue96nCOfyeRbEEb09zVRGtR9r5xuY0BNImc3m97I0HaD03wp/bfUtn0fr7Fyyj9Wf3nUHrZ0/k97uZkMP3z7gI359Vk/gx99KiC2jdI5mvdUUX85jPWJw/Jwkf2OSJGeN58lhnnB/PicDjzpxaT+t7d5TR+mvkdae1a2Cvr3L8+vrrunJPPS6dOyHjOgsAaOnMPA6f3VSFg038b5CIyMmO3TKh5zVm3f7qR6/i6U+9eQhalNKfKP1OAFe5e4uZRQG8ZGZPpn/2/9z914PXPBEREemP/pzluvy/Mq8921rVjGc38ZhzJdyJiACHWsP3RTvR+hyceWqSevcpo2j6nyY6iIiIjCB9hXeEzsNefdeLJ74xIiKjyL1Lhy7opl+Tucws28xWA6gG8Iy7v5r+0R1mttbM7jIzOn/NzG41s+VmtjzRwqcRiYiIyPHp655kP38182bhIiLSt+c2v36JxGCfoerX4MzdE+4+H8BMAAvN7FwAnwFwFoA3AJgA4N8Cv3uPuy9w9wXZRYUnptUiIiJyhNbOwEXEIiJywsQHOSlpQDEI7t4A4HkA17j7AU/pBPATAAsHoX0iIiIjipldY2ZbzGy7md1Gfp5rZr9M//xVMysfinZ9+7ltQ/EwIiJjWu/7o51o/UlrLAMQc/cGM8sH8HYA/2Vm09z9gJkZgHcByIx/6qVr777aik/+S3eG7yQAtcfe9JPKWNpWYGxt71jaVuA4tnfrCWrAnbcPbPnVx/5QJ91zW3F8v354e3cef1MAYPaJWc3IYmbZAL6H1N/CfQCWmdnj7r6xx2K3AKh399PM7AMA/gvAXw59a0VE5ETrjA/uLIX+pDVOA/BA+g9SFoCH3f0JM/t9euBmSL3/+VhfK3L3wznMZrbc3RccW7NPLmNpW4Gxtb1jaVuBsbW9Y2lbgbG3vcdhIYDt7r4TAMzsIQA3Aug5OLsRwOfTX/8awHfNzLyvxA4RERnxTpnAb210ovQnrXEtgAtJ/apBaZGIiMjINQPA3h7f7wNwSWgZd4+bWSOAieh1JtbMbgVwa/rbFjPbcgLad9Kd8R1G2lf9p33Vf9pX/XdS7quP/hfw0eNfTXB2SX/OnImIiMgJ5u73ALjnRK5TZ0D7T/uq/7Sv+k/7qv+0r7gBBYKcYCf0D9IIN5a2FRhb2zuWthUYW9s7lrYVGHvbe6wqAczq8f3MdI0uY2YRACUADg1J60RE5KQ2bIOz9CeGY8JY2lZgbG3vWNpWYGxt71jaVmDsbe9xWAbgdDObY2Y5AD4A4PFeyzwO4Ob01+8F8HtdbyYiIv2haY0iIiL9lL6G7BMAngaQDeA+d99gZl8EsNzdHwdwL4Cfmdl2AHVIDeCGigbZ/ad91X/aV/2nfdV/2leE6cM8ERERERGR4Tfk0xr7unnnyc7M7jOzajNb36M2wcyeMbNt6f/HD2cbTxQzm2Vmz5vZRjPbYGafTNdH6/bmmdlrZrYmvb1fSNfnpG80uz1949mc4W7riWJm2Wa2ysyeSH8/mre1wszWmdlqM1uero3WvlxqZr82s81mtsnM3jhat1VERORkMqSDsx4377wWwDwAN5nZvKFswxC4H8A1vWq3AXjO3U8H8Fz6+9EgDuCf3X0egEsBfDz9fI7W7e0EcJW7XwBgPoBrzOxSpG4we5e7nwagHqkb0I4WnwSwqcf3o3lbAeBKd5/fIz1qtPblbwN4yt3PAnABUs/xaN1WERGRk8ZQnzk7fPNOd+8C0H3zzlHD3V9E6hqDnm4E8ED66wcAvGso2zRY3P2Au69Mf92M1Bu8GRi92+vu3pL+Npr+5wCuQupGs8Ao2l4zmwngegA/Tn9vGKXbehSjri+bWQmANyN1XRTcvcvdGzAKt3UsGe2zUo7FQM6GW8r/pPffWjO7aHhbP/gGMtPnaPvHzG5OL7/NzG5mj3WyC+yrz5tZZbp/rTaz63r87DPpfbXFzN7Roz6qj9OBzqga6/0qZKgHZ+zmnTOGuA3DYYq7H0h/fRDAlOFszGAws3Kkblb+Kkbx9qan+a0GUA3gGQA7ADS4ezy9yGjq0/8N4F8BJNPfT8To3VYgNdBeYmYrLHVzYGB09uU5AGoA/CQ9ZfXHZlaI0bmtY8IYmZVyrPp7NvxaAKen/90K4PtD3tKhdz/6P9OH7h8zmwDgdqRuxL4QwO2jdEr0/cjcV0BqJsn89L/FAJA+9j4A4Jz079ydfu8wFo7Tgc6oGuv9ihrO+5yNSek45VGVwmJmRQB+A+BT7t7U82ejbXvdPeHu85G6t9FCAGcNb4sGh5ndAKDa3VcMd1uG0OXufhFSfyw+bmZv7vnDUdSXIwAuAvB9d78QQCt6TWEcRds6Voz6WSknUOgM8Y0AfpqeIfEnAKVmNm0Y2jdkBjjTJ7R/3gHgGXevc/d6pD60ZIOYk1pgX4XcCOAhd+90910AtiN1jI764/QYZlSN6X4VMtSDs/7cvHM0qup+kU//Xz3M7TlhzCyK1MDs5+7+SLo8are3W3oa2PMA3ojUi0n3bSlGS5++DMA7zawCqT8gVyF1ndJo3FYAgLtXpv+vBvAoUn9IR2Nf3gdgn7u/mv7+10gN1kbjto4VY3VWSl8GcjZc+zBloPtnrO+3T6Sn493X48yO9hX6PaNK+4oY6sFZf27eORr1vCHpzQAeG8a2nDDpa5DuBbDJ3b/V40ejdXvLzKw0/XU+gLcj9anQ80jdaBYYJdvr7p9x95nuXo7Ucfp7d/9rjMJtBQAzKzSz4u6vAVwNYD1GYV9294MA9prZmenSWwFsxCjcVhnzxsrZ8EGh/dOn7wM4FamAsAMAvjmsrRlBxtKMqsEwpDehDt28cyjbMNjM7EEAVwCYZGb7kJoz+zUAD5vZLQB2A3j/8LXwhLoMwAcBrEtfhwUAn8Xo3d5pAB5IzxvPAvCwuz9hZhsBPGRmXwawCumghVHq3zA6t3UKgEdTnzcgAuAX7v6UmS3D6OzL/wfAz9Mfku0E8GGk+/Qo3NaxYKzOSjmqnmfDzeyIs+HufqDXGWLtw5SB7p9KpN7z9Ky/MATtHHbuXtX9tZn9CMAT6W+P1pdGfR872owq9av+0U2oRURETmLpqcZbkToLWonULJW/Gm0ffg5E+gx4lrs3p79+BsAXkdpHh9z9a+m0vAnu/q9mdj2ATwC4DqkQgv9x94XD1f6hkp569oS7n5v+/hsYwP5JBzesQGpqNACsBHCxu/f3+qyTBtlX07qn6pnZPwG4xN0/YGbnAPgFUh8GTEcqAON0AIZRfpymZ1Q9AKDO3T/Vo65+NQBDeuZMRERETqyxMCvlGAz0bPhipN4gbgfQhtTZ5FFtgDN96P5x9zoz+xJSAw0A+OJofAMd2FdXmNl8pKboVQD4KAC4+wYzexip6eJxAB9390R6PaP9OB3ojKox3a9CdOZMRERERERkBFCUvoiIiIiIyAigwZmIiIiIiMgIoMGZiIiIiIjICKDBmYiIiIiIyAigwZmIiIiIiMgIoMGZiIiIiIjICKDBmYiIiIgMm/SN1EUEGpyJiIiISD+ZWbmZbTKzH5nZBjNbYmb5ZnaqmT1lZivMbKmZnZVe/n4ze2+P329J/39FernHAWw0szwz+4mZrTOzVWZ2ZXq5D5nZI+l1bzOzr6fr2el1r0//zj8Nw+4QOeH0SYWIiIiIDMTpAG5y9783s4cB/AWADwP4mLtvM7NLANwN4Ko+1nMRgHPdfZeZ/TMAd/fz0gO7JWZ2Rnq5+QAuBNAJYIuZfQfAZAAz3P1cADCz0hO7iSLDQ4MzERERERmIXe6+Ov31CgDlAN4E4Fdm1r1Mbj/W85q770p/fTmA7wCAu282s90Augdnz7l7IwCY2UYAswFsADA3PVBbBGDJ8WyQyEihwZmIiIiIDERnj68TAKYAaHD3+WTZONKX0ZhZFoCcHj9rPcbHi7h7vZldAOAdAD4G4P0APtLP9YmMWLrmTERERESORxOAXWb2PgCwlAvSP6sAcHH663cCiAbWsRTAX6d//wwApwDYEnpAM5sEIMvdfwPg35GaIily0tPgTERERESO118DuMXM1iA15fDGdP1HAN6Srr8R4bNldwPIMrN1AH4J4EPu3hlYFgBmAHjBzFYD+F8Anzn+TRAZfubuw90GERERERGRMU9nzkREREREREYADc5ERERERERGAA3ORERERERERgANzkREREREREYADc5ERERERERGAA3ORERERERERgANzkREREREREaA/w/H01uPHbr2UQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 1080x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAEGCAYAAADhfO2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABU2klEQVR4nO3deZhcVZk/8O9bvWbpJGQhJAQIAoKKEiWDIriAG+KCjo7CqIMOY2SU+bmNiiuOMoobKII4QVZF9p0gEEggbCEb2ReydZZO0p2k1/ReVe/vj7qdVKret7tud3VVdfX38zx50n3q1rnn3rpVXeeec79XVBVERERERESUX5F8N4CIiIiIiIjYOSMiIiIiIioI7JwREREREREVAHbOiIiIiIiICgA7Z0RERERERAWgNN8NICIiGu4mTpyo06dPz3cziIgoB5YuXbpPVSdZj7FzRkRElGfTp0/HkiVL8t0MIiLKARHZ5j02oM6ZiJwH4A8ASgD8RVWv6m350spRWlE1Pq3cvdOaOOVhb83m1ZMPWWrLoN+dbrD3WSG9Jr3hbQCzJ0v7Muyhk7WPi+F0LGRhW7ta6hHtaB0q73QiIqKC0O/OmYiUALgewAcA7ASwWEQeUdW13nMqqsbjlAu+mVauJfby6lwRJ/FwbY079XvfwlTCfZ8Q50beVj3etob9xqlhv/KErd+7GjFf9XjLO+VhjxGPRAdeh3sch/wC7O2DsPWErt/Zl6HXm63OmffaOvWHPQbd7Y15y2f+/h/0kxLOPvA+o7zlI862uq+hsV3rH7jGWZiIiIg8AwkEOQPAJlXdoqpdAO4CcEF2mkVERERERDS8DKRzdjSAHUm/7wzKDiMis0RkiYgsiba3DmB1RERERERExWvQo/RVdbaqzlTVmaUjRg326oiIiIiIiIakgQSC1AA4Jun3aUGZS+Fc1+Jc4+Fdn+Ve6+Jdb+F1Qb16IiGuIeml3LrOQ0NedBL62jK3Irs47L70uvPudVXetSveap16It51RiFDY9zrj0Ly9pv1eoW+/i3k9XXuMZKnAAt3H4e4XqlX3vLefg75mrv70712LfMNyNb7OWvXVHqvScjrDLP2OUVERDTMDeSr6mIAJ4nI8SJSDuBCAI9kp1lERERERETDS79HzlQ1KiKXAXgSiSj9m1V1TdZaRkRERERENIwM6D5nqvo4gMez1BYiIiIiIqJha9ADQYiIiIiIiKhv7JwREREREREVgAFNa+wXK9XLSfqKeEl/IZPBvCQxN6ksSzSSeUPd9LUsJdmFTdBzU9nCpjuG5bXfS+4c5P3mCZX6mK19E7KebB3f2UroC5sM6tXvvp8HObXSPdZCpFCGfk3CvuZx+wmh1+vt+5DLExERUTgcOSMiIiIiIioA7JwREREREREVAHbOiIiIiIiICkDurzkjIiIqcCJyM4CPAqhT1VODsrsBnBwsMg5Ao6rOMJ5bDaAFQAxAVFVn5qDJRERUBNg5IyIiSncrgOsA3N5ToKqf7flZRH4HoKmX55+jqvsGrXVERFSUCqNzFiLtDPCT8tw0NUe8xIt9c54Qsp1hktbCpil66YXZ2pdue7KUyhY26S9riYdh6w+ZGBhq/4RMygybmhg6pTRLqYyeUAmXvfDe52HrD70fvPdcmHWGTXwMu8+8toesxk2+HEZUdYGITLceExEB8BkA5+a0UUREVPR4zRkREVE47wJQq6obnccVwFMislREZnmViMgsEVkiIkv27t07KA0lIqKhhZ0zIiKicC4CcGcvj5+tqm8D8GEAXxORd1sLqepsVZ2pqjMnTZo0GO0kIqIhhp0zIiKiDIlIKYB/BnC3t4yq1gT/1wF4EMAZuWkdERENdeycERERZe79ANar6k7rQREZJSJVPT8D+CCA1TlsHxERDWHsnBEREaUQkTsBvAzgZBHZKSKXBA9diJQpjSIyVUQeD36dDOAFEVkBYBGAOar6RK7aTUREQ1vu0xqtFDAvSsxJNgudslYeLnrMS2WTWKhqzHrCJr6FTqAL28awaY2OSBb2DRA+ic9NKvQSPcO2M2wqo1HupiZ629pXo1KF3Dfe+yp0GmnY+rOQagr0cuxkKYXSSyp092eIdM2wqazhtylkAq0j7qw4Eg1Xz1Cmqhc55V80ynYBOD/4eQuA0wa1cUREVLQ4ckZERERERFQA2DkjIiIiIiIqAOycERERERERFQB2zoiIiIiIiAoAO2dEREREREQFIPdpjWE4CWPxkK0OnXgYMjEwTAqdl3aWjboTK3AWD5nW5u0Drz1h0xQ9XhJf2PrdlLssnY4IlRIZcp95wib3ua+hV02WkkTdzQqZyuhub0ihEw+z9F4U470eNq0x9Gsbdp+5yZT2A7Eye/lIzFhxyPc+ERERDbBzJiLVAFoAxABEVXVmNhpFREREREQ03GRj5OwcVd2XhXqIiIiIiIiGLV5zRkREREREVAAG2jlTAE+JyFIRmWUtICKzRGSJiCyJdrQOcHVERERERETFaaDTGs9W1RoRORLAXBFZr6oLkhdQ1dkAZgPAyEnHZOkSfyIiIiIiouIyoM6ZqtYE/9eJyIMAzgCwoPdnpfPSFzXiRfF5DXIWjznLewmATrnXTjcNzkpUy1LKmpteONgTVcOmMoZ8rUK330ub85YPm5bnptk55SHan600wtDpgl49WUrXC51ImJ3F3f0Ztj1uPSE/jsKmytqVOG3JUgJt2OPeqyfOaEYiIqKs6PdXeREZJSJVPT8D+CCA1dlqGBERERER0XAykHO7kwE8KIn74ZQC+LuqPpGVVhEREREREQ0z/e6cqeoWAKdlsS1ERERERETDFqP0iYiIiIiICgA7Z0RERERERAUgG3limRM7wUwlXNJX2KRCL2FMS0KtNlwqI2B2ff1kSqeOkIlyYZPm3DRCZ99kK9EvdOpj2NMI3n4IWY27f0K8Xu5xE7bcWzzksRP2uHePb0/YnZylpExXyOW9zwsv9dVtvlGP+1mUp/TVsImhkS6nHqudDHAkIiIKjSNnREREREREBYCdMyIiohQicrOI1InI6qSyn4pIjYgsD/6d7zz3PBHZICKbROTy3LWaiIiGOnbOiIiI0t0K4Dyj/BpVnRH8ezz1QREpAXA9gA8DeCOAi0TkjYPaUiIiKhrsnBEREaVQ1QUA6vvx1DMAbFLVLaraBeAuABdktXFERFS02DkjIiLK3GUisjKY9niE8fjRAHYk/b4zKCMiIupTbtMa4SSYOXln8ZJwcV9uUqGXPBi2a+o0x12vUX/YdbrJeqFjB23xLO2bsCl03vJhUxwjUWd5b7uytD/d9ocQNhEzbOqoetvkJgOG2wkSsxuapUMzdIpj2GRTN83SS4ksD1ePmdzpHTchX/PB3lbvfZW1BM2h6wYAP0dij/4cwO8A/Ht/KxORWQBmAcCxxx6bjfYREdEQx5EzIiKiDKhqrarGVDUO4EYkpjCmqgFwTNLv04Iyq77ZqjpTVWdOmjQp+w0mIqIhh50zIiKiDIjIlKRfPwlgtbHYYgAnicjxIlIO4EIAj+SifURENPTlfFojERFRoROROwG8F8BEEdkJ4AoA7xWRGUhMa6wG8JVg2akA/qKq56tqVEQuA/AkgBIAN6vqmtxvARERDUXsnBEREaVQ1YuM4pucZXcBOD/p98cBpMXsExER9YXTGomIiIiIiApAzkfOzATGkElfoVPrvHS6kFvvJhg69VjJaW4dIZPp4iFTEN0UN2+1Xj0hy73XxF0+S69tdIS9wdHR9goiXfaOLjtgryBMCqWXZBcvy06uobuPQyb0hU5BdFaQrfV6+9hNEnSEfa94x0Lo/RZi2dCppll6P0e67fK499lY5pSHOO6JiIjIx5EzIiIiIiKiAsDOGRERERERUQFg54yIiIiIiKgAsHNGRERERERUANg5IyIiIiIiKgB95hWKyM0APgqgTlVPDcrGA7gbwHQkbsT5GVVt6KsuFSBebq3EXz6M0ImEsXDrdVPovCTBEG1xEyWzlMoY6bLLK5vD7bSwiXWxCvsBLw2ufbLdnopGu55YhV1P90Q70m/8lCazvH7PWLO8tM1er5voZ7xescrspDJ6p1LcBFAv1TDk+80NcXSS+7yAQY+bSOit13m/hU48dY5BLXEq8toZIuUyEvOOG2+d9vLipCy6bXETQ8MtHyqVlWmNREREoWUycnYrgPNSyi4H8IyqngTgmeB3IiIiIiIi6qc+O2equgBAfUrxBQBuC36+DcAnstssIiIiIiKi4aW/15xNVtXdwc97AEz2FhSRWSKyRESWxNpb+7k6IiIiIiKi4jbgQBBVVfRyeZWqzlbVmao6s2TEqIGujoiIiIiIqCj1t3NWKyJTACD4vy57TSIiIiIiIhp++kxrdDwC4GIAVwX/P5zxM60xNm/czUllc1MTQyYbxr30Oy8NzuGlPoZpi5uC6LQx0mmXlzvpi+q80geOsVfccZQd9Vc+vsMuL7eXP3qsnY44uszegGjc3vmrd041y6Wm0iwfudWOoWvbNdEsLy+191tpq71/ypvs5aOj0pfvrjIXRbzSPhh0tL0vpdnepoiTyuilEWaLm47qljvJnRX2EyTqJGU62xs6bdIpD/t55LE+FxITDTIXd45L75M74uyzkKv1P6dCfsYSERFROH2OnInInQBeBnCyiOwUkUuQ6JR9QEQ2Anh/8DsRERERERH1U5/n1lX1Iueh92W5LURERERERMPWgANBiIiIiIiIaODYOSMiIiIiIioA7JwREREREREVgEHOc0shdhKil74GLwXRiV+LdDvLO0llEafcDR7zurJe/VZam9P27rF2JbFyrzFOU85pNMtbGkaa5SM3VtjlO+xDI757tFneOsHeax1vaDPLp4xsNsvHl9k3Kh85vcssr51sRyFurbFTGSs32umOpZ32C9Nd5SQJxjNPEoxX2Pvm2JNrzfLTJ2w3y2s7x5jlS2uOMcs7d9n3FXTfJ86x6aU+qhPX6O0biTlvFG+95V7EoJe/aAsZVOh+AMTLnO2NOceC1RbvM8TZJDeB0kusjYfbWq9+L/XR3fUhPuuIiIjIx5EzIiKiFCJys4jUicjqpLLfiMh6EVkpIg+KyDjnudUiskpElovIkpw1moiIhjx2zoiIiNLdCuC8lLK5AE5V1bcAeA3A93t5/jmqOkNVZw5S+4iIqAixc0ZERJRCVRcAqE8pe0pVeyYvLwQwLecNIyKiosbOGRERUXj/DuAfzmMK4CkRWSois7wKRGSWiCwRkSV79+4dlEYSEdHQws4ZERFRCCLyQwBRAHc4i5ytqm8D8GEAXxORd1sLqepsVZ2pqjMnTZo0SK0lIqKhJLdpjYCd9hUi7RCwEx+BXpINQ6YseuVxZ71wyuNl6WXtb+gwl502ucEsH19ppx2ecUS1WX7TM+eY5ZOW29FppZ12NF0k6iXTmcWIVdj1ty2bYpYvPmqqWd453l5vdLwd6TniiHaz/IjxB8zy+qPtQ1667faXdNgHT/sMe72RHUYapJNaVxKx9/0RZfZr/roR9pn108bsMMtvL327Wd66y0649KgTaypOop+W2st779uwvHq89XppiuKkMropg16iYom93niYU18hIyW949VLg/S21W2Os00RZ73DiYh8EcBHAbxPVc0dpao1wf91IvIggDMALMhZI4mIaMjiyBkREVEGROQ8AN8F8HFVNc+iiMgoEanq+RnABwGstpYlIiJKxc4ZERFRChG5E8DLAE4WkZ0icgmA6wBUAZgbxOT/OVh2qog8Hjx1MoAXRGQFgEUA5qjqE3nYBCIiGoJyP62RiIiowKnqRUbxTc6yuwCcH/y8BcBpg9g0IiIqYhw5IyIiIiIiKgDsnBERERERERWAnE9rtNLEYiPsZcUO6DNTEL26ASBe4ZQ7iWTiJKd56XSejinpG/CxN64ylz155B6zfF+3nax3+0PnmuVHrbJj2STuJOg5+6xjXLh+e3Skk3bYaa93TLXdzq79dj3tk+wXXSN2ebTVLMakBrs9B4511nt8l11Rk73e+JTOtDKN2vsy4hxoMedFKXOiMieXNpnl75q2xSx/ovmNZrm2h/s48NIRwyYPeimIoevxqvHSI53l3XRH5/PIi3c0X14nNdHdBV76opOa6ibNOi9txNkmL7EyVh7iRWGwIxERUWgcOSMiIiIiIioA7JwREVFRE5Ffi8gYESkTkWdEZK+IfD7f7SIiIkrFzhkRERW7D6pqMxI3j64GcCKA7+S1RURERAZ2zoiIqNj1XHX3EQD3qqp9oSYREVGe8T5nRERU7B4TkfUA2gH8p4hMAtCR5zYRERGl6bNzJiI3IzEVpE5VTw3KfgrgywD2Bov9QFUfz2SFVjqYl0gWHZlJjckVhVzeSRPz0tq8ccaucXYE27tmrE8rO3VUjbnsgVilWX77vHeb5Ueutze2dUqJWd41xixGbIRdT/cYJ/XRSayMdNv1a8RJJKyy4+ZOPmmXWf4vU5aa5d1qb++8+lPM8iXLTzTLK/fY9fzT67ea5Q2d9sG5actRaWWTpjaay1aV2d8NK52dWSl2cmRL3I47nVbRYJaXVtgRfd1tzseBl8rovLbwUk3dFMSQsX4h3+fe+9n73PGOWUScekqd94qxXm9b1UnulLi9fLzcLHZ56Y5uPV5irZM2aS8cYtlBpqqXi8ivATSpakxE2gBckO92ERERpcpkWuOtAM4zyq9R1RnBv4w6ZkRERLkmIiMBfBXADUHRVAAz89ciIiIiW5+dM1VdAKA+B20hIiIaDLcA6ALwzuD3GgBX5q85REREtoEEglwmIitF5GYROcJbSERmicgSEVkSa3PuDExERDR4TlDVXwPoBgBVbUNBTbwkIiJK6G/n7AYAJwCYAWA3gN95C6rqbFWdqaozS0aO6ufqiIiI+q1LREYguJpORE4A0JnfJhEREaXrV1qjqtb2/CwiNwJ4LGstIiIiyq4rADwB4BgRuQPAWQC+mNcWERERGfrVORORKaq6O/j1kwBWZ/ZEIGoEy7mpaU7r4l56XJbEyu3649PbzfJ/e9Mis/xArMIos1MZN7RNNsvlSPvkbu2Zdsxa5ZRms/wTJ6w0y18/Yo9ZPr7kgFk+JhIufboxbqcalomdGDippMUuj9j7wQuPm1G53SyfN2anWX7j4neZ5RMr7Km4rx9dZ5ZH4+kH8xEVbeayK3dMM8tf3XicWV66r8wsd4L+0D3Wjug7avp+s7y2w64fTXZ5Sbs9K6y8KVw6otf+uNMcL3nQS02NV4SNd7SLNQufO+622mGhfnJkyAl5EXejwlUf6XYesXZ9mGTHQaaqc0VkGYB3ILF5X1fVfXluFhERUZo+pzWKyJ0AXgZwsojsFJFLAPxaRFaJyEoA5wD45iC3k4iIqF9E5CwAHao6B8A4AD8QEfssCBERUR71OXKmqhcZxTcNQluIiIgGww0AThOR0wB8C4m/YbcDeE9eW0VERJRiIGmNREREQ0FUVRWJG09fr6rXA6jKc5uIiIjS9OuaMyIioiGkRUS+D+DzAN4tIhEAzlWNRERE+cORMyIiKnafRSI6/xJV3QNgGoDf9PaE4B6edSKyOqlsvIjMFZGNwf/mPT5F5OJgmY0icnE2N4SIiIpbTkfOVIC4tUYvSMxJKvNSHL3ksZJOewVe6mN0mp0MeNlbFpjl3WpHre3sSP+7HXHi2srEjjYbMdJuy+jxdirj54+zkyM9O7vGm+WRcrs9R5U2meWjnPTFqaV2+mKltx/MUqDDeW2nlNiplVVOqmRllZ1aOfGddjtHOSmRJU4U3YnH1JrlloZOO8my/bYpdvlE+zgeu9Xe9/FSe/maD9mv+Ykn2MmdNaPHmuWlpXZs4uQqO+nz2FENZnlDlxHhCmDFNjvNsnKtvfyIWvtcU+cRzvu8yokTjIWLQnTeum65uayzzrB1a5aSJiUaMt1xcAN0ByzokF2d9Pt2JK45682tAK5LWe5yAM+o6lUicnnw+/eSnyQi45GI7p+JxB5bKiKPqKr9BiAiIkrCkTMiIipqIvLPwShWk4g0i0iLiNhnuAKqugBAfUrxBQBuC36+DcAnjKd+CMBcVa0POmRzAZw3sC0gIqLhgtecERFRsfs1gI+p6roB1jM56R6fewBYN6g8GsCOpN93BmVpRGQWgFkAcOyxxw6waUREVAw4ckZERMWuNgsds8ME6Y8DmtCpqrNVdaaqzpw0aVKWWkZEREMZR86IiKjYLRGRuwE8hEQwCABAVR8IWU+tiExR1d0iMgVAnbFMDYD3Jv0+DcCzIddDRETDVE47Z6JApDu93MnTsMNDAP9cpVPuBX/E7SwJvOW4GrN8U/uRZnl33N6A6gPpwQsLm48zl/WCQs45ZqNZftII6zsBsKbVnD2D53e+zixvbak0y0dV2YEaZ0zZbpa/fewWs3xG5TazfIITtFHm5BBMdoI/PGVOyszUUjs84/xRr5nlLXF7cLnbGXRui6dHmpSJHZzxpWNeNMvv+NI7zPLa6qPM8rdduMEsP3usfeycO3KTWT6pJNzHwbaofcx+/IWvmuV7Fx1jljefaO+fC9/1sll+1pn2a7W2wzn2959klm+tt4NRWmvs219F2p2JBk5wkRXy4QZ5OJ+BoTnvn4gX8OGFljibqiXOh6yXRFI4xgBoA/DBpDIFELZz9giAiwFcFfz/sLHMkwB+kZTk+EEA3w+5HiIiGqY4ckZEREVNVb8U9jkicicSI2ATRWQnEgmMVwG4R0QuAbANwGeCZWcCuFRV/0NV60Xk5wAWB1X9TFVTg0WIiIhM7JwREVFRE5FpAP4I4Kyg6HkAX1fVnd5zVPUi56H3GcsuAfAfSb/fDODmfjeYiGiQfeyPL6ArGseT33x3vptCKRgIQkRExe4WJKYkTg3+PRqUERENS6tqmrCh1r7HK+UXO2dERFTsJqnqLaoaDf7dCoDxiEREVHDYOSMiomK3X0Q+LyIlwb/PA9if70YRERGlyuk1Zyp2Klm83E4A8xLMvMQzN92xl/ZYVm2fapbvmzTKLK9wEgD3Hkhfvr2twlz29VNrzfK6Tjs57rHVbzHLR6636/f2WWV6uCAAoGuEXc+8fW8wy2tPstsZP9Leyf80YqtZPrbUiPMEMDJipzV2qr18hXNojxb7oPLqGeecvqgQZ8cZGuJ23ceU2kmWZ51YbZbvf539mlSJXX9T3F6+NjbCLK+UdrN8fIldz/Nt083yz795kVm+66RxZvmi3fbNd2POuaNJJfY0jH+uWmGWn1ZpJ4yunWinO26aZt1XGJiz+lSzvGSffWxany8R+6MCJU65l0DrpS96n6WRbmd5J8kWdoCm+5mpFUY9hXXq79+RuObsmuD3FwGEDgkhIiIabAwEISKioqaq2wB8PN/tICIi6kthndskIiLKMhF5nYg8KiJ7RaRORB4WEfvmj0RERHnEzhkRERW7vwO4B8AUJNIa7wVwZ15bREREZGDnjIiIit1IVf1rUlrj3wBU5rtRREREqXjNGRERFbt/iMjlAO5CImblswAeF5HxAKCq9flsHBERUY+cds5EATFSwEo67AgwcVqnTsKYeElizvhgqR1Oh9I1dppdzevtpL9Jk5vM8o5149LKRjTYjXxt13FmeeU+e/kJdU4qW9TZN3G7vKvKrr/9KGdnxuzyHY3jzPKH4jPM8n0T7XTH11fuNstPr6gxyyucZjpBnyhzDpIqJw2y1Kkp7sTodWv6AT7aSXYsc5Ijj3CO18lOouSyrpFm+V3732GWd8ft9U6rbDDL7996mll+YOcYs3z0tGaz/FPH22mKXz7tWbN8emmXXb+zP+Pux5m9XbuiRzjL294w3T4216md7oqO9BcyZh/2biqjxO3jNeJ8Znr1xOzDO/GhbJY71XsJukbapJfsmCefCf7/Skr5hUjsNV5/RkREBaHPaY0icoyIzBeRtSKyRkS+HpSPF5G5IrIx+D/cNx0iIqIcUNXje/nHjhkRFa361i4c//05eHkzb+04VGRyzVkUwLdV9Y0A3gHgayLyRgCXA3hGVU8C8EzwOxERUUERkX8Rkarg5x+JyAMi8tZ8t4uIaLAt39EAVWD2gs35bgplqM/OmaruVtVlwc8tANYBOBrABQBuCxa7DcAnBqmNREREA/FjVW0RkbMBvB/ATQD+nOc2ERERpQmV1igi0wG8FcArACaras9FGHsATHaeM0tElojIkmhb60DaSkRE1B89F4N+BMBsVZ0DwLsSj4iIKG8y7pyJyGgA9wP4hqoedsW/qiqcS9FVdbaqzlTVmaUjRw2osURERP1QIyL/h0MpjRXgrWSIiKgAZZTWKCJlSHTM7lDVB4LiWhGZoqq7RWQKgLo+64kB5XawoSnuJozZMWCxCqceO9zNbUvc2StV4+2Rv455k8zyY17tTCuLVdrfB6Ij7fKSTjtNrazFiEfrRXSkHbNW1m6vt6zNLq+ot3dOk9oxdNGYXc/CyPH2eicYcZ4AJpQcMMvfXG4nA8bU2W9it6clbicDdjj1jIvY+2GEZH4yPgp7W+tj6ccNADx84GSz/HfLP2DX32y3pWSMva0jltmpj15C3winvK1jrFnefIx9W6krt3/MLB9X3maWf3XyfLN8qpPu2Oh8kIx3jqlRpfb+L4/Yr9cY53OhuW50eqGTvujREvv4i41wUhY9TjdEurMTqSjRwopmNHwGwHkAfquqjcHfrO/kuU1ERERpMklrFCTm569T1auTHnoEwMXBzxcDeDj7zSMiIhoYVW1D4gTi2UFRFMDG/LWIiIjIlsnI2VkAvgBglYgsD8p+AOAqAPeIyCUAtuHQfWSIiIgKhohcAWAmgJMB3AKgDMDfkPj7RkREVDD67Jyp6gtwb0mK92W3OURERFn3SSTCrHqSh3f1ROsTEVHCgtf24t9uXoSXLj8XU8eNyHdzhi1eEE1ERMWuKzm4SkT6nU4lIieLyPKkf80i8o2UZd4rIk1Jy/xkYM0nIhp8dy3eDgB4dXtjfhsyzGUUCEJERDQUBddNPxakNY4TkS8D+HcAN/anPlXdAGBGUHcJgBoADxqLPq+qH+1Xo4mI8kjtAHbKkZx2zjQCRI3zlV46opcSJ3ZoWugEs8r99vK1Z8XN8oqV48zykW12Pd1V6RtQ1mI3vrTdLq/YVm+Wx46wT/xGq5zISkeky257iVPefKK9b7yJr231dgLgtohd/2eOajDLJ0Ts5L4dUTuKc09sjFl+Utl+szym9gZUOe30UhkPaHrSX7fa+6zbSYK8s/ktZvktt59nt8UJ7ow6MxLKm+03XKlzHJe12+WdY+19Fh1hlz/wykyzfNxquz3bnc+Ff515oll+1TvuN8tPKNtrlsediQPHVtjHSOMIe4fuaLbTKc1kRud4cnnpjmHnPDjrVSfJNmyKo1qvVYEEOKqqisi/APgWgGYkrjv7iarOzUL17wOwWVW3ZaEuIiIijpwREVHRWwagUVWzHZ9/IYA7ncfOFJEVAHYB+G9VXZO6gIjMAjALAI499tgsN42IqH+kUM6uDVO85oyIiIrd2wG8LCKbRWRlz7+BVCgi5QA+DuBe4+FlAI5T1dMA/BHAQ1YdqjpbVWeq6sxJk+z7ZRIR0fDCkTMiIip2HxqEOj8MYJmq1qY+oKrNST8/LiJ/EpGJqrpvENpBRERFhJ0zIiIqaoN0TdhFcKY0ishRAGqD693OQGKWin0xIxERURJ2zoiIiEIIovg/AOArSWWXAoCq/hnApwH8p4hEAbQDuDCI8iciIupVbtMaS4HOCcbfJycA0Lse0Utr9JQ3OqlylfbyVZvs3WImkgHodm5lGh2RfklfRX23uWxZvZ1GqCXOZYERu7ykw47u6x5tN757lF1Pxzh7n43aaS9fesAsRiRmfx8Z8+lWs3yCU1FE7Hq8lMXTysPNHlrRPcEsf2eFnZZZHbVfr8Udx6SV7egeby77SsPxdt23nmSWT9hjHzvWcQYAzq6BeO83h5bYFVXWO981nRVPfcFecaQ7PeESALTUrqeiwU4kvbzhIrP8wne/ZJafMmKXWd4ZtyMMy5wdN6LMfs9JV3r7K/bb78OOKU7kppfu6F2rHXUecFIfpdM+drzPWInZ9Wjp8Op3qGorgAkpZX9O+vk6ANflul1ERNnAKP38YiAIERERERFRAWDnjIiIiIiIADBKP9/YOSMiIiIiIioA7JwREREREREVAHbOiIiIiIiKGCM+ho7cpjXCDnKTkKmM6nQpR+1yEgZ32xWNqOsyy1uOtdPg2o90EhLb7UN+9Pb2tLLSxvQyAOiaPNosj5fZ6yxrtBPuIu12ol9Fvb1v4mV2ZGVZq7N8uVnsdvMj9ubi9WPrzPL9UXs/TIjY6Y57YmPN8qkle8zyvfFwh/y89qPM8kWtrzPLH3rtLWll0e4Sc9lxz9v7fsJaOwmypM0+XrXMrr97rH0cx8q9F8sp7rRTCks6nPfVPrs9XupjSaddj3bby5d22q9hVbW9AXeNm2mWzzh+h1k+ocLe/y1Re392xeztDTVlvyTkn82QCbde6qOW2xV5oe/iRYCGaQsRERG5OHJGRERERFTEeL5s6GDnjIiIiIioiHFa49DBzhkREREREQHgTajzjZ0zIiIiIiKiAsDOGRERERERAeBNqPMtp2mNnogdMAiJO+luTgJg1c6oWV56wE6Di3Tay492Uh9bjrPT9UbW2sO/Jc3piYrd40eay3oJehKz645W2bGJJSVOf9uJxBy1w05BxLGj7GqctDYvWVOcVLltB8ab5VMrjjTLjyptMssf3T/DLB9/5AtmedyJ+rxv3z+Z5esb7Pbs2TPOLC/flf66jGi291l5s71zuseUmeWxkfbb1Tt2It12/WUt3hvOS+i06/faGYnax2yps97SevsYlG77/Vm23z72S9vHmeWxcvt9u7zFTtwce4x9rJWW2PuzrdPeD1qavh+6xjpvCC+tscv5XIg6fzidatRuor9ep1y7Q7aHiIgKAj+lh44+R85E5BgRmS8ia0VkjYh8PSj/qYjUiMjy4N/5g99cIiIiIiIKg1eRDR2ZjJxFAXxbVZeJSBWApSIyN3jsGlX97eA1j4iIiIiIaHjos3OmqrsB7A5+bhGRdQCOHuyGERERERERDSehAkFEZDqAtwJ4JSi6TERWisjNInKE85xZIrJERJbEW53rm4iIiIiIKO8YpZ9fGXfORGQ0gPsBfENVmwHcAOAEADOQGFn7nfU8VZ2tqjNVdWZklB0yQUREREREg4OBIENHRmmNIlKGRMfsDlV9AABUtTbp8RsBPNZnPWonM8adVnhJhVW1ZjHKmu3IwJJOuzxeYa9YnJS7uJN4Fi+xD/nY2PSUOC0Ll8pY0uHEIDrUaUu8vMQs7xprb1Tl/i67Pe32PuuucuofbbdnR8M4u574iWZ5c9RO3Htpx/Fm+blHrDPL5+x7i1m+cKOd3Fe2004GHFtrb9eI/enHjpeaWNphv+blDekpn4D/GjoBmhDnxJeXslhZZ8eglu2z2+PRErudkf2N9vLt9nq9emJHTrOXd041HfmqfSy37rb3Q8cmO0m08Sh7h0bsUEmM6Eh/YdpfZ7dFnCRI7/2MmF2uZU4apPdX2Ts56qVEOgm6RERU2DgWNnRkktYoAG4CsE5Vr04qn5K02CcBrM5+84iIiIiIiIaHTEbOzgLwBQCrRGR5UPYDABeJyAwkOuPVAL4yCO0jIiIqKCJSDaAFQAxAVFVnpjwuAP4A4HwAbQC+qKrLct1OIqL+4E2o8yuTtMYXYE+KeTz7zSEiIhoSzlHVfc5jHwZwUvDv7Uhco/32XDWMiIiGrlBpjURERNSnCwDcrgkLAYxLuRSAiCinOBY2dLBzRkREFI4CeEpElorILOPxowHsSPp9J4z7gybfambv3r2D1FQiGs5W7mwCADi5cyZG6edXRmmNWWW83l6qnFvuBBiWtNuxaSXtRkRkL1pOqDLLy5tDVWMmIZa12G2MhHwfeAmU7vIdznpjdmJd+yQ7pbBrlN2fd5MsnSOsbd9Is3yvk1r3wObTzfLycXaS4Jo2+z7p48vbzPIzTtpqlq8cPdUs131jzPKq6vTkwYhzXEbanFTGkRVmuZTY+768yU4A7JhkJ1yWN9rLQ+2D0EtN1BH2i16yu96uv8I+piRib1d01267/qYJdvUVXpqlfb5wdI29H0btsZcfbweAYsQO+4MhNiZ9/zf82E6mHFVut6W6+kh7pQ7pDne+TUuy9AfYetsW99/2s1W1RkSOBDBXRNar6oKwlajqbACzAWDmzJnFvceIKC9+//RGAEBdc0eeW2K77aVq/O+cddhw5XkQ5+/1cMORMyIiohBUtSb4vw7AgwDOSFmkBsAxSb9PC8qIiCjJFY+sQVfMuQ3MMMXOGRERUYZEZJSIVPX8DOCDSL+VzCMA/k0S3gGgSVXtoWAiOmh3UztaOsLNdqLs6YomBvD/EIy25ZIzeWdYyv20RiIioqFrMoAHg+k3pQD+rqpPiMilAKCqf0Yizfh8AJuQiNL/Up7aSjRoNu89gGOOGIny0uyd5z/zl/Nw3ISReO4752StTkrIZMpgR3fikpmNdQcGuzlp2Dc7hJ0zIiKiDKnqFgCnGeV/TvpZAXwtl+0iyqW9LZ143++ew0VnHINf/vNbslr3tv32teFEwwWnNRIRERFRxpqDqYevbHECoLKoMxpDbYGGWQwlmsG8wXymNGbSvuEi5yNnVgKjdNtDrXEnSSxqB/356+x05i9HvcRDO61x9E57+THrmpz1piewdU8day6rEXsfSImzb5xpBBEnlVGcg760wU6PG2GWApFuO6EvXua9hnZ5+T770GvBaLN8whJ7+Yb32Nu7vmWyWf6JI181y2uj9usSjdv7eUO5ndYYHZnezlLn80bLwibr2fsy5qQplnTYF9hGusNdeKtOCmJJXWOoeuLj7NdWtjmX4ngf1PX2+620wj42YyPt8tIm+499bJSdKlnS0GqWx7fbOQ8l049JK2tps99ZYyudLx7OZ6N0hku0UvslhMScepyD1l0vA7aIhq3Wzih++OAq/ORjb8J45/NzIL5593I8vmoPtvzifESc70rUt4EmIS6prsfyHY34j3e9LkstOhy7Zodw5IyIiIiI+uXORdvx0PJduG7epkGp//FVewAAD77KwNPBJr2cafv0n1/GlXMOv6fM1n2tuOHZzVlZNwfODmHnjIiIiIgK2kub92e1vhU7GhGLF1eP4JYXt+KZdbU5W99FsxfiV0+sR1NbZgmbTOPMDDtnRERERNSnjbUt+OA1z6GpPf0LdmrZoyt24fmNe7O27v5eD3XtMxtx9q/mHVa2bHsDLrj+RVw/f3BG+/Llfx5di0tuW2I+NhjXnLV1JS4tiWU47HXmL+fhY398ISvrLmbsnBERERFl0bXPbMQPH1yV72Zk3bXzNuG12gN4bkN6p+v+ZTsP+/2/7nwVX7hpkVlPa2cU1z6zEdEwNx9O+u7e0R3D9Mvn4HdPbejzaVfPfQ07U66v392YuM53/Z7mzNefA9FYHPM31A1K3Zlcc+ZNa3zZGbVsDnIOwkxprXbSODmt8RB2zoiIiIiy6Oq5r+GOV7anlfdnGt2/3bwIl/51aTaalXdrdjXhy7cvwS//sQ5Xz30Nj67clfFzk/fcsu0NAIA/pnQKpl8+Z0iPhl37zEZ86ZbFWR1xzIaLblzY6+MbagurkzvU5TatUQGJpvfKxTlxEok7SWUhP9zioyrs8nI7wqzUSbkbUWOntUnMTnEUKw3S21bvgVi4bfVSGRG361cn6U+cRL/KvZ2h2uMlA7YdaSdiVuy3k/XE2Q+jR9spd5+ZbA/rj4zY7Y875ynKI/Zr2znebk/3mPS3VMU+OxFTDtjl8SonjrTCfruWtjiviXcshDymIm0hI4xL7H2pZc6x5ixfMmG8vXyl/X5Ge3o6KgA4QYVQJ/HUS2VE7T67ni57vdZ+6Gy1k8wOjLbLJy6xW1/RZL+vdr8rXPqiO4vE+JwGAHXqiVipkjwLSoNgZ0Mbjh43YsDJc5mIxxX1bV2YOPrwz5ym9m6MKi9BadJ7fOGW/Vi3uxlfOut4t77nXtuLi29ehMf+62ycerSdEGxZ8Fr6F/WG1i78fdF2fPW9J+RkX/SodVJuM/Xte1Zg/Z4WvDnY/q5o5iNnydPyvnPvSne53zy5AV8758T+NzKPttUnRpX2H3D+rgwB8bjie/evxMXvnB7qOKdDOHJGREREBW/ptgac/av5uGfJjpys73dzN2DmlU9jb9IJsHhccdr/PIXv3X/4lMULZy/E/zy6ttf65gVBDUuqD7832IY9LagLeR+v7z+wCr95cgMW5uA+Y8kWVQ9sfd3BNMYNe1oGVI91zVsx6+iOhZsCmke7mtpx79Kd+ErI0d7k88mtnVFMv3wOnljt3GqnyLFzRkRERAVvU13iC/3SbQ05Wd/TaxPX/uxvPdQ5u2NRYqpi8vVV3vU4APDq9gbE+5jt86HfL8A7r5rX6zKpDnQmrvWJOrNisuHvr2zHbS9V97pM2AHyzXsTMxO6+tHRGM6D8af8+Al86dbFh5XtP9DZ67HXH3m9CXXSurcF16X9/umN+WpOXrFzRkRERENWa2cU7V32FPRM7Wpsx/4DfU/bf3X74R3D6n2tvV6P88k/vYSbXth6WNlPH12LOxcdfj1aNKUD19Edw5a9B/psT6rpl8/BTx5eHfp5qVQVP3hwFa54ZE1W6sqGFzfZU8uz6Z7FO1DXMrCpm9lgdZKe33j49n/m/17GRTcuzNr+zba93iUX1Cd2zoiIiGjIetMVT+L0K+emlT+2cldGaX4A8M6r5uH0K58+rGxDrTH1LuV7cEuQVtebtbvTwxK+/0DvSY7/785Xce7vnsO+DDqMqW5/eVvo56Rqbu97uwD0csviQ7LVd9jXy3VYHd0xfOue5RnXZY041jZ34Lv3r8SXnSj6XAhz9WDPKOS9S3b2sWTmdWezn9cVi2P5jsaMly/QPmZesHNGREREQ1qbMXJ22d9fTUvzO9AZxf+781XUt4YPXFi4ZT8eeLUm9PMyHdmYfvmcg6N3PaNEe1ICOC647gV89v9eDt2GQpWNL+TxuGLOyt14YFn6a9Ps3PD4hw8mRhc7kkLLeq6HW7Gz6bBlV+1swrz1h9/YORZX3L14+4BuYv38xr1p9fantlU1TX0vlKHk12Og1wUCwGvWCQ5v3QNeW/HoM61RRCoBLABQESx/n6peISLHA7gLwAQASwF8QVV7/bQTBSLWyRjvFQn5SkWcM1jRsXa6W3SUnYRW1mS/maXbmTbhJCXFq0aklZW02bvITbILkWSUWKmzvFMsES99zX5CrNI5ZJxuftdIe/nKBrv+jvF2RfFP2vOq33WUfYbw73vebpZPqrCniYwrs++70dxdaZZHR9rtL29MPwYjjfY69YCdCuidMYm02WdQ1UlxjDQ4U2KizhnRiLPvJ4wxy933Q7dTv3Ms69RJdnPqnQ915/0mXqpkxEkerHCSQZ32x51URim167GUj7Tr2LP7CLP8DQvt477zKDvtNNJhpz6qlaYIAM7735e7VDiiVNn4In/nK9vxyIpdOLKqAj/66BtDrffC2b3HiYc1/fI5WPXTDx5WdvqVT2P9z887+HvqdMeejsOpR9ufy7mWyUvS2zLrjFHFvtQ1dxy85g4Aunu57u4tP30qrawrGj/4/E4rVTvFx65L3DR58y/OR0nw9+SOV7bhJw+vQVtX7GBC5+wFm3Hem6bg2AlO4nKKnnvAVV/1kbTHwt3+LbM3Rti3z4d+v8BsGw2+TEbOOgGcq6qnAZgB4DwReQeAXwG4RlVPBNAA4JJBayURERHREPTQcv9eXj96KP36sF88vg6twUjgJ65/0Xze6prCvq/Utv2HTj72NnJ4Wx9TMJ81bsh8zm+fTStLPWeX3HlL9YvH1/W6Ts+CpHuP9Yy8NrQlTuY3tHbhF4+vx7/+pe8OfGtnFN++Z0Va+dJtDQc7qz3XDcbi2uc1cJmetMhkBLe/gSDZOHFSqNfO5UOfnTNN6DkFXxb8UwDnArgvKL8NwCcGo4FEREREObydV85Y97Pa7dxLbDC/vD65Zg86vNkQvfBekuQwiMdW7sbdi9NvyN1DVTH98jnmdXhfvGVxWllryhRWa7e8+adPuusLM9UuWU/q5oHOKBZtPfyWArGgEdb02qXbGnDxzYsORuH/beG2w9I+e3zqhpfwWu2Bw+r59ZPrccb/PpO2bHIwjXVU7Ajul5bazr6E6ehtDLEfM7mfHbtmh2R0zZmIlIjIcgB1AOYC2AygUVV7Tk3sBHC089xZIrJERJZE25ybuxIRERENQH/vA7WzwZ7W3iMbnUJvJCfMSMXOhvb052tidGn65XP6FR4CJL7Af+WvS/Gzx3q/T1t/fePu5Wn3hUv20PLEtWLJCZZN7d0Zd0bvWpTe8RuMfmzPcfC1O5bhpRAR9l+/61U899pet9Pdm0edUddP/umlgz/3bGvyiOC7fj0fALA5ZOKntdvuW5rekXx4+S584JoFaW344YOrcMcrh78e1fta8fof/QMPpHRIz/v9Apz3+wUH9ysHzg7JqHOmqjFVnQFgGoAzAJyS6QpUdbaqzlTVmaUjR/WvlURERES9+PHD/Yt939WYvej0+evTp+EBwOd6idtPNXdtrVked769/uqJRCLlml39m+r4X3cuAwCs7kewhAL4335OE+zx0qb0js5jK3dl/GV9cXVm972r3pedAYLnXjs0vbGvzs9fX64+2Knuz73ddhkduvQQksTvsxds6bWu5P15+s8PpZvWNKZ3+pP9973pUzBTE0h7TjLc8cp23PDs5sMeWx8Eizyxek9a+fo9LeyUGUKlNapqI4D5AM4EME5EepIIpgEIH2FERERElAX/WL3bLA87tSvV8u2NGS+7q8n+ortiZ1O/Rk4yESZU45f/WIczf3n4NLna5sSIW2/XafVmoF+uB5oJl+no45NrEp2DbE6PnbMyccz1VFnf2oWv3bHs4OPJJwx++fj6rKwztZOe6f7fkTRCvD8prfSsq+ZhR30bmtq6+/1eyUoHS4Gmtm5cN2+jeyJiuMgkrXESgG5VbRSREQA+gEQYyHwAn0YisfFiAA/3txEROxwREjaocIS9OWXOWbH2SXbimYqdeBYJeZPL2Kj0FLfSZidxz0mU6x5vpwWWdNptKXUSK9VJWew4Mj1REgBiFXa/XZw3jDif6d7yFY32ixsvtfdDx7MTzfI5J44zy9/8Rnt++85We/n9pfaobmu3k35X5SSDjkxP3dQye9/LGPv4c9MOnbNuXrqgtvd+NiytnlFOwpTzPtQSJ2HUqd9Lm/Rot/PB4JRLmZO+6KQ4SqM9Xz7upGjGO+32l1TZr+OOj6Yfs6Wl9pnpyBi7jeu+OdYsr6yxt7XMOYmrzie9Oqfn1H5pEff+YhThtUAeETkGwO0AJiPx/XG2qv4hZZn3IvE3sefuww+o6s9y2MwhY0l1PUSA048bP2jrqG0O3ym6P2kq188eW4sLzzh2wO14yhgRkwG+eZI7GnPXHhqZ2NnQhrN/NR/XXvRWvLq9Abe8WI3qqz6C/3uu99GV0OvPQh3e9/DUkZawz8/G8qlT8TIxZ9VuXG+U9/dat1Sp7c90e9q6YqhpbMfR49K/99W1dJojZBm3qZfHnghOmvR12wGF4qePrMFDy3dBUnrQr9W2oK65E2efZH8XLDZ9ds4ATAFwm4iUIDHSdo+qPiYiawHcJSJXAngVwE2D2E4iIqJCEAXwbVVdJiJVAJaKyFxVTb1g53lV/Wge2pcXe5o6MLKiBGMq7RMHsbji6rkb8OV3vQ7jRh466fXpPyfu2ZUc2d3RHcP89XX48JunhGpDJl9Sr3ois9GLbw/ki2qezvqvSro/192LdwBI3My6P/qb2pdNC5KmD/amsa273zfe3rDn0Bmt1CmpO+rb8C0jVdGSy72V+tqEea32tXSanbMHlu00b5Zu6QkbSWmEqyet9Jmk/ZscGJPsQDDwEI0dXuEHg+vbhku0f5+dM1VdCeCtRvkWJK4/IyIiGhZUdTeA3cHPLSKyDolArMFJUxgi3vHLZzB5TAVe+cH7zcfnrq3F9fM3Y1djB6757AwAh276m+rHD63GvUt34r5Lz8TM6dkdUes5e//ca3vxI2eZMJ0rK4QjXzOysrnavrahI7g/WOpindEYlm5rQEVp+rC8N3Ky1wkyWVydPsXuhY370spe3pJ5OEddSwdW7Gg8+HvP67f/QGfaNYuf+8srGdc788qn+1wmW9Mp+ztyBgCdTmriHa9sR5Vzz9RUmY5o9sY6Fob5TMbDhLrmjIiIiBJEZDoSJy+tb3FnisgKEfmHiLwpty3Lj9qUafs76tsw/fI5mLe+9uCXseSb/nrTDe8NphQ2dxw+hbnnmq2m9kPlyfHrYb78bqxLjJg0tXWnpTU+suLwhLzevjR+/a7DR6a6ovECGHPK7Iuuqrod0b6e7k2P/MWcdfjXG1/BWiOcxLuOyBohUwW2GAEen78p8w5TcugFANz6UjXO+/3zaVH8u5vacbrRudpujBC1dfXvurxk9yzZMeA6kvX2WqVe5/iZ/3v54C0BBmKPcf3kQEeMFYdO2GSyjzqjMVz91Aa0h7zkaChg54yIiCgkERkN4H4A31DV1G+iywAcp6qnAfgjgIecOg7eambv3symcA0FS7c14JzfPosl2xIjH/csDn/dDgD8JGkkY/6GOvz+6Y0AgCfX1KIl6LjdacSoN7V146k1mZ3df9/Vzx42dU1VD95guC//cdsSNKdc5/0/j67NW5hB2NUe//3H8akbXjIfa07qADe1Odf/Iv2as55Ob4PxnFzvlv0pr+Pupg7ztQ0T+LJhT+bXjd2b0sHo2f7NeweWGpm6H3s73q59ZmP6872FQ5zcSDuBAcV844bhYajqwdFSL0GyuaMb+4PRzjsWbse18zbhhuc2m8sOZeycERERhSAiZUh0zO5Q1QdSH1fVZlU9EPz8OIAyEUm7kj35VjOTJk0a9HbnyqdueAlb97XilherAQBPJHWU1u5qRiyuh41+eZLv6/WllJsRtzjhVwBw2Z3LMOuvSw/+3jOiZt0HbV/KTaDjmv4dtb07Zt5w9+l1duS9NeLiCTMSY4WHJO/H5GuPrFHE5FHLHsucjsnPk+55ljqCmYlGq3MWYkzRmr5YCH4S4nYN37lv5WG/hzkuepO6Hx9YFi4sfYsT/z+QWZdxBdq7+nefwWTWTbyTpz/PvPLpg6OcjcGxbx3XQ11mE0yzyXhveslgpd5x7Ly/2yfbyYajN9vzmUfutstjI+3d0j3GTu6LjnJS64zjtHuUXXeswn5bRGL2xrZPdF66qRVmcWW9F6doF3u6Rtv9+bJWu53do+zlO8fZ5eXNdj2ja+w3/Yg6e99vX/c6uz2jzWJ0V9nrrTrVnss+oso+dtonpif3jdxuHzfwYoubnTNzUXt5qbSPey/dEeX2BftwpjpIZ2ZnkQ+KhDvnI81OxOBIJ0l0l31GXMqd/eytt8RJJC2131slR9pfnrtPOdosn/D+9JuH1rfZ2+TtsjLnOOs6wT4WSrc56a7tzhu9xC5XcY4FL7nTqqYQ5nYNAknEiN0EYJ2qXu0scxSAWlVVETkDiROhmV8YM4Rs2NOCMU5S8sqkgIoe1fvb8LNH1+C2l7fh6W+952C5qqYltPUldXpWT4fgVaPD0R2L46Qf/qPPOlXtLkSmwRCAH3Zg8TpHlnf/Zn5a2WV/PzStMnkA5Y/zNqUte0UfHYvkvf+Mcb82a9qa9za/+cWtaWVhRs76uvdWNlnr8r7wD0ZQSk1j+8HRoExYHd8wrHunAfZrmelUxWyE4Hg13LHwUNhLV9I1c9aoIJC4fnD8qPLQnyeFhCNnREREmTsLwBcAnCsiy4N/54vIpSJyabDMpwGsFpEVAK4FcKHmK8Ivyzq6Y/jTs5sOjkJ96PcLcOYv5x183BqdAoDWpBGih4MpUR3dh74Ap05By8RCJwjCul+XF4SQSnH4qFF/fO/+lX0vNAj6OsLuWjywa52sEZqtWbqxcz5dOSf9JtoHjJFZ1cNHc3v0FRHfl65oPOMboW/eewBX/SM9cTRMG75193Kz3BqNto4pq4Madg90Ge9H7/i1psh6dtS34fQrn8afs3zLiFzL/cgZERHREKWqL6CPOQeqeh2A63LToty6bt4mXDd/E8aNKMdZJ05Ie/xu50L+797Xe4elP+e4u7zZARmyghFU3UkEGdu2PzvT18IaaO+/r3ZbyZSpXtrsDxBnGtVeCKx92dIRNUetfvTQ6ozrXV2TPprcHYvj0r8tTStvME5YvLq90Zxm+tCr6R1nb/QxzImQdXvSXzNrRNzlHJTWKLDnD84ImbWOnm2+b+kO/Od7TzhYvnDLfnRG43jP64fG9HGOnBEREVGf6lu7DgZxtHfHcNtL6feWauvs+/qPni+4ySNfW/e14ku3LDpsNA0Aqve1mslw0ZiirjnzqWDJN2ju8dDyzL/QetfpFJKBDs5Gs5Di15vLQ4wopqYM5pp1zH3DGXGyQmmWGLcBAICP/vGFtLLObvskw1tT0iZ7PLshPTxo2/70Ecx9IabXej59w8tpZY+t3G0uawWCfDfEa769Pn0bMjmkX9y8Dy8HJwV67sG2eW8r/vL8loMnYC6cvRAX37wo47bkG0fOiIiIhon61i7c9MIWfOsDJ6Mkkvl41cPLa/D1u5ZntS03PHsoZe2nj67B6ppm3PZS9WHLvPe3z5rP/c1TG/DoivTrOj3fvDv9mrGr576WVnaOs77U+PVCFGaKYW8dudQpcj2LVhsdgDBSbyzcm0xG6QbTPOOauzCeXjew54d1rXGN4QXXvzjgetu7Mzvu4wrct7R/qaw9PmV0BDcYQTypVtc046IbF6L6qo8cFsJy5Zx1mHbECJx3arib2RcCjpwREREVoY7uWNpI1I8fWo3r52827y3Vm9SpWz9/bO2AwxGSp1f1jFT80riexrLBmG4FIG17ATvlELCvHxrKMr2uDkDaLQCSpY4E3fZyNXbUt+HORQO7Zm0oXXR5+8vVA3r+YASHAMCTGd4iIteSb+ydC9Mvn5PRch0po5In/uBx/OihVc7ShSO3I2cKRIzr+rwEsJgdbAZ1EsY6x9p9zZKj0xP0AGDkdvvDvaTd3i2Np9j1lHbYb0IraTHS7SzrhSk6Jy3KW+yd1jLNTi9snWon2XVMdFIWx3vJgOHOHkrEucFl3Dlj22InCVbss7drzGYnZXGH005nte3j7WOnGenXVABAdJS9/2VK+grGVdkJeqVRe36/VNiJm/DK405bxo2xl/d0O695V7hkqNhEe70l9c60ICc9Up3ySJUduSllTgplyPRIb/nWt9hn32o+Z++fN1SkT4vx0hrbWu1jJHbA/iySbruNkS77AI9VhvuioM5fhrhTboY7Dt2grKLwp2c34ddPbAAALP3R+zFhdOLzoycs4yePrMbzp5ybcX2ZhgUM9tS4Hq/V2p8nVucs07P/w8nirfa0O9X02xzc9MJW3PRCevpiWEWSiZOR3m71kCpMFPzctfbtG8iX/JkQjSv+tnA7rvzEm/PYor5x5IyIiKjI9HTMAODMqw6lKT4XjJjtqG8/LHAgGovjgutewPwNdVhd02Te1yuV9WX7KeParlyygkf++97MY/CHC6+bdNmdr+I3T25wHh2YHPXbs2Kg/cil1Q0ZL/tzIy2SwkudEt1jKCaK8pozIiKiIqGqeMNPnjiszIqtBg6/ueuaXc1YsbMJ37l3xcEbM1df9RF0ReNuTHejcSPp7n4mKKbeDLq/nuLIQka+fPsSs3yOE/aQDdm6CXMuDLQfGWZaY66nBBarKx5Jv4/f8xv3uUEuhYydMyIioiJx0wtb066zyERPeEByR05VccH1L2KdE4H+8PL0QI7VNUMnLp3IU9+P++4lG0YzOAvaaxnMAChEnNZIRERUJKwb6vZl7a5DHarkoIhoXN2OGRH52DcrDGt2+fdkU9WCvUUGO2dERETD2PnXPm+Wx3n6n6hfhlP4SSHr7TrHO17ZjnN/95x7T7rr5m3EV+84/ObgHd0x/OqJ9Wgf5Ftr5HZaowBxI1Ct1EmzLekMd3B3VdnxYN0j7RS31injzfKyVnu97ZPsvuzoGvtFioeIK3NTHJ3yknZ7naOd7vb+N9kvdcUp9lmFmUfa886PHtFolu/rshP0VtRNNcubW0aa5bGR9nZ1TLb3Q9c4e4PVDneEdNuvSXmTXV7qnFTpHme3p+11xjUYy+x9X7bTOfDL7OW1wk7clAPOPH4nAUqr7H3vpjI66YU6wk6PjDgpVdpmb6+Xsiit3v5x0h2d7ZUS53PE2Z9dx040y3d93p7mcu4J6fdKAoCatnFpZdGofWDGOpwD1ks1jTnHsTPIEat0UhztXYBYabhUWbWq53eTgtfXS8Tvl0T9s3nv0AuhGG6WB9f6bdnXipnT0/sDv30q/W/7rS9V44ZnN2NkWQn+630nDVrbOHJGREQ0DPXV+eLIGREVq/7cNLvnmtyufgYfZYqdMyIioiK3qS59GsDyPlLilm7LPA6ciGgoWrGjETOvfBq/eXJ9vptyEDtnRERERaCty7/x7eOrdqddB3Pp35biD09vdJ/zhZsWZa1tRESF6I5XtmPfgU5cP38zmjucyzsCe1s6c9Imds6IiIiKwL1Lep+mY92v7Jqn7WsmiYiK1Vt/9pRZ3m3cEzKaNIXxrwu3ARj863F5nzMiIqIi1xWNmzeNJiIabhraMv8s/Nlja3H8xFH9uk1Jf/XZORORSgALAFQEy9+nqleIyK0A3gOgJ+7vi6q6vM/6jN6mleAYrNwud67D8+qJVdrlXU7iGZyUxTInuS9e6iT9dRgb6/W2nfKSTieu0+m2lzfb01pKOu2X+kCzvXO2VtpJlgeidkLfuHI7MfDUSXbq4xo5yixvah5llqPSSQD0XsMmJ4bOGSvuOsI+qMSZJRTpdBIMY+mvS/tEu412ZiKgTfZNE2WU84xyJ73QSXGUiN0e7ehwlnd22l77ehTx2hNz0iOdckSdnV/mvLadznQDZ7/FJo01yxtPtN8TFZV2sulTq95klo9Znd7O2Hj7fTveGfDoHOd8tjhBlt7x2m2HqXofdW49XgpqxHgJrc96Glxb9/kJcdfN34Tr5m/KYWuIiIaWnskFybMMnli9B3U5ms7YI5NpjZ0AzlXV0wDMAHCeiLwjeOw7qjoj+Ld8kNpIREREfbj1pep8N4GIaMhaHNzz7HN/WdjrcoOdZNvnyJkmriDuGTMqC/7xnCgRERERERWF6+Ztwkub92HhlkM3prZGzWKD3DnLKBBEREpEZDmAOgBzVfWV4KH/FZGVInKNiJjz3URklogsEZEl0TbelI+IiIiIiArL2t3N+NvC7X0uFzMuYcmmjDpnqhpT1RkApgE4Q0ROBfB9AKcA+CcA4wF8z3nubFWdqaozS0c61xMREREREREVuKiRfJtNoaL0VbURwHwA56nqbk3oBHALgDMGoX1EREQFRUTOE5ENIrJJRC43Hq8QkbuDx18Rkel5aCYREQ0C67Yk2ZRJWuMkAN2q2igiIwB8AMCvRGSKqu4WEQHwCQCr+6qrY8/Ofet++a1twa8TAezrf9OHlPxv67xwi2/re5He5H97c6fPbR3gvjykvu9FcmDovbZ2yCKwyylffPCnw7f15qy1qFBl+7U9Lot1FQwRKQFwPRJ/C3cCWCwij6jq2qTFLgHQoKonisiFAH4F4LO5by0REWXbYI+cZXKfsykAbgv+IEUA3KOqj4nIvKDjJgCWA7i0r4pUdVLPzyKyRFVn9q/ZQ8tw2lZgeG3vcNpWYHht73DaVmD4be8AnAFgk6puAQARuQvABQCSO2cXAPhp8PN9AK4TEQkCtgZFU4j79hARUf8dO967GVJ2ZJLWuBLAW43ycwelRURERIXraAA7kn7fCeDt3jKqGhWRJgATkDIyKSKzAMwKfj0gIhuy0L6hN7qdP9xXmeO+yhz3VeaG5L766q+Arw68Gnd2SSYjZ0RERJRlqjobwOxs1skR0MxxX2WO+ypz3FeZ476yhQoEybKs/kEqcMNpW4Hhtb3DaVuB4bW9w2lbgeG3vf1VA+CYpN+nBWXmMiJSCmAsgP05aR0REQ1peeucBWcMh4XhtK3A8Nre4bStwPDa3uG0rcDw294BWAzgJBE5XkTKAVwI4JGUZR4BcHHw86cBzBvM682IiKh4cFojERFRhoJryC4D8CSAEgA3q+oaEfkZgCWq+giAmwD8VUQ2IZGzemEOm8hOdua4rzLHfZU57qvMcV8ZhCfziIiIiIiI8i/n0xr7unnnUCciN4tInYisTiobLyJzRWRj8P8R+WxjtojIMSIyX0TWisgaEfl6UF6s21spIotEZEWwvf8TlB8f3Gh2U3Dj2fJ8tzVbRKRERF4VkceC34t5W6tFZJWILBeRJUFZsR7L40TkPhFZLyLrROTMYt1WIiKioSSnnbOkm3d+GMAbAVwkIm/MZRty4FYA56WUXQ7gGVU9CcAzwe/FIArg26r6RgDvAPC14PUs1u3tBHCuqp4GYAaA80TkHUjcYPYaVT0RQAMSN6AtFl8HsC7p92LeVgA4R1VnJKVHFeux/AcAT6jqKQBOQ+I1LtZtJSIiGjJyPXJ28OadqtoFoOfmnUVDVRcgcY1BsgsA3Bb8fBuAT+SyTYNFVXer6rLg5xYkvuAdjeLdXlXVA8GvZcE/BXAuEjeaBYpoe0VkGoCPAPhL8LugSLe1F0V3LIvIWADvRuK6KKhql6o2ogi3dTgp9lkp/RFmNFwSrg3230oReVt+Wz/4wsz06W3/iMjFwfIbReRia11DnbOvfioiNcHxtVxEzk967PvBvtogIh9KKi/q92nYGVXD/bjy5LpzZt288+gctyEfJqvq7uDnPQAm57Mxg0FEpiNxs/JXUMTbG0zzWw6gDsBcAJsBNKpqNFikmI7p3wP4LoB48PsEFO+2AomO9lMislQSNwcGivNYPh7AXgC3BFNW/yIio1Cc2zosDJNZKf2V6Wj4hwGcFPybBeCGnLc0925F5jN9zP0jIuMBXIHEjdjPAHBFkU6JvhXp+wpIzCSZEfx7HACC996FAN4UPOdPwXeH4fA+DTujargfV6Z83udsWArilIsqhUVERgO4H8A3VLU5+bFi215VjanqDCTubXQGgFPy26LBISIfBVCnqkvz3ZYcOltV34bEH4uvici7kx8somO5FMDbANygqm8F0IqUKYxFtK3DRdHPSskib4T4AgC3BzMkFgIYJyJT8tC+nAk508fbPx8CMFdV61W1AYmTllYnZkhz9pXnAgB3qWqnqm4FsAmJ92jRv0/7MaNqWB9Xnlx3zjK5eWcxqu35kA/+r8tze7JGRMqQ6JjdoaoPBMVFu709gmlg8wGcicSHSc9tKYrlmD4LwMdFpBqJPyDnInGdUjFuKwBAVWuC/+sAPIjEH9JiPJZ3Atipqq8Ev9+HRGetGLd1uBius1L6EmY0nPswIez+Ge777bJgOt7NSSM73FfIeEYV95Uh152zTG7eWYySb0h6MYCH89iWrAmuQboJwDpVvTrpoWLd3kkiMi74eQSADyBxVmg+EjeaBYpke1X1+6o6TVWnI/E+naeqn0MRbisAiMgoEanq+RnABwGsRhEey6q6B8AOETk5KHofgLUowm2lYW+4jIYPCu6fPt0A4AQkAsJ2A/hdXltTQIbTjKrBkNObUHs378xlGwabiNwJ4L0AJorITiTmzF4F4B4RuQTANgCfyV8Ls+osAF8AsCq4DgsAfoDi3d4pAG4L5o1HANyjqo+JyFoAd4nIlQBeRRC0UKS+h+Lc1skAHkycb0ApgL+r6hMishjFeSz/F4A7gpNkWwB8CcExXYTbOhwM11kpvUoeDReRw0bDVXV3yggx92FC2P1Tg8R3nuTyZ3PQzrxT1dqen0XkRgCPBb/2diwV/THW24wqHleZ4U2oiYiIhrBgqvFrSIyC1iAxS+Vfi+3kZxjBCHhEVVuCn+cC+BkS+2i/ql4VpOWNV9XvishHAFwG4HwkQgiuVdUz8tX+XAmmnj2mqqcGv/8GIfZPENywFImp0QCwDMDpqprp9VlDhrGvpvRM1RORbwJ4u6peKCJvAvB3JE4GTEUiAOMkAIIif58GM6puA1Cvqt9IKudxFUJOR86IiIgou4bDrJR+CDsa/jgSXxA3AWhDYjS5qIWc6WPuH1WtF5GfI9HRAICfFeMXaGdfvVdEZiAxRa8awFcAQFXXiMg9SEwXjwL4mqrGgnqK/X0adkbVsD6uPBw5IyIiIiIiKgCM0iciIiIiIioA7JwREREREREVAHbOiIiIiIiICgA7Z0RERERERAWAnTMiIiIiIqICwM4ZERERERFRAWDnjIiIiIjyJriROhGBnTMiIiIiypCITBeRdSJyo4isEZGnRGSEiJwgIk+IyFIReV5ETgmWv1VEPp30/APB/+8NlnsEwFoRqRSRW0RklYi8KiLnBMt9UUQeCOreKCK/DspLgrpXB8/5Zh52B1HW8UwFEREREYVxEoCLVPXLInIPgE8B+BKAS1V1o4i8HcCfAJzbRz1vA3Cqqm4VkW8DUFV9c9Cxe0pEXh8sNwPAWwF0AtggIn8EcCSAo1X1VAAQkXHZ3USi/GDnjIiIiIjC2Kqqy4OflwKYDuCdAO4VkZ5lKjKoZ5Gqbg1+PhvAHwFAVdeLyDYAPZ2zZ1S1CQBEZC2A4wCsAfC6oKM2B8BTA9kgokLBzhkRERERhdGZ9HMMwGQAjao6w1g2iuAyGhGJAChPeqy1n+srVdUGETkNwIcAXArgMwD+PcP6iAoWrzkjIiIiooFoBrBVRP4FACThtOCxagCnBz9/HECZU8fzAD4XPP/1AI4FsMFboYhMBBBR1fsB/AiJKZJEQx47Z0REREQ0UJ8DcImIrEBiyuEFQfmNAN4TlJ8Jf7TsTwAiIrIKwN0Avqiqnc6yAHA0gGdFZDmAvwH4/sA3gSj/RFXz3QYiIiIiIqJhjyNnREREREREBYCdMyIiIiIiogLAzhkREREREVEBYOeMiIiIiIioALBzRkREREREVADYOSMiIiIiIioA7JwREREREREVgP8P7fqE0gxz3v8AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 1080x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAEGCAYAAADhfO2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABKnklEQVR4nO3deZxcVZk//s/T1Us6CwmQGMJmEBBElIhtFOGrCIKAjLgiODogaHQEf7iMGnBGEHFEVFBAwAAxwWEVwiIJSwiBsISlE7KShCxk6aSzdnfSe3dVPb8/6nZSXXWerjrdtXXV5/165ZWqU6fOPffWreo6dc/9XFFVEBERERERUX6V5bsDRERERERExMEZERERERFRQeDgjIiIiIiIqABwcEZERERERFQAODgjIiIiIiIqAOX57gAREVGpGz16tI4fPz7f3SAiohxYsGDBTlUd43qMgzMiIqI8Gz9+PGpra/PdDSIiygER2WA9NqDBmYicBeAvAEIA7lLV6/uqX149TCv3OyCpXMV3wZ71Dd7LtWSiHc82vK9Ol6dt7M17uRm6Tl8+1jdf29hXxl4TqyFea9Hmu82y/UGSvvDORkSaWwfLXk5ERFQQ+j04E5EQgL8COANAHYA3ReQJVX3bek7lfgfgqAt/klQeNXqh1hlxRnk01FePPdo3vk5Y9dVYrpY5vvlYX1WsZVptG814t+/qYx/LNdsxl2v01LOfvv33H4xmqp8e33bN/c/dhmTsxwTPb+SeyxWjfTV2Eqs++W8zq769AKvc3Y561N/661v8+kJEREQDCgSZCGCNqq5T1S4ADwA4LzPdIiIiIiIiKi0DGZwdAmBT3P26oKwXEZkkIrUiUhtubx3A4oiIiIiIiIpX1qP0VXWKqtaoak159bBsL46IiIiIiGhQGkggyGYAh8XdPzQoM6kAkUrHA77nkHmeE+Z9Plemzs9y9Mc+N8uvL9Z5Qxk7V8z3XC5zG/ue35SHc78AwLOf5vlfruUadc1zrTJ0bplYr6FV37f9TJ0rZrVj7Zy+y81Y8s/gZZ2LZp5CFjXOdfOpz81ORETkbSBHzt4EcLSIHCEilQAuAPBEZrpFRERERERUWvp95ExVwyJyOYBnEIvSn6qqyzPWMyIiIiIiohIyoOucqeosALMy1BciIiIiIqKSlfVAECIiIiIiIkqNgzMiIiIiIqICMKBpjd4EiFYkF5spi0Z5plIWfVMfvfvpat9KfPRdZoZSDc00Rd+kNe90R6O+5/qaqYm+SYWe29NKQnRVt9vOUEKkWT+77ZeVRZ3l0aj7RbTqD3bW+vrw3ZaZolZQppXuaMY7JtfPWJonERFRCeGRMyIiIiIiogLAwRkREREREVEB4OCMiIiIiIioAOT2nDMiIqJBQESmAjgXwHZVPT4oexDAMUGVUQCaVHWC47nrATQDiAAIq2pNDrpMRERFgIMzIiKiZNMA3Argnp4CVf16z20R+ROA3X08/zOqujNrvSMioqKU08GZCqCOJZrpi57JhnYiod0fr/YzkbTom7Jotp2hdETftMNMpSla9X3Xy1Dmm9bomSRorZcroc6qayX0ZTuVMVPtmN0M5SeVscyz/1HrA8BXNtfXs23fPcFOZfRLa8x2qmQ+qOo8ERnvekxEBMD5AE7LaaeIiKjoFd9fVCIiouz6fwC2qepq43EF8KyILBCRSVYjIjJJRGpFpHbHjh1Z6SgREQ0uHJwRERH5uRDA/X08foqqngjgbACXicinXJVUdYqq1qhqzZgxY7LRTyIiGmQ4OCMiIkqTiJQD+DKAB606qro5+H87gEcBTMxN74iIaLDj4IyIiCh9nwWwUlXrXA+KyDARGdFzG8CZAJblsH9ERDSIcXBGRESUQETuBzAfwDEiUicilwYPXYCEKY0icrCIzArujgXwsogsBvAGgJmq+nSu+k1ERINbbqP0BYhWJMd9ZS5N0a8dM33RMz3SJ2lx0KQsevbTTPqz6hvtm5vBbN8vJdJqJ1OJiu60Rr91tVhphL4piyHPJEuL73J90xRLSaaSI62URV+RqLudiJHKqI5UyUyliOaLql5olF/sKNsC4Jzg9joAJ2S1c0REVLR45IyIiIiIiKgAcHBGRERERERUADg4IyIiIiIiKgAcnBERERERERUADs6IiIiIiIgKQO7TGh1LtNMRjXaslEUrrdGzHTP1MRNJi56piQj5pQtmLH0xQ2mKZjueSW7ZTFPsqzzk3c/k+lY6orVM31TDTKXimWmQGWndf7mlxDetMVNbzFpuqMxdHlX3+82VEsnXlYiIyN+ABmcish5AM4AIgLCq1mSiU0RERERERKUmE0fOPqOqOzPQDhERERERUcniOWdEREREREQFYKCDMwXwrIgsEJFJrgoiMklEakWkNtLaOsDFERERERERFaeBTms8RVU3i8h7AMwWkZWqOi++gqpOATAFAIYcehjPECciIiIiInIY0OBMVTcH/28XkUcBTAQwz6wvQLTC8YCVvmilOBoJhlasnG99M8XRMyHRlbRopiz6phqa6YV+7fimKeYrNdHcbL7pixlKTsxE0qLvOoWMbewrUyl65ZKZ/mQqbdJira9vQqIvV4Khr2iGsjJ919WqH4m6J1u46mf7dSUiIipG/Z7WKCLDRGREz20AZwJYlqmOERERERERlZKBHDkbC+BRiR0aKQdwn6o+nZFeERERERERlZh+D85UdR2AEzLYFyIiIiIiopLFKH0iIiIiIqICwMEZERERERFRARholL4fAaKVjgQvKx3RGDqa6YsWs/30UxYBO9nQClRzpZWJ1ba7iaynLIZCVspiaaUp+mbi+SQqWnXNcvjt35lIjuyrfqZSGcs828lUqmS++CQkRtX9YRc2yjOxzL7qm0mTZRFnsaufZjItERERmXjkjIiIiIiIqABwcEZERJRARKaKyHYRWRZXdo2IbBaRRcG/c4znniUiq0RkjYhMzl2viYhosOPgjIiIKNk0AGc5ym9S1QnBv1mJD4pICMBfAZwN4DgAF4rIcVntKRERFQ0OzoiIiBKo6jwADf146kQAa1R1nap2AXgAwHkZ7RwRERUtDs6IiIjSd7mILAmmPe7vePwQAJvi7tcFZURERCnlOK1RoZWOxDYz6i9DKYue7ZtJiEa5mSrnSmu0QtCsth3pf33VL7U0RZ/UxL7qW3wTFV3r5ZvW6JuOaKUgeqdE+m4bz1TJbKcvVhhJgt3RUFaXa/FKa/TMC81UKqNvfZ9UycGetmm4HcBvAGjw/58AXNLfxkRkEoBJAHD44Ydnon9ERDTI8cgZERFRGlR1m6pGVDUK4E7EpjAm2gzgsLj7hwZlrvamqGqNqtaMGTMm8x0mIqJBh4MzIiKiNIjIuLi7XwKwzFHtTQBHi8gRIlIJ4AIAT+Sif0RENPjldlojERHRICAi9wM4FcBoEakDcDWAU0VkAmLTGtcD+F5Q92AAd6nqOaoaFpHLATwDIARgqqouz/0aEBHRYMTBGRERUQJVvdBRfLdRdwuAc+LuzwKQFLNPRESUCqc1EhERERERFYAcpzXCnahY7peOmO2URbMdKxkw5E7LcyUzWumLvmmE5eYys5uaaPHtf0XInaznm45o9idDSYVWcqJvQmIm+mJtA9/Xyko1zFT6orVtfIUylPZXHerOSDsRz8RDFyvtMFO8UxmNd66VcGmmODraCWVoPyAiIiolPHJGRERERERUADg4IyIiIiIiKgAcnBERERERERUADs6IiIiIiIgKAAdnREREREREBSBlWqOITAVwLoDtqnp8UHYAgAcBjEfsQpznq2pjyqUJIJWOBC/flEWzvpGgZ9T3SVmMteOub6XKuRIDrZRF3zRFa5lWOyFr22QoMbDQ0hEztV4WM4XSkYTom7Lom3bom2po98e93Apxpzua7XtueysB0DeFMl98ExIz0Ua3utMU/Zfr/n0uGhp4iqPve4qIiIjSO3I2DcBZCWWTAcxR1aMBzAnuExERERERUT+lHJyp6jwADQnF5wGYHtyeDuCLme0WERERERFRaenvOWdjVbU+uL0VwFiroohMEpFaEamNNLf2c3FERERERETFbcCBIKqqgH1ygapOUdUaVa0JjRg20MUREREREREVpf4OzraJyDgACP7fnrkuERERERERlZ6UaY2GJwBcBOD64P/H03qWKMoqHWl2VlKhZ1qjlb5opSxa+WhWsqGVtOiThGgl65nLtNousdREn3TEvtqxlBvtWMy0TMdyfVMQfbeZJQS/18psxzM90nfb+6ZBFhqf5MSo+anjJ2KkLPqyUiIjxu924ai73LUNBkvaJhERUSFJ+RdeRO4HMB/AMSJSJyKXIjYoO0NEVgP4bHCfiIiIiIiI+inlkTNVvdB46PQM94WIiIiIiKhkZWZuDBEREREREQ0IB2dEREREREQFgIMzIiIiIiKiAtDftMZ+EXEnKlrpi+Xlfml2VuJhyEp3NOsb5VZiYCj9flrJd74JfZVl4Yy0k6/URLs/ftvebj+7CYmZSEI09wVjnay+e6cpetYPeW5j33aKVcQjmTHqmb7o03Zf7Vupj1YCZbTMvdzuaHJ93/2SiIiIeOSMiIgoiYhMFZHtIrIsruwPIrJSRJaIyKMiMsp47noRWSoii0SkNmedJiKiQY+DMyIiomTTAJyVUDYbwPGq+mEA7wC4so/nf0ZVJ6hqTZb6R0RERYiDMyIiogSqOg9AQ0LZs6raM6f8NQCH5rxjRERU1Dg4IyIi8ncJgKeMxxTAsyKyQEQmWQ2IyCQRqRWR2h07dmSlk0RENLhwcEZERORBRH4JIAzgXqPKKap6IoCzAVwmIp9yVVLVKapao6o1Y8aMyVJviYhoMMlxWqOisjI5ZbDcSEcsdyQ7AtlPWSy3EgON9n0SFa11zXZqorVOvol7FZ71q8q6vepnOzUxHwmJZgKlZwqib9qhb2KlxdrGZn3f9EjP9vMlmoHfsqx0RLO+5zKtlEWLmeJopEFa9bvLHGmNg+R19SUiFwM4F8Dpqup8U6rq5uD/7SLyKICJAOblrJNERDRo8cgZERFRGkTkLAA/B/AFVW0z6gwTkRE9twGcCWCZqy4REVEiDs6IiIgSiMj9AOYDOEZE6kTkUgC3AhgBYHYQk39HUPdgEZkVPHUsgJdFZDGANwDMVNWn87AKREQ0COV0WiMREdFgoKoXOorvNupuAXBOcHsdgBOy2DUiIipiPHJGRERERERUADg4IyIiIiIiKgA5T2t0JSRWlhuJeJ7pi1XlyemIsfpGGqTRvitlsa/6dhJicj+rjLZ90xftFEe/hL5MpSNa/bRY/R/ine6Y3STETCQeWtvMTo70TUf0e60svsmdlZ6pj+ZyB3mqn0+KY5dnmqK5TDNl0TMNUo1URqMdK22yQyuSyqzPECIiIrLxyBkREREREVEB4OCMiIiKmojcICL7iUiFiMwRkR0i8s1894uIiCgRB2dERFTszlTVPYhdPHo9gKMA/CyvPSIiInLg4IyIiIpdz/nVnwfwT1Xdnc/OEBERWXidMyIiKnZPishKAO0A/lNExgDoyHOfiIiIkqQcnInIVMSmgmxX1eODsmsAfBfAjqDaVao6K1VbZaIYWpmcxudKcASASiMB0EpxtOqXm+V+6YtW0qLVfoWjHSsRzzfF0UriM+ubyYBGSqSRxGe245lqmKl0xEJLQvRJPLTSDq0+WutksbaxJVOpib79NNsx+h+BO2Gw0LiSDYd6dt0nCRKwt42Vsmi1b6VKWimRFZr8+eWbFppNqjpZRG4AsFtVIyLSBuC8fPeLiIgoUTp/+acBOMtRfpOqTgj+pRyYERER5YOIDAXwAwC3B0UHA6jJX4+IiIjcUg7OVHUegIYc9IWIiCgb/g6gC8Ang/ubAVyXv+4QERG5DSQQ5HIRWSIiU0Vkf6uSiEwSkVoRqe3e3T6AxREREfXLkap6A4BuAFDVNmCQzI8lIqKS0t/B2e0AjgQwAUA9gD9ZFVV1iqrWqGpNxcjqfi6OiIio37pEpBqIncgoIkcC6Mxvl4iIiJL1K61RVbf13BaROwE8mbEeERERZdbVAJ4GcJiI3AvgZAAX57VHREREDv0anInIOFWtD+5+CcCydJ5XJophFV1J5Vb64pBQcrIjYKcsWmmNvkmIVv2qMnd/rHZcCYMVRh+t1MQh5jKNRD/PFMRCS03MVDpippIQze3jkUSXqZTFCnHvl768UxwzlL5o8e1PtmUzDdJKO7T49qVbjY90o5lspjtmKrUzE1R1togsBPAJxLbGFaq6M8/dIiIiSpLym4KI3A9gPoBjRKRORC4FcIOILBWRJQA+A+DHWe4nERFRv4jIyQA6VHUmgFEArhKR9+a3V0RERMlSHjlT1QsdxXdnoS9ERETZcDuAE0TkBAA/Qexv2D0APp3XXhERESUYSFojERHRYBBWVUXswtN/VdW/AhiR5z4REREl6dc5Z0RERINIs4hcCeCbAD4lImUAKvLcJyIioiQ8ckZERMXu64hF51+qqlsBHArgD309IbiG53YRWRZXdoCIzBaR1cH/zmt8ishFQZ3VInJRJleEiIiKW06PnMXSGpMvLVMZcifrlRtpX9VGiqOVhFhuJPdZqYxWImEmkhattn3TEZmamNl2fJMQfVIufdMI7bYzk2qYqXTEigyl8WWqP9YvTZnKDMxEimN3ltMao+r+bDRTGY1yK1WyQ90Hm1zvH59E02wLBmQ3xt3fiNg5Z32ZBuDWhHqTAcxR1etFZHJw/xfxTxKRAxCL7q9B7LpqC0TkCVVtHOh6EBFR8eORMyIiKmoi8uXgKNZuEdkjIs0isqev56jqPAANCcXnAZge3J4O4IuOp34OwGxVbQgGZLMBnDWwNSAiolLBc86IiKjY3QDg31R1xQDbGRt3jc+tAMY66hwCYFPc/bqgLImITAIwCQAOP/zwAXaNiIiKAY+cERFRsduWgYFZL0H644Dm5KrqFFWtUdWaMWPGZKhnREQ0mPHIGRERFbtaEXkQwGOIBYMAAFR1hmc720RknKrWi8g4ANsddTYDODXu/qEAXvBcDhERlaicDs5CohhannzCuhXMURVyl2c74KPKCIdwBXz01b4rHGKIuNvwDewwgzbyFMzhG6hhbgfPH6Kt9bXa8Q3bsNc3/bADO8zET8gzj8K7fc/6ZjviG5zhrl+RgQAOAOjOUOBIRP3acb7jjPehtTdFPLseNTaZFfxhBZREjNewTD32+wwF2GTIfgDaAJwZV6YAfAdnTwC4CMD1wf+PO+o8A+B/45IczwRwpedyiIioRPHIGRERFTVV/bbvc0TkfsSOgI0WkTrEEhivB/CQiFwKYAOA84O6NQC+r6rfUdUGEfkNgDeDpq5V1cRgESIiIicOzoiIqKiJyKEAbgFwclD0EoArVLXOeo6qXmg8dLqjbi2A78Tdnwpgar87TEREJYuBIEREVOz+jtiUxIODf/8KyoiIiAoKB2dERFTsxqjq31U1HPybBoDxiEREVHA4OCMiomK3S0S+KSKh4N83AezKd6eIiIgS5fScszKJYr+KjqTy6rIuZ/3yMncymJm+aJT7pixa5SNC7c5yO/EwOa3MSjX0TVPMV/qinXZYWKmJ3qmPRrmVkGjW91imlWpopRSWeacgGsvNUAqipczzNx//dMfsslIZo2aiqnt9qyT547VT3e8rq9x6qawEytaou7w56v6o3xje31m+I7yfs3xneISzvCE8LKmsMTLHWTdPLkHsnLObgvuvAPAOCSEiIso2BoIQEVFRU9UNAL6Q734QERGlwmmNRERU1ETkfSLyLxHZISLbReRxEXlfvvtFRESUiIMzIiIqdvcBeAjAOMTSGv8J4P689oiIiMiBgzMiIip2Q1X1H3Fpjf8HYEi+O0VERJSI55wREVGxe0pEJgN4AIAC+DqAWSJyAACoakM+O0dERNQjt2mNUGcyY7e6M+62tbsTwz40YrOz3Dd9scpIcaw0kgobwsOd5cNDyQmUAHBQqCmpzEpNrIC7j4WWspipdMQhZtqkm5WaaMlEmmJsuQNPVPRNR6wQ31768U1T9G/fvb4hcS/33e4WZ3mFsdm2RSqd5Su7xjnLP1i5xVneoe6Pv9faj3SW7w4PdZavahnrLF+246Cksv2GdDrrVle4P4tautzr2rAnOR0RAIZUudtpa6ty1692J+Wqujd+Zbn78yUSTX5td3e+4qybJ+cH/38vofwCxAZrPP+MiIgKQsrBmYgcBuAeAGMR+yM2RVX/Evzi+CCA8QDWAzhfVRuz11UiIiJ/qnpEvvtARESUjnR+Qg8D+KmqHgfgEwAuE5HjAEwGMEdVjwYwJ7hPRERUUETkayIyIrj93yIyQ0Q+ku9+ERERJUo5OFPVelVdGNxuBrACwCEAzgMwPag2HcAXs9RHIiKigfgfVW0WkVMAfBbA3QDuyHOfiIiIknidfCIi4wF8BMDrAMaqan3w0FbEpj26njNJRGpFpLa90X2+BRERURb1nOT6ecSm5s8E4D6hj4iIKI/SHpyJyHAAjwD4karuiX9MVRVwJ0Ko6hRVrVHVmur93SelExERZdFmEfkb9qU0VoGXkiEiogKUVlqjiFQgNjC7V1VnBMXbRGScqtaLyDgA21O1s3vPMDz59MeTyodvdNcfvsWd6Lf0qOOc5XuOcSeJyRB3Oxp1J5KVD3G3E26pcLdf5W7/2MO3JpU1tLsT3xqb3eVjRzU7yyNGmtqISvfRydFDWp3l44fucpZv63QnZe5X3u4sH17uXm6VkR45usK9Xh+u2uQs3x4Z4SxviLgTNIeWufvTbST0WYl+ESN5cJQjdRQAhjqqtxlBlk1R9w/3TVH35Zeao9XO8u1h92u1tuM9znIrvbS+Y6SzPGpsg3eaxjjLj9t/m7P88wcsdpYfFHL35+4dn3KW7+p0v1ei6v6ufW/UnX4ZNd5DZeJ+wSrL3P3sMtofNyJ5H68w1rWxw/3aDq9072ed1e79eHiVu761Tq1GiqOUuet3drg/A121o8bna56cD+AsAH9U1abgb9bP8twnIiKiJCl/ORQRQWx+/gpVvTHuoScAXBTcvgjA45nvHhER0cCoahtiPyCeEhSFAazOX4+IiIjc0jlydjKAbwFYKiKLgrKrAFwP4CERuRTABuy7jgwREVHBEJGrAdQAOAbA3wFUAPg/xP6+ERERFYyUgzNVfRkwr6J7ema7Q0RElHFfQizMqid5eEtPtD4REVEh4QnRRERU7Lrig6tEZFh/GxKRY0RkUdy/PSLyo4Q6p4rI7rg6vxpY94mIqFSkFQhCREQ0GAXnTT8ZpDWOEpHvArgEwJ39aU9VVwGYELQdArAZwKOOqi+p6rn96jQREZWsnA7OKloU415NTu+LVLkP4HWOdJdXtLiTxA5Y6E5NCxvJZlY7EnUnklW2RJ3lbWPc9TesGp9U1nmgu43oaHfKWt3W/Z3l7xmzx1keMRLr3t1zgLM8bNQfYaQvLms62FluJfq1dLkTCYeUu1McZ1V+yKjf7Swvc1/BASMqOpzlVWXu5c6Lvt9ZvrvbnaJXLu7X0cXaxh1h935TZrRdaSb9udML2432R1e3OMv3r3QncR5e3eAsb+52J/01dvmlSj6/+wPO8g8O3+wsDw13v+ZtRvqlxdrOVupjh/G5sK3LvV7djhTHsVXu9+2ipkOd5R/bf4Oz/FW8z1n+4f3d26yhy32gaPVud+Lme4a601SHhNzvnzbHvtZQ6X7P5pqqqoh8DcBPAOxB7LyzX6nq7Aw0fzqAtarqfqGIiIg88cgZEREVu4UAmlQ10/H5FwC433jsJBFZDGALgP9S1eWJFURkEoBJAHD44YdnuGtERDQY8ZwzIiIqdh8HMF9E1orIkp5/A2lQRCoBfAHAPx0PLwTwXlU9AcAtAB5ztaGqU1S1RlVrxoxxH8UkIqLSwiNnRERU7D6XhTbPBrBQVZOuuq6qe+JuzxKR20RktKruzEI/iIioiHBwRkRERS1L54RdCGNKo4gcBGBbcL7bRMRmqezKQh+IiKjIcHBGRETkIYjiPwPA9+LKvg8AqnoHgK8C+E8RCQNoB3BBEOVPRETUp5wOzqIhQed+yQlmVgpiRZu7nUiFOxmwvMv9t696l7t9Dbnb6RrmLtcyY7kd7uVWOILTqhqNttcNcZaHjavxNI50J+Xt7nS3Hx7m7uOW/UY7y788sdZZ/snRjc7y0RXudDfL9m53wt0/Fn/cWS7i7r+qcX30qLGdw+5y6XAnfWq58X2q3EhrDDtO4zT6bl7avcLddpmxzLIt7n0nMsxdf/OoUc7yg0bvdpavb3EnfTZ3uvfBG459xN0fY4Xf3HOEs3x5yyHOcitlcVOrO9k0auwjo6rc6ZRW+qWVumlp605OMKyvdu/37+5yb+OmDnfy5c497g+G1m53YmVjq7udSMS9Tlsb3P2UMuOzriI5SbQzXLy//alqK4ADE8ruiLt9K4Bbc90vIiIa/BgIQkREREREVAA4OCMiIiIiIioAHJwREREREREVAA7OiIiIiIiICgAHZ0RERERERAUgp3FaokBZcqgXOke6x4hWKmPEHU6HyBAjfXE/d3nUat8deIbu4UY7Rn11BABG3aGAiCYHu5lt9FUerXSnqZV1u+uXN7sbemzeRPcTjIRBrTASCR2vd+wJRkMhI5XRWq6RHmcmIVrdMZZb1u7eN7XMXe4KZjT7aOky2u6wNoLRjlF92PAOZ7mVatgdce8jnd3uj49frv6is3xIedjdjpHqFzH6E7LSLw1VxnLXNR3oLO8w1quq3L0zt7S7Uys7diUnJDYd6E6CDIXcCZRWymLUSFncZqQs+ma4HzCy1d2O8ZrsaU3+UDaTVImIiMjEI2dEREREREQFgIMzIiIiIiKiAsDBGRERERERUQHg4IyIiIiIiKgAcHBGRERERERUAHKa1hgNAZ2O5EQ1hohWmmLU6rXRjtW+mQBoJCGG3UFrdvuOcitoTtxhbeY6lbcYnbfWySgvcwfZmQ1ZyYMq1gKM5s2EQb+EN2u9zO3py3N7qnPfdFe2+mjtT7DqlxtJk23uhtrWjHSWtxhJnxI19gVjG+ypNDpqvbRGUibCfvu4GPWtJE5rvSwt1j5rvqeT2+/cZnyIWKwuWss0toGY73O3xjojJdJKg3UkiWonf/sjIiLylfKvp4gcJiJzReRtEVkuIlcE5deIyGYRWRT8Oyf73SUiIiIiIipO6Rw5CwP4qaouFJERABaIyOzgsZtU9Y/Z6x4REREREVFpSDk4U9V6APXB7WYRWQHgkGx3jIiIiIiIqJR4nRQgIuMBfATA60HR5SKyRESmisj+xnMmiUitiNSGO1oH1lsiIiIiIqIilfbgTESGA3gEwI9UdQ+A2wEcCWACYkfW/uR6nqpOUdUaVa0pHzJs4D0mIiIiIiIqQmmlNYpIBWIDs3tVdQYAqOq2uMfvBPBk6oaASFVyqpeVvmilJprlnuFg0QrjATNJ0HO5jvKIlUznyzdn0zP1zSeBsj+LlYjRvvEE67XyTjz0C+jzX1/H9jSTHSv89gUxG7KSMo32jZTCkCNxD7ATOs19sNtKp/Rrv8xox3r/m+9bz+TOMiNl0ErFtPZl1+tiJkR6vj+tcit91Z0iapNuo/1Od0ddr1XGElOJiIhKSDppjQLgbgArVPXGuPJxcdW+BGBZ5rtHRERERERUGtL5PfVkAN8CsFREFgVlVwG4UEQmIPYb7noA38tC/4iIiAqKiKwH0AwgAiCsqjUJjwuAvwA4B0AbgItVdWGu+0lERINPOmmNL8M96WZW5rtDREQ0KHxGVXcaj50N4Ojg38cRO0f747nqGBERDV6eZ9QQERFRCucBuEdjXgMwKuFUACIiIicOzoiIiPwogGdFZIGITHI8fgiATXH36+C4Pmj8pWZ27NiRpa4SEdFg4pv5NzDSR9Kaq7qVJOiZMGi2byX9GX20UiXNfrpS6KywNqMvkSp3uZWsF63ySwA0g/6s1DerISvd0QoMNPppJ3QaiX5dxnYYYi3YXQyP/bKv/mSEtUNZ+7e1TlYCoJUYaKUyRjwTBg1aacQaWvt+t7HC1nLLrTe0FQFqLLfS2A7Wa25sHwknl1uJj9YbyzfhUqzXyjf10XhfWcLDkxvyTYgcZE5R1c0i8h4As0VkparO821EVacAmAIANTU1WfxQISKiwYJHzoiIiDyo6ubg/+0AHgUwMaHKZgCHxd0/NCgjIiLqEwdnREREaRKRYSIyouc2gDORfCmZJwD8h8R8AsBuVa3PcVeJiGgQKu6JJ0RERJk1FsCjsbR8lAO4T1WfFpHvA4Cq3oFYmvE5ANYgFqX/7Tz1lYiIUnh62Va8b8wwvH/siHx3BQAHZ0RERGlT1XUATnCU3xF3WwFclst+ERGRv00Nbfj+/y0AAKy//vN57k0MpzUSEREREVHJmbtqe767kCS3R86iQHlr+qleVvpiRbe7vGs/IzXNCImzkgHNhEQjwdAkyf2xEh8tFV3u8oiVymgF1lnBd57bxkrKs9ILXYl1gP2am+mLZsql+4GyDnf9aLXndqsw1qs7/QRDrbDiFA1WuqAVfWmlCBrbRoa4X3S10hGt9q1APytt0kyhNBoy+ilGUqF2uHdaMdZLq6y4RnexmVppbB91pUeG3X2x9mMY75+Qsf9FraRJ87VyF1vtWO/PUHtyuZVAS0RElA/rdrRg6+4OfPKo0fnuSp945IyIiIiIiPrU0NqFrvDg/eXttD+9iG/c9Xpadbc3d6B2fUOWe+TGwRkRERERlYyucBRXzliK7c3GNBtyOvE3s/GDexfkuxs5MfG3c/DVO+bnZdkcnBERERFR2q6csRS3vbAm393ot+dWbMP9b2zENU8sz3dXBp3nVhTeOVq+1u1oSbuuWqeUZBEHZ0RERCXiube3obXT9wRqot7uf2Mjbnh6Vcp6kahi/OSZ+P3TK3PQK7fH3tqMH97/Vq+yPHzfphz70m2v4DN/fMH52MKNTWm3E7+vbNzVhl89vgyRaHZ3IA7OiIiISsCa7S34zj21+MUjS/LdFSoR4Wjs/KS7X3o3Zd1IVHHnvHVo77JSmfZ5ZvlWjJ88E01tvVPTxk+eif+dtaJX2Y8eXIR/Ld6y9/76na1YtmW3s93z/voKvnr7qymXnynhSBR/e3EtOrpTr3Mqu9u6sWFXq/fzFm5sxHJje+TTjIV1eGdbc7+f/9bGJry70709fI6Gxdf89rQ3cM/8Dbhn/vp+9ysdhXGdM88BaLTCXR4ykg2t+harnUilu7zMeE85Ux+N4XDUSju0UtwMZZ4/iFqpjNbpnnbqo5XK6Jf6FvVMR7RS5XxTFq3USnS660eGubdQWWfyBpJu90aOVrvbEEcbAFBmpJRGRnh+qDe73/ZWmKJa/ewyUhCtdMeI7xvdSDbsMHZCK6nQIO1GO9ZPVtb2MTecY18w0het1ESr6aiR1mq9r8z3zxC/bWZ9XrjK+cN04ek5Yraxoa3fbexq6UR1ZQhDKzP39WHhxkZ8+bZX8dhlJ2PCYaMy1i65RaKK8/82H1ecfjQ+9f4xe8vDkSjCUcWQin1v6K5wFLe/sBbf+/T7epX70oRPhDfXN2DV1mZ88xPv3Vv2xOLN+O2sFdjR0omrzvlAn+1NmbcOQOwHh5rxByQ91tfzTzWOpgDA4k1NSWX1u9vx59mr8ZsvHo/K8tTHNFQVv525Al/56KH4wLj9+qz7YO0m/O6plWjriuDHZ7w/Zdt9OeOmF7G9udP7Wl1fvi02GM3kNb6a2rpwxk3zcPdFNfjwoaP61cZPHlqc8X71R2wgF/sb2toZ+761on5PVpfJI2dERESUlo9e9xzOvfnljLY5d2XsHJZ57+zIaLuZULu+AZ3hgR/V6DF+8kz8+bl3BtxO4hEjH7taO7FgQyN+8tCiXuVfvv1VHPs/T/cqu/f1DbjpuXdwx4tr+708l6/dMR///diyXmVtwRGz5o7evzLv6ehGS8JU3FyeB3TVjKV4sHYTXlqd3v7Z1NaNu15+FxdMeS1l3bbgy35rZxgvr96JpXX9P4K1vbmz388FgB3NndgU/HDz6pqd+NDVz6C5w/hVOIX5a3dhR3Mnbpu7FjOX1KOhtf/7a7yG1i68tbFxwO2I41JXFu11O3ZPzOvTZAYHZ0RERCXsJw8twgVTeqeSdXRHcNdL65znVqxLmCrU3hXBqq3J0492tnRm/NyM+9/YiPGTZ/aaBtYVjmL85JnOqUZtXf0/v27tjhZ89Y75uOaJt1PW7QxHcN/rGxFNY33//NzqfvcJAJ5fuQ0Trp2NV9fsTFm3pTOMBRvSiwNf4hgYdHTHZk60D3Da3UC+zH74mmdx4m9mA4i9nufe8lLSOUPTX12P8ZNnJj03fsD/k4cW4e0t9hGP+AFgOJI8Y8Tj+zyAfefbpTsY/+bdr+Pfbu39w0c0qs6BzYNvbtw7kHL5+cOLceRVs5yPdXRHcNqfXsCra3vvPx/77XP4fzfMBQDc9Nw7aO4MY0V9/6cVArHPgMvuW4jv3lMLAOiORNHt2Lbp+srtr+JLt+Vu2inQ+5yzntu++4IvDs6IiIhK2IyFm/Haut5f4G95fjWum7kCMxbWpXz+ZfctxOf+PK/XgKmprQs11z2XdP7Pjc+uwvf/0TuK2+cgyG+ejA2Unn17296ynumav3q8d/LejIV1OO5Xz2B1GuetdHRHUNfY+8tuU1vsqMHKramnMN0yZw2uenQp/rUkdm7TO9ua8b1/1Pa6JlR/j0LEW7ChEXNXxgYcbyVMwbvs3oVJCYo/vG8hvnL7/F5H2rL9q3+8xNe2Kxx1Tgl7ZvlWPLyg9772H1Pf2Dvg6tmO3/vHAizbnPz8qx2pi/W72/EfU9/Ye3/Gws045+aXzL7Gb6OjfvkUXlu3C+Mnz8TcVb2PmN310jr82y0v9zp6F40qlm/ZjccXbcbF094EsG+wlzgYX1LXhL/OXYMrHngLv014fyS66O9v4MTfzMbOln1HxcKRKH7xyFJ8uY9z4x6qrTN/GFmzvQXrdrTi2n+l/tEhqpryB5b5a3fh5jmr0RmOJA0YewZiW5raAQATfr1voA3EUhNbO8P4Z+2mtI6GWueQZVP8lNyeW9kenBXGOWdERESUE+kMhva0x75YpnPE5PV1uwAA4bgvcbvbYwOR2W9vw/+ce9ze8pufTz9+fcK1z2Li+AMw5T9q9pb1TH279fnV+MIJB/f5/DnBdMmVW5tx9NgRe8vrGtswamglhlft+wr03Xtq8dLqnf06v6W1M7z3y2fPF/If3vcWVm1rxvItu/GRw/cHYB8xe3dnK0ZWV+CAYftObG/tDOOy+xbiN+cdj8MOGAogNu3sK318IZ+5tB4zl9ZjwmGj8MkjRwMAlgVHijJ54eD4o0pn/+UlPPDdT+DnjyzGSe87EB88ZCRmLa3Hx484EGcdfxA6gyNvPV9wr/nXctz3+sakNr/3j+RrZyVOc33src14aXXqo4UA8P7/fgr3XDIx7XVq74pg257e0wKveKB3wuMl02pxyclHYOorsXCTbXs60dzRjQff3ISR1RX402z7CFk0qlhU14S6xnb8fwnJkQDwojGlt2d9G1q7MHp4LMjg8UWxHwB2pDGN8dj/eQq3/fuJOO3YsQBiPxB8487YdMt1O1rxx2fciZs9A/jL7l2IXa1dePd35/SaCljX2IaDR1bjupkr9m6PtTta8PiiLXj72s+Z/WmNC3tZUb8HZ/9l32D54FHVOPmo0SnXKdfykezJwRkREVGRuf+Njbh5zmrMv/L0fHclJetX6Ka27l5HyHztaXcfqTrl93Nx9HuGY/ZPPr23LN0v/UDsS2VHd2TvoOuDVz+TVGeV42ida6ocAHzmjy9geFU5lv1635faZ5ZvxQurduCGZ1bh5gsmYMbCzfjQoSOdz2/u6EZn3ODrG3e+jicuP9kZxOCa+tcZjuCK+xc52048327mknpcdt/CvfdX1O/B3FXb8czybXhm+b7X6u+vrMeMH3wSU16MBXd0B4FQroFZun70oLuPrul9XeGocxCUqCfg4fO3vIR1O3oflUkcrAHYOxABgD88swqPBEeWj4kb/Lu8z5hi2GP19vSvu5XuuW9AbFrqJdNqsfq3Z2PV1mace8u+aZNdkShunev+saRnML0rmFL59LKtOOv4g/Y+fsrv5+Kik96L6fM37C3rGWD2DMj7Mn7yTIwa2jutb2dLJ371+DL84qxjMawq/eFJNKr485zV+NYn3osxI1xJfNmQ3UNnKddeRIYAmAegKqj/sKpeLSJHAHgAwIEAFgD4lqr2ecafKBByfFYaQX/exEiDK7PSF6usxEB3/ZD1I4WVtOaY6m71pazMSjs0lmmkOFppahYr7bC8zS/VsHs/Ix3ReHGt7WCtl/k+MPoTMhL9IkbKXdTYzmJ8xlipe+ooLrMSIo1kPRgJl1Yfy9qMNMhh7o2jle6VCu1xL0Ctfc16qYzXpKzT3U8rbdLcxlbIYodnAqixXlY7kSHGdmvpf4JZDzMF1dr/uq0nGPuOkcpY3mrsm8a2rzBmlFQ1JrdfP7Bz02mArpyx1Hws21Ny+qstjQh1H30NuFJ9Gd7S1I4ldU3Jz9vWvPfX/nSOssUfbejrB/jEwIueKZpd4QhefGcHfvrPxTj92Pc4n3vy9c9jT0KIRl1jO15btyutc+Due30jnl6+de/9ZZt34/hDRuI702vx3Ireg+P4gVmPxCTGHl9O89yg5Olsit1t6U0Bvff1jTjx8FHOx9IJyHjxnR14csmWpIFZOh6Jm/LrGoxn2vy1u3D1E8v2DiiB2LY74spZOPO4sX0+94/PrsK4/Yb0e9nzVu9IWsf4gZml55VVBd54t/fU6aaE13jqK+uxeFMT9h9a6ZVcWbuhETfPWY0ldU2Y9u30jpZ6Renn4ZyzdIamnQBOU9UWEakA8LKIPAXgJwBuUtUHROQOAJcCuD2LfSUiIqIisGprM445qPfRhjteXIvJZx+b1vPjz5tyfVFKPH8pGlV87LfPpf2L/Cevfz6p7NU1O/GNu15P6/k9Glo70dYVxtDK8l5f8p57exs+28cX6p7BWvwRqcTBxsoghCVxYAYAP7i39yBKkRz/3d4VQf3udvw64dyjTQ1tOP6Qkb0GZq+t3WX29ccPLjYfS+Vbd7+On38u+TWftaw+rec/+tZmPPrW5n4vHwAuvy/1EbZcuvHZVTj/Y4clHbm75onleGdb7x8VesbeqY4w/y04gpmOD1/zTNI+df8bm9J+/sKNjXsHZT0hM1v3dOD8v823n4R9lzGYv3YXTj1mXyLjQ7WbcM6HxvWahhyv51p68ee8ZjKIqNc5Z9qT1phdKQNBNKZnb6gI/imA0wA8HJRPB/DFbHSQiIiI+ieXkeNRj2Vt3dORkWXubu9OSop8YdV2/Nc/ew8Y2roj2NXalXSNt8bWLudUv3g9R1VShTe4XDKtFl+49RUAvb/kfeeeWFjIxl3pX3Ouqb33lJP4Cyun8rOHlyQFm7R2RXDS75IHocC+cwZ7LB5AxHuPo3+ZPLXvpdU78e1pb/Qqy8c5PoXk5ufX4JTfz+11fuGUeeucR+dc7+++UhzT4Rrsp6PnSNil02sxa2l6g2uXN9Y39Epk/PnDS3C8Y+rwXrpv+T3rnsnLX/Q6chb8XxBpjSISEpFFALYDmA1gLYAmVe15BesAHGI8d5KI1IpIbbgj9ykrREREpSoXX3R7TvK/c17yr/MDueB1onbHtMev/20+vp5wPalLgrS8dJz553m97qtq0lTAnjCN5Y4Y9g27Un+vWRNMoUx8LRSKr/1t35fQ2vUNznXssamhPeWyLPPe2eF1hMvVDyu0Il3dxqknO1t6DzpfWr0Tu1o4Lzpe4pHgHt8JIurj9cTh59OTS/o/OLPEDzp3tnTikYRtsnJrc9rr3u/rnO09cpbnc86CzkQATBCRUQAeBZDevIPYc6cAmAIAw0YfVuK/hxAREeXOg7WbcOHEw3uVZWvA1tc1pJ5ZvtVMhnNxhWd84Ff7LpDccxRqpeP6aj4zmhIT71SBxxalP00u8YLcv39qJb78kUOdde9NCMNYtbW519S1r94xH+d+eByu/8qH017+M3HnimXSJ343J6nsoqlvOGpm3uamdvzx2YFfqLsUvLCq8C7cni3xA6+a654DAKzf1YpXEq73d/Oc1agZv3+vsuaObryecLmQdMUfnSzIKH1VbRKRuQBOAjBKRMqDo2eHAhjYpF8iIiLKqCV1u3FhcI58tr9Q9Hxx2bq7A7XrG3s99rN/LnZOl1qzvQW3JMTrt3aGnQmIiXymb72bZuCDwn0xZpfmjm40JwR57OkI4ybHRYdfWLU9qaxnumO8J5fU44wU4Q7xXBH0A/Wf9yaHfhAVosTPDgC40XFJgx8/uDgp3CZdvY+cxf7P9jln6aQ1jgHQHQzMqgGcAeD3AOYC+CpiiY0XAXg85dIUEMdPWuXG1HM1/pJYqXVWUqGVvljeYfy8ZvTHWm658fch4gjGsVLZouV+yZFWO9a2tJIsoxXu5XYPc7dTZkxFrl7rLu8eYSTfVTqLzXTKiJEqGTUiA0NG2qRV3nmgOxavzEpUNBIYy1xppEZSXlmn+0W0EvqsT4PIMPcTxGi/zEiytFjbwEpBLG91tx9qN/a1qPHGNd6e1oei2Z82d3+stEnzvWW0YyaYjkx+XSp3udfVSoKt3uZep+pG92teudv9Bq2yjmg0GF9Cw+52pML4QHJYu7s4pyWJyGEA7gEwFrG9dIqq/iWhzqmI/U3syd2eoarX5rCbcQZ2mKwjjeuc7V1S8M3lsze+mJQ+mKjn7ffZG19Mesw1MHvOEXiwLs0L0ooA/3bry6krIrYO015dn1TuWp8NxvliUxzTO9NJDuxxxQOL0q5LRKklTj/ub1pjrqRz5GwcgOkiEkLsHLWHVPVJEXkbwAMich2AtwDcncV+EhERFYIwgJ+q6kIRGQFggYjMVtW3E+q9pKrn5qF/vbhioJdudg/KO7ojGFLR+weE/521EpM+dWRS3d1t3RgxpLzXZWB6FuUayLjON+rr/Kp4N81+J+nctXe2taQ9zc7ny5Wrant3BH/u4wLD6fj5w0sG9HwiypNCHJyp6hIAH3GUrwOQ/uXXiYiIBjlVrQdQH9xuFpEViAViJQ7OCkKqgUlX3MWLV21txgmHjUqr3ROufRY/PO0o/PTMY9JaVnvCETgFcPfL6cV7/2XO6rTq+UpMLwTsdbjr5XfdDxBRQevojqC5jwTKVFMUnVH6WZ4j7nXOGREREcWIyHjEfrx0XfzqJBFZDGALgP9S1eW57FsP6wLBPX75qH2x6lRueX5Nr3M+fH5g/uvcNUkXpQWAuY5zs3ykc9HlHi87LlLtczmAhRsbU1ciorw69n+e7vPxVO/4Qr0INREREcURkeEAHgHwI1VNPASzEMB7VbVFRM4B8BiAox1tTAIwCQAOP/zwxIczItVYY97qfWlvvU58T/jK0hWOOo809V5W+gMb18AMAN7aMLABT1+/kCda5pjeOd1xvpnlV4/nZbxNRDmkjtvZjtL3SwYgIiIqcSJSgdjA7F5VnZH4uKruUdWW4PYsABUiMtpRb4qq1qhqzZgxY7LS1/6eLpE4zvrfWSuc6YKZNtDTOz563eyksgff3OSs+9ii5Is4D/TIHREVPq/rnKlrWmPGu9RLTo+chboVwzd3JZe3u3/pigxxd69rpLtcy4wEvbCRltftLrfS2sLV7gc6RhmpeMmraibxVbS7H7ASIruHWSmIVsKlFU3nLrYSKMWoH652t1/e5n5CqNMvJdJK7rS2Z2SosVwjrbGq0f0ahq12jORBDSXXLzOSHa39zEruq2h2txNucycARh19AYBolbv98hZj3zGSMiua3StQ2eRuv2uku3zITmvfcdcfvsUdImDtg6Eu904ytN69oUO73ZGnYhwVkD1GYpzj80g73Ms0/1Bk/S+A8Vlq1Tf6o1HHNi7Sq1pK7MW6G8AKVb3RqHMQgG2qqiIyEbEfQnflsJt7xe+2qXan+IcTXz4rRCRxWUsdMfT1u9O/eLIrGttH2DGt8eU1ydMXLa/181pIRDQ4pT7nLPl23qP0iYiIaK+TAXwLwFIRWRSUXQXgcABQ1TsQu8zMf4pIGEA7gAvUZ85fBvV3sYlPW5DGdEOFYvbbyRdFPul3z/erD0RE2eC6sLRdN7t9ceHgjIiIKE2q+jJS/HCqqrcCuDU3PcqO+PPLZi2tT+s5r6zZhVfW5OUAIRFRVrhClbI9qYXnnBERERWJaFRx1FWz9t7vz4++LZ1hvLWxae/9H9y7cOAdIyIa5HJ1FI1HzoiIiIrEjbPf6XXeVfz0ncvveyupfktcuuFr63Zh1NAKDK/iVwMiKg0pD4LFR+kHd8qyfOiMR86IiIiKxK1zewdqxP/Qu7EhOWWntWtfwM7vnlqJT//hhSz1jIiocESjivGTZ+LOl/q+wHz8Z2g0R4kguf15LKoItXYnFUeGVXg1U7nHne5opTV2jnKvZniIke7oDoPDkIbkvgPAEGOKfWRIcope2xh3X6LuwD1EQ0aSXbv72Gr1TncynbWuVtpheYf7ge6hxnje2FHLzEvOuPtf3mZ0yGrfSNwU40KkoTZ3h6z6lvJdRkJfefILKW3u9D+4Eu4AoMyKC3XvmNpmxBoapLLS/YBxvF673fu9VPi9b1FlLNdirK/J2m7WPISI0X7IeDNav5SZ8xyS64vVR6vc4rmu2mEkUA4Z4i43Uhwtzi2T7TgrSsv8tbswZ8U2nP6BsfnuChFRwYgEfy9dP1rFU0dcI69zRkRERP2yvbkTl06vTSqPev4gRURUTFy/Zaoqrn58Wa9ApKijIgNBiIiIKKXuiHE03uF9V83C21v2OB/76HXPZapLREQFp3Z9I5ZvcV2TsQPT52/AxVPf3Fv2x2dW7b3tSm7MBg7OiIiIisAjC+q86r+1KfW1y4iIis2DtZvwpdteTSoPR2KDr/gjYzPe2rz3tu6d1phdjGQiIiIqAh3dfudp5uey2EREhWlPh/sc+65wFFHdd9ws29MaOTgjIiIiIqKStr05Fp5Vv7t3iNZpf3oBdY3tCAXBg9kOBMnp4EwiUYRau5LKQ7vb3fVbjAQVI+VOu5LbBoAq3yGu9XOi0U6koclZXu5Ij6weMcJZN9pipP8ZCZTabaQOGklzodEHuNs31jXa3OJuf0iVu/4ed32TsV5Wgp6VHifDhznLtdO9L5RZ28FKBrT2hQp3f9TVf9/UwahR39hmMnSou37YiMqs9EtZlKHV7gcy9LO7hozZ1Ua6o1jb03hPwGhfq937snf71ueLK1Gx2p2OaLZtbWPPbW+lMprpjta+YyVcerRNRERUiC6ZlhyeBAB1jbFxiubo7xrPOSMiIiIiIupDT8gt0xqJiIhoQNZsT57dsKSuKfcdISKiPnFwRkREVORmLa1PKnuo1i/dkYiIso+DMyIiIiIiogLAwRkREREREVEBSJnWKCJDAMwDUBXUf1hVrxaRaQA+DaDnEtsXq+qivtrSjk5EVqxJfsBIpwvtv7+7T0aKGw4a4yyOVhpJf0bqY2Sou/3yXUaC4fhx7uVWJS83Uu4+i7Cs3Z2OFq12992qH9rZ7CyPjHSnGoZHuRPrKjcnXzkdAKTVnawZqjYS/ayzJq00OCMN0mzHSne00um63NewQLk75dK81KCR6OesbSQ7mkl5VnqhkcRpbgMrUdJq39rGVrnx/pGIkaZqJXQa7YuRuGluB+s19E3LtJITrX3WSBJFe0dSkZmC6PnaWvXF9zU0SIWR6FlpfPa67OZvf7nWV47YjbPfyVk/iIio/9KJ0u8EcJqqtohIBYCXReSp4LGfqerD2eseERERpSMS5eULiIiyLduJ+ikHZxoL9e85ZFQR/ONfACIiogLCS8sREQ1+ac07EZGQiCwCsB3AbFV9PXjotyKyRERuEhHnfDQRmSQitSJS243OzPSaiIiIelm3szXfXSAiKnoFcZ0zVY2o6gQAhwKYKCLHA7gSwLEAPgbgAAC/MJ47RVVrVLWmAsb5RERERDQg97+xMd9dICKiAfI6Y1tVmwDMBXCWqtZrTCeAvwOYmIX+ERERFRQROUtEVonIGhGZ7Hi8SkQeDB5/XUTG56GbREQ0CKWT1jgGQLeqNolINYAzAPxeRMapar3E4sG+CGBZqraa0bjzuciDG4K7owHs7PMJDalaTJB8jc1CkXpdi0sprW8prStQWutbSusKZH5935vBtgqGiIQA/BWxv4V1AN4UkSdU9e24apcCaFTVo0TkAgC/B/D13PeWiIgGm3TSGscBmB78QSoD8JCqPikizwcDNwGwCMD3UzWkqnuz7kWkVlVr+tftwaWU1hUorfUtpXUFSmt9S2ldgdJb3wGYCGCNqq4DABF5AMB5AOIHZ+cBuCa4/TCAW0VEgoAtIiIaxEYPz+5pWumkNS4B8BFH+WlZ6REREVHhOgTAprj7dQA+btVR1bCI7AZwIBKOTIrIJACTgrstIrIqA/0rtSO+A8FtlT5uq/RxW6VvUG6ri38PXDzwZszZJekcOSMiIqIMU9UpAKZksk0eAU0ft1X6uK3Sx22VPm4rN69AkAzL6B+kAldK6wqU1vqW0roCpbW+pbSuQOmtb39tBnBY3P1DgzJnHREpBzASwK6c9I6IiAa1vA3Ogl8MS0IprStQWutbSusKlNb6ltK6AqW3vgPwJoCjReQIEakEcAGAJxLqPAHgouD2VwE8z/PNiIgoHZzWSERElKbgHLLLATwDIARgqqouF5FrAdSq6hMA7gbwDxFZg1ju8AU57CIH2enjtkoft1X6uK3Sx23lIPwxj4iIiIiIKP9yPq0x1cU7BzsRmSoi20VkWVzZASIyW0RWB//vn88+ZoqIHCYic0XkbRFZLiJXBOXFur5DROQNEVkcrO+vg/IjggvNrgkuPFuZ775mioiEROQtEXkyuF/M67peRJaKyCIRqQ3KinVfHiUiD4vIShFZISInFeu6EhERDSY5HZzFXbzzbADHAbhQRI7LZR9yYBqAsxLKJgOYo6pHA5gT3C8GYQA/VdXjAHwCwGXB61ms69sJ4DRVPQHABABnicgnELvA7E2qehSARsQuQFssrgCwIu5+Ma8rAHxGVSfEpUcV6778FwBPq+qxAE5A7DUu1nUlIiIaNHJ95GzvxTtVtQtAz8U7i4aqzkPsHIN45wGYHtyeDuCLuexTtqhqvaouDG43I/YF7xAU7/qqqrYEdyuCfwrgNMQuNAsU0fqKyKEAPg/gruC+oEjXtQ9Fty+LyEgAn0LsvCioapeqNqEI17WUFPuslP7wORouMTcH22+JiJyY395nn89Mn762j4hcFNRfLSIXuZY12Bnb6hoR2RzsX4tE5Jy4x64MttUqEflcXHlRv099Z1SV+n5lyfXgzHXxzkNy3Id8GKuq9cHtrQDG5rMz2SAi4xG7WPnrKOL1Dab5LQKwHcBsAGsBNKlqOKhSTPv0nwH8HEA0uH8ginddgdhA+1kRWSCxiwMDxbkvHwFgB4C/B1NW7xKRYSjOdS0JJTIrpb/SPRp+NoCjg3+TANye857m3jSkP9PHuX1E5AAAVyN2IfaJAK4u0inR05C8rYDYTJIJwb9ZABC89y4A8MHgObcF3x1K4X3qO6Oq1Pcrp3xe56wkBXHKRZXCIiLDATwC4Eequif+sWJbX1WNqOoExK5tNBHAsfntUXaIyLkAtqvqgnz3JYdOUdUTEftjcZmIfCr+wSLal8sBnAjgdlX9CIBWJExhLKJ1LRVFPyslg6wjxOcBuCeYIfEagFEiMi4P/csZz5k+1vb5HIDZqtqgqo2I/WjpGsQMasa2spwH4AFV7VTVdwGsQew9WvTv037MqCrp/cqS68FZOhfvLEbbej7kg/+357k/GSMiFYgNzO5V1RlBcdGub49gGthcACch9mHSc1mKYtmnTwbwBRFZj9gfkNMQO0+pGNcVAKCqm4P/twN4FLE/pMW4L9cBqFPV14P7DyM2WCvGdS0VpTorJRWfo+HchjG+26fUt9vlwXS8qXFHdritkPaMKm4rh1wPztK5eGcxir8g6UUAHs9jXzImOAfpbgArVPXGuIeKdX3HiMio4HY1gDMQ+1VoLmIXmgWKZH1V9UpVPVRVxyP2Pn1eVf8dRbiuACAiw0RkRM9tAGcCWIYi3JdVdSuATSJyTFB0OoC3UYTrSiWvVI6GZwW3T0q3AzgSsYCwegB/ymtvCkgpzajKhpxehNq6eGcu+5BtInI/gFMBjBaROsTmzF4P4CERuRTABgDn56+HGXUygG8BWBqchwUAV6F413ccgOnBvPEyAA+p6pMi8jaAB0TkOgBvIQhaKFK/QHGu61gAj8Z+b0A5gPtU9WkReRPFuS//EMC9wY9k6wB8G8E+XYTrWgpKdVZKn+KPhotIr6PhqlqfcISY2zDGd/tsRuw7T3z5CznoZ96p6rae2yJyJ4Ang7t97UtFv4/1NaOK+1V6eBFqIiKiQSyYavwOYkdBNyM2S+Ubxfbjp4/gCHiZqjYHt2cDuBaxbbRLVa8P0vIOUNWfi8jnAVwO4BzEQghuVtWJ+ep/rgRTz55U1eOD+3+Ax/YJghsWIDY1GgAWAvioqqZ7ftag4dhW43qm6onIjwF8XFUvEJEPArgPsR8DDkYsAONoAIIif58GM6qmA2hQ1R/FlXO/8pDTI2dERESUWaUwK6UffI+Gz0LsC+IaAG2IHU0uap4zfZzbR1UbROQ3iA00AODaYvwCbWyrU0VkAmJT9NYD+B4AqOpyEXkIseniYQCXqWokaKfY36e+M6pKer+y8MgZERERERFRAWCUPhERERERUQHg4IyIiIiIiKgAcHBGRERERERUADg4IyIiIiIiKgAcnBERERERERUADs6IiIiIiIgKAAdnRERERJQ3wYXUiQgcnBERERFRmkRkvIisEJE7RWS5iDwrItUicqSIPC0iC0TkJRE5Nqg/TUS+Gvf8luD/U4N6TwB4W0SGiMjfRWSpiLwlIp8J6l0sIjOCtleLyA1BeShoe1nwnB/nYXMQZRx/qSAiIiIiH0cDuFBVvysiDwH4CoBvA/i+qq4WkY8DuA3AaSnaORHA8ar6roj8FICq6oeCgd2zIvL+oN4EAB8B0AlglYjcAuA9AA5R1eMBQERGZXYVifKDgzMiIiIi8vGuqi4Kbi8AMB7AJwH8U0R66lSl0c4bqvpucPsUALcAgKquFJENAHoGZ3NUdTcAiMjbAN4LYDmA9wUDtZkAnh3IChEVCg7OiIiIiMhHZ9ztCICxAJpUdYKjbhjBaTQiUgagMu6x1n4ur1xVG0XkBACfA/B9AOcDuCTN9ogKFs85IyIiIqKB2APgXRH5GgBIzAnBY+sBfDS4/QUAFUYbLwH49+D57wdwOIBV1gJFZDSAMlV9BMB/IzZFkmjQ4+CMiIiIiAbq3wFcKiKLEZtyeF5QfieATwflJ8E+WnYbgDIRWQrgQQAXq2qnURcADgHwgogsAvB/AK4c+CoQ5Z+oar77QEREREREVPJ45IyIiIiIiKgAcHBGRERERERUADg4IyIiIiIiKgAcnBERERERERUADs6IiIiIiIgKAAdnREREREREBYCDMyIiIiIiogLw/wPhXlr57/QpzAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 1080x288 with 2 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# show some example images and the neural responses\n",
    "n_images = 5\n",
    "max_response = responses[:n_images].max()\n",
    "\n",
    "for i in range(n_images):\n",
    "    fig, axs = plt.subplots(1, 2, figsize=(15,4))\n",
    "    axs[0].imshow(images[i])\n",
    "    axs[1].plot(responses[i])\n",
    "    axs[1].set_xlabel('neurons')\n",
    "    axs[1].set_ylabel('responses')\n",
    "    axs[1].set_ylim([0, max_response])\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Build the model, transfer core, train and evaluate performance - 4 instances"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Get 4 instances of the model for MEI generation:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
AsariLab's avatar
AsariLab committed
216
   "metadata": {},
217
   "outputs": [
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 1: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 27.60it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[001|00/05] ---> 0.23407305777072906\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 2: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 27.78it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[002|00/05] ---> 0.29668185114860535\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 3: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.23it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[003|00/05] ---> 0.3375687599182129\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 4: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 25.36it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[004|00/05] ---> 0.3720092177391052\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 5: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 26.04it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[005|00/05] ---> 0.40209096670150757\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 6: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.78it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[006|00/05] ---> 0.4222107529640198\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 7: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.95it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[007|00/05] ---> 0.43884357810020447\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 8: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.75it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[008|00/05] ---> 0.4509202241897583\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 9: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.42it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[009|00/05] ---> 0.4619576036930084\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 10: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.35it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[010|00/05] ---> 0.4768645465373993\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 11: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.02it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[011|00/05] ---> 0.48412057757377625\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 12: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.08it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[012|00/05] ---> 0.4915325343608856\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 13: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.14it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[013|00/05] ---> 