Commit 6cd5cde4 authored by Ines Filipa Fernandes Ramos's avatar Ines Filipa Fernandes Ramos
Browse files

added separate notebook_MEI_gen.ipynb

parent 24def916
......@@ -72,9 +72,9 @@ def fft_smooth(grad, factor=1/4):
tw = np.minimum(np.arange(0, w), np.arange(w-1, -1, -1), dtype=np.float32) # [-(w+2)//2:]
th = np.minimum(np.arange(0, h), np.arange(h-1, -1, -1), dtype=np.float32)
t = 1 / np.maximum(1.0, (tw[None, :] ** 2 + th[:, None] ** 2) ** (factor))
F = grad.new_tensor(t / t.mean()).unsqueeze(-1)
pp = torch.rfft(grad.data, 2, onesided=False)
return torch.irfft(pp * F, 2, onesided=False)
F = grad.new_tensor(t / t.mean()).unsqueeze(0)
pp = torch.fft.fft2(grad.data)
return torch.fft.ifft2(pp * F)
def blur1(img, sigma):
if sigma > 0:
......@@ -135,6 +135,7 @@ def make_step(net, src, step_size=1.5, sigma=None, precond=0, step_gain=1,
grad = src.grad
if precond > 0:
grad = fft_smooth(grad, precond)
grad = grad.real # added after deprecation of old torch.rfft() and torch.irfft() functions
# src.data += (step_size / (batch_mean(torch.abs(grad.data), keepdim=True) + eps)) * (step_gain / 255) * grad.data
src.data += (step_size / (torch.abs(grad.data).mean() + eps)) * (step_gain / 255) * grad.data
......@@ -344,96 +345,6 @@ def contrast_tuning(model, img, bias, scale, min_contrast=0.01, n=1000, linear=T
return cont, vals, lim_contrast
def MEI_multi_seed(dataset_name, dat, dataloaders, models, n_seeds, MEIParameter, TargetUnit, bk_color, init_gen_image, track=False):
"""
dataset_name : string # string with dataset_name of dataset used for training
dat : object # FileTreeDataset object with data schema of data
dataloaders : object # Dataloader object for dataset_name training data
models : object # Torch nn objects trained with dataset_name training data
n_seeds : int # number of distinct seeded models used
TargetUnit : int # index of model output neuron to generate MEI for
track : bool # plot graphs of model activation and generated images during gradient ascent
MEIProperties:
mei : longblob # most exciting images
activation : float # activation at the MEI
monotonic : bool # does activity increase monotonically with contrast
max_contrast : float # contrast at which maximum activity is achived
max_activation : float # activation at the maximum contrast
sat_contrast : float # contrast at which image would start saturating
img_mean : float # mean luminance of the image
lim_contrast : float # max reachable contrast without clipping
"""
neuron_id = TargetUnit
print('Working on neuron_id={}'.format(neuron_id))
# get input statistics
dataset, img_shape, bias, mu_beh, mu_eye, scale = prepare_data(dataloaders=dataloaders,dataset_name=dataset_name,dat=dat)
print('Working with images with mu={}, sigma={}'.format(bias, scale))
# get n instances of model for target unit
models = models[0:n_seeds]
adj_model = get_adj_model(models, neuron_id)
params = MEIParameter
blur = bool(params['blur'])
jitter = int(params['jitter'])
precond = float(params['precond'])
step_gain = float(params['step_gain'])
norm = float(params['norm'])
train_norm = float(params['train_norm'])
octaves = [
{
'iter_n': int(params['iter_n']),
'start_sigma': float(params['start_sigma']),
'end_sigma': float(params['end_sigma']),
'start_step_size': float(params['start_step_size']),
'end_step_size': float(params['end_step_size']),
},
]
# prepare initial image
channels, original_h, original_w = img_shape[-3:]
# the background color of the initial image
background_color = np.float32([bk_color] * channels)
# generate initial random image
if init_gen_image is not None:
gen_image = init_gen_image
else:
gen_image = np.random.normal(background_color, 8, (original_h, original_w, channels))
gen_image = np.clip(gen_image, 0, 255)
# generate class visualization via octavewise gradient ascent
gen_image = deepdraw(adj_model, gen_image, octaves, clip=True,
random_crop=False, blur=blur, jitter=jitter,
precond=precond, step_gain=step_gain,
bias=bias, scale=scale, norm=norm, train_norm=train_norm, track=track)
mei = gen_image.squeeze()
with torch.no_grad():
img = torch.Tensor(process(gen_image, mu=bias, sigma=scale)[None, ...]).to('cuda')
activation = adj_model(img).data.cpu().numpy()[0]
cont, vals, lim_contrast = contrast_tuning(adj_model, mei, bias, scale)
MEI = {
'neuron_id' : neuron_id,
'n_seeds' : n_seeds,
'mei' : mei,
'activation' : activation,
'monotonic' : bool(np.all(np.diff(vals) >= 0)),
'max_activation' : np.max(vals),
'max_contrast' : cont[np.argmax(vals)],
'sat_contrast' : np.max(cont),
'img_mean' : mei.mean(),
'lim_contrast' : lim_contrast,
}
return MEI
class multi_MEI_class:
"""
dataset_name : string # string with dataset_name of dataset used for training
......
......@@ -6834,7 +6834,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
......
......@@ -58652,7 +58652,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
......@@ -996,7 +996,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
......
......@@ -1729,7 +1729,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
......
%% Cell type:markdown id: tags:
# Demo Notebook with simulated RGCs data
%% Cell type:code id: tags:
``` python
%matplotlib inline
%load_ext autoreload
%autoreload 2
%load_ext memory_profiler
import torch
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
import neuralpredictors as neur
from neuralpredictors.data.datasets import StaticImageSet, FileTreeDataset
import MEI
import matplotlib as mpl
from datetime import date
from datetime import datetime
```
%%%% Output: stream
The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload
%% Cell type:markdown id: tags:
# Build the dataloaders
%% Cell type:markdown id: tags:
The dataloaders object is a dictionary of 3 dictionaries: train, validation and test.
%% Cell type:code id: tags:
``` python
#Use dataloaders with generated RGC data
from lurz2020.datasets.mouse_loaders import static_loaders
path = ['D://inception_loop/RGC_sim_data/data/static27012021']
dataset_config = {'paths': path,
'batch_size': 64,
'seed': 1,
'cuda': True,
'normalize': True,
'exclude': "images"}
dataloaders_RGCs = static_loaders(**dataset_config)
dat = FileTreeDataset('D://inception_loop/RGC_sim_data/data/static27012021', "images", "responses")
```
%% Cell type:code id: tags:
``` python
tier = 'train'
dataset_name = '27012021'
```
%% Cell type:markdown id: tags:
### Look at the data
%% Cell type:code id: tags:
``` python
tier = 'train'
dataset_name = '27012021'
images, responses = [], []
for data in dataloaders_RGCs[tier][dataset_name]:
images.append(data[0].squeeze().cpu().data.numpy())
responses.append(data[1].squeeze().cpu().data.numpy())
images = np.vstack(images)
responses = np.vstack(responses)
print('The \"{}\" set of dataset \"{}\" contains the responses of {} RGC neurons to {} images'.format(tier, dataset_name, responses.shape[1], responses.shape[0]))
```
%% Cell type:code id: tags:
``` python
# show some example images and the neural responses
n_images = 5
max_response = responses[:n_images].max()
for i in range(n_images):
fig, axs = plt.subplots(1, 2, figsize=(15,4))
axs[0].imshow(images[i])
axs[1].plot(responses[i])
axs[1].set_xlabel('neurons')
axs[1].set_ylabel('responses')
axs[1].set_ylim([0, max_response])
plt.show()
```
%% Cell type:markdown id: tags:
# Build the model, transfer core, train and evaluate performance - 4 instances
%% Cell type:markdown id: tags:
Get 4 instances of the model for MEI generation:
%% Cell type:code id: tags:
``` python
%%time
%%memit
from lurz2020.models.models import se2d_fullgaussian2d
from lurz2020.training.trainers import standard_trainer as trainer
from lurz2020.utility.measures import get_correlations, get_fraction_oracles, get_FEV
#Generate 4 instances of the same model with different seeds, for MEI generation
n_seeds = 4
models = []
train_correlation_models, validation_correlation_models, test_correlation_models = [], [], []
fraction_oracle = []
exp_var_models = []
model_state_before, model_state_after = [], []
#Model config
model_config_tunned = {'init_mu_range': 0.1,
'init_sigma': 0.64,
'input_kern': 15,
'hidden_kern': 13,
'gamma_input': 1.0,
'grid_mean_predictor': None,
'gamma_readout': 0.99}
#Change trainer config to not track and print the training progress
trainer_config = {'track_training': False,
'verbose': None,
'detach_core': True}
#Save information on training
#with open("D://inception_loop/RGC_sim_data/models/Train_log_.txt", "a") as log_file:
# comment = 'Comment: Results for tunned fullgaussian model with V1 core and readout trained with ephy data with only 2 good neurons with spatial rf. Shifter network used. Cropped images around rf location with padding.'
# date = "Date: " + datetime.now().strftime("%m/%d/%Y, %H:%M:%S")
# stim = "Stimuli dataset: " + dataset_name
# model_config = "Model configuration: " + str(model_config_tunned)
# log_file.write(comment+'\n'+date+'\n'+ stim+'\n'+model_config+'\n')
for i in range(n_seeds):
model = se2d_fullgaussian2d(**model_config_tunned, dataloaders=dataloaders_RGCs, seed=i)
#Load the weights of the transfer core
transfer_model = torch.load('D://inception_loop/original_code/Lurz_2020_code/notebooks/models/transfer_model.pth.tar')
model.load_state_dict(transfer_model, strict=False)
model_state_before.append(model.state_dict())
#Run training
score, output, model_state = trainer(model=model, dataloaders=dataloaders_RGCs, seed=1, **trainer_config)
model_state_after.append(model.state_dict())
#Get performance of model
train_correlation_models.append(get_correlations(model, dataloaders_RGCs["train"], device='cuda', as_dict=False, per_neuron=False))
validation_correlation_models.append(get_correlations(model, dataloaders_RGCs["validation"], device='cuda', as_dict=False, per_neuron=False))
test_correlation_models.append(get_correlations(model, dataloaders_RGCs["test"], device='cuda', as_dict=False, per_neuron=False))
oracle_dataloader = static_loaders(**dataset_config, return_test_sampler=True, tier='test')
fraction_oracle.append(get_fraction_oracles(model=model, dataloaders=oracle_dataloader, device='cuda')[0])
exp_var_models.append(get_FEV(model, oracle_dataloader, device='cuda', as_dict=False, per_neuron=False, threshold=None))
instance_results = '\n ----------------------------------------- \n \
Model instance #{0:1d} \n \
Correlation (train set): {1:.3f} \n \
Correlation (validation set): {2:.3f} \n \
Correlation (test set): {3:.3f} \n \
----------------------------------------- \n \
Fraction oracle (test set): {4:.3f} \n \
FEV (test set): {5:.3f} \n'.format(i, train_correlation_models[i], validation_correlation_models[i],
test_correlation_models[i], fraction_oracle[i], exp_var_models[i])
print(instance_results)
#with open("D://inception_loop/RGC_sim_data/models/Train_log_.txt", "a") as log_file:
# log_file.write("\n Model instances training results: \n"+ instance_results)
models.append(model)
#Save model state for loading later
#torch.save(model_state, 'D://inception_loop/RGC_sim_data/models/model_'+str(i)+'.pth')
```
%% Cell type:code id: tags:
``` python
#Print results of after training step
results = '\n Results for fullgaussian tunned model: \n \
----------------------------------------- \n \
{0:1d} instances of the model trained \n \
Mean correlation (train set): {1:.3f} \n \
Mean correlation (validation set): {2:.3f} \n \
Mean correlation (test set): {3:.3f} \n \
----------------------------------------- \n \
Mean fraction oracle (test set): {4:.3f} \n \
Mean FEV (test set): {5:.3f} \n '.format(len(train_correlation_models), np.mean(train_correlation_models),
np.mean(validation_correlation_models), np.mean(test_correlation_models), np.mean(fraction_oracle), np.mean(exp_var_models))
print(results)
#Save in train log file
#with open("D://inception_loop/RGC_sim_data/models/Train_log_.txt", "a") as log_file:
# log_file.write(results)
```
%% Cell type:markdown id: tags:
### Predict neural responses to an image (here from the train set)
%% Cell type:code id: tags:
``` python
# show some example images and the neural responses
n_images = 10
max_response = responses[:n_images].max()
for i in range(n_images):
input_image = images[i]
fig, axs = plt.subplots(1, 6, figsize=(20,4))
axs[0].imshow(input_image)
axs[1].plot(responses[i])
axs[1].set_title('real responses')
for n in range(len(models)):
predicted_response = models[n](torch.from_numpy(input_image).view(1,1,input_image.shape[0],input_image.shape[1]).cuda())
predicted_response = predicted_response.squeeze().cpu().data.numpy()
axs[n+2].plot(predicted_response)
axs[n+2].set_xlabel('neurons')
axs[n+2].set_title('predicted responses model '+str(n))
plt.tight_layout()
plt.show()
```
%% Cell type:markdown id: tags:
# Selection of neurons for MEI generation (use when input images have no padding)
# Selection of neurons for MEI generation (use instead of padding the input images)
%% Cell type:code id: tags:
``` python
%%time
#Selection of neurons for MEI generation -
#neurons in the top 50th percentile of oracle correlation and with similar predicted position of RF in the readout of the 4 models
#neurons with oracle correlation higher or equal to 0.9 and with similar predicted position of RF in the readout of the 4 models
from scipy.spatial.distance import pdist
from lurz2020.utility.measures import get_correlations, get_oracles
oracle_dataloader = static_loaders(**dataset_config, return_test_sampler=True, tier='test')
oracle_corr = get_oracles(oracle_dataloader["test"], as_dict=False, per_neuron=True)
neurons_for_MEI_padded = []
for neuron in range(len(oracle_corr)):
corr_models_neuron = []
mu_positions_neuron = []
for model in models:
corr_models_neuron.append(get_correlations(model, dataloaders_RGCs["test"], device="cuda", as_dict=False, per_neuron=True)[neuron])
mu_positions_neuron.append(model.readout[dataset_name].mu.cpu().detach().numpy()[0][neuron][0])
if min(corr_models_neuron) >= 0.9 and max(pdist(mu_positions_neuron)) <= 0.15:
neurons_for_MEI_padded.append(neuron)
np.save('D://inception_loop/RGC_sim_data/results/neurons_for_MEI_tunned_model_diff_RFs.npy', neurons_for_MEI_padded)
```
%% Cell type:code id: tags:
``` python
neurons_for_MEI_padded = np.load('D://inception_loop/RGC_sim_data/results/neurons_for_MEI_tunned_Fullgaussian.npy')
```
%% Cell type:markdown id: tags:
# MEI generation
%% Cell type:code id: tags:
``` python
#Load best tunned model instances - se2d_fullgaussian readout
from lurz2020.models.models import se2d_fullgaussian2d
n_seeds = 4
#Build model to load weights of instances
model_config_tunned = {'init_mu_range': 0.1,
'init_sigma': 0.64,
'input_kern': 15,
'hidden_kern': 13,
'gamma_input': 1.0,