0.4976453185081482\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 14: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.01it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[014|00/05] ---> 0.5054040551185608\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 15: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.34it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[015|00/05] ---> 0.5070977210998535\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 16: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.34it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[016|00/05] ---> 0.5132291316986084\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 17: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.91it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[017|00/05] ---> 0.5208368301391602\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 18: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.22it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[018|00/05] ---> 0.5226337909698486\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 19: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.29it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[019|00/05] ---> 0.5245917439460754\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 20: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.25it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[020|00/05] ---> 0.5302238464355469\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 21: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.88it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[021|00/05] ---> 0.5344535112380981\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 22: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.34it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[022|01/05] -/-> 0.5327614545822144\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 23: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.09it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[023|01/05] ---> 0.5406898856163025\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 24: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.22it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[024|00/05] ---> 0.5439794063568115\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 25: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.77it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[025|01/05] -/-> 0.5398200154304504\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 26: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.90it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[026|01/05] ---> 0.5470251441001892\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 27: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.19it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[027|01/05] -/-> 0.5431471467018127\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 28: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.72it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[028|02/05] -/-> 0.5463071465492249\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 29: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 27.96it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[029|02/05] ---> 0.5533322095870972\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 30: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.96it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[030|01/05] -/-> 0.5518671274185181\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 31: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.34it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[031|02/05] -/-> 0.5495620965957642\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 32: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.18it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[032|02/05] ---> 0.5544109344482422\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 33: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.23it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[033|00/05] ---> 0.5553478598594666\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 34: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.54it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[034|00/05] ---> 0.5608093738555908\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 35: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.18it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[035|01/05] -/-> 0.5579965114593506\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 36: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.81it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[036|02/05] -/-> 0.5578139424324036\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 37: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.05it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[037|02/05] ---> 0.5613127946853638\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 38: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.87it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[038|00/05] ---> 0.5638325810432434\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 39: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.71it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[039|01/05] -/-> 0.5620004534721375\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 40: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.88it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[040|01/05] ---> 0.564683198928833\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 41: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.26it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[041|01/05] -/-> 0.5639308094978333\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 42: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.24it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[042|02/05] -/-> 0.5626509785652161\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 43: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.83it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[043|02/05] ---> 0.5658485293388367\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 44: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.91it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[044|00/05] ---> 0.5662789344787598\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 45: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.06it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[045|01/05] -/-> 0.5660897493362427\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 46: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.26it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[046|02/05] -/-> 0.5640143156051636\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 47: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.76it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[047|02/05] ---> 0.5667811036109924\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 48: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.17it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[048|00/05] ---> 0.5698473453521729\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 49: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.13it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[049|00/05] ---> 0.5721409916877747\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 50: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.72it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[050|01/05] -/-> 0.5696413516998291\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 51: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.00it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[051|01/05] ---> 0.57364422082901\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 52: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.90it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[052|01/05] -/-> 0.5731521248817444\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 53: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.45it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[053|02/05] -/-> 0.5690122246742249\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 54: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 28.84it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[054|02/05] ---> 0.5738064646720886\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 55: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.09it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[055|00/05] ---> 0.5742394328117371\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Epoch 56: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████| 70/70 [00:02<00:00, 29.44it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[056|01/05] -/-> 0.5721994042396545\n"
     ]
For faster browsing, not all history is shown. View entire blame