'grid_mean_predictor': None,
'gamma_readout': 0.99}
models = []
for n in range(n_seeds):
model = se2d_fullgaussian2d(**model_config_tunned, dataloaders=dataloaders_RGCs, seed=n)
model_state = torch.load('D://inception_loop/RGC_sim_data/models/tunned_model_fullgaussian_corrected_'+str(n)+'.pth')
model.load_state_dict(model_state, strict=False)
if torch.cuda.is_available():
model.cuda()
model.eval()
models.append(model)
```
%% Cell type:code id: tags:
``` python
#Parameters for MEI generation
MEIParameter_tunned = {
#1000, 1.5, 0.01, 3.0, 0.125, 0.1, 0.1, 0, False, -1, 11.0)
'iter_n' : 1000, # int number of iterations to run
'start_sigma' : 2.34, # float starting sigma value
'end_sigma' : 0.16, # float ending sigma value
'start_step_size' : 3.0, # float starting step size
'end_step_size' : 0.125, # float ending step size
'precond' : 0.13, # float strength of gradient preconditioning filter falloff
'step_gain' : 0.1, # float scaling of gradient steps
'jitter' : 0, # int size of translational jittering
'blur' : True, # bool whether to apply bluring or not
'norm' : -1, # float norm adjustment after step, negative to turn off
'train_norm' : -1 # float norm adjustment during step, negative to turn off
}
```
%% Cell type:code id: tags:
``` python
# Generate multi MEI object
MEIS = MEI.multi_MEI_class(dataset_name = dataset_name, dat = dat, dataloaders = dataloaders_RGCs, models = models, n_seeds = 4, MEIParameter = MEIParameter_tunned)
```
%% Cell type:code id: tags:
``` python
# Generate MEIs for target neurons from selected models
targets_list = range(2)
for target in targets_list:
#Generate MEI for one target unit
MEIS.generate(target, track=True)
```
%%%% Output: stream
Working on neuron_id=0
Working with images with mu=111.30036163330078, sigma=60.936492919921875
getting image size:
starting drawing
%%%% Output: stream
D:\inception_loop\ines_code\MEI.py:76: UserWarning: The function torch.rfft is deprecated and will be removed in a future PyTorch release. Use the new torch.fft module functions, instead, by importing torch.fft and calling torch.fft.fft or torch.fft.rfft. (Triggered internally at ..\aten\src\ATen\native\SpectralOps.cpp:590.)
pp = torch.rfft(grad.data, 2, onesided=False)
D:\inception_loop\ines_code\MEI.py:77: UserWarning: The function torch.irfft is deprecated and will be removed in a future PyTorch release. Use the new torch.fft module functions, instead, by importing torch.fft and calling torch.fft.ifft or torch.fft.irfft. (Triggered internally at ..\aten\src\ATen\native\SpectralOps.cpp:602.)
return torch.irfft(pp * F, 2, onesided=False)
%%%% Output: stream
finished step 0 in octave 0
finished step 100 in octave 0
finished step 200 in octave 0
finished step 300 in octave 0
finished step 400 in octave 0
finished step 500 in octave 0
finished step 600 in octave 0
finished step 700 in octave 0
finished step 800 in octave 0
finished step 900 in octave 0
%%%% Output: stream
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [00:08<00:00, 120.16it/s]
%%%% Output: stream
Working on neuron_id=1
Working with images with mu=111.30036163330078, sigma=60.936492919921875
getting image size:
starting drawing
finished step 0 in octave 0
finished step 100 in octave 0
finished step 200 in octave 0
finished step 300 in octave 0
finished step 400 in octave 0
finished step 500 in octave 0
finished step 600 in octave 0
finished step 700 in octave 0
finished step 800 in octave 0
finished step 900 in octave 0
%%%% Output: stream
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1000/1000 [00:08<00:00, 118.30it/s]
%%%% Output: display_data
![]()
%%%% Output: display_data
![](