Commit c2600c21 authored by Ines Filipa Fernandes Ramos's avatar Ines Filipa Fernandes Ramos
Browse files

Update notebook_MEI_gen.ipynb

parent b14acfc2
%% Cell type:markdown id: tags:
# Notebook to generate MEIs for neurons of interest
%% Cell type:code id: tags:
``` python
%matplotlib inline
%load_ext autoreload
%load_ext memory_profiler
import torch
import matplotlib.pyplot as plt
from neuralpredictors.data.datasets import FileTreeDataset
import MEI
import matplotlib as mpl
import os
from os.path import join
import numpy as np
```
%%%% Output: stream
The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload
The memory_profiler extension is already loaded. To reload it, use:
%reload_ext memory_profiler
%% Cell type:markdown id: tags:
# Upload dataset
%% Cell type:code id: tags:
``` python
#Dataset directory
path_dataset = [r'C:\Users\inoca\Desktop\Intership EMBL\Python docs\Inception_loop\Ephy_data_Cortex\static20210629_train']
dataset_name = path_dataset[0].split("\\")[-1].replace('static','')
#Configure dataloader/s
from lurz2020.datasets.mouse_loaders import static_loaders
dataset_config = {'paths': path_dataset,
'batch_size': 64,
'seed': 1,
'cuda': True,
'normalize': True,
'include_eye_position': False,
'exclude': "images"}
dataloaders = static_loaders(**dataset_config)
dat = FileTreeDataset(path_dataset[0], "images", "responses")
```
%% Cell type:markdown id: tags:
# Upload trained models for MEI generation
%% Cell type:code id: tags:
``` python
#Load best tunned model instances
from lurz2020.models.models import se2d_fullgaussian2d
#Select number of instances to be used
n_seeds = 4
#Models name
models_name = 'tunned_model_ephy_data_cortex_'
#Directory where the models are saved
path_models = join(path_dataset[0], 'models')
#Build model object to load weights of trained model instances
model_config_tunned = {'init_mu_range': 0.1,
'init_sigma': 0.64,
'input_kern': 15,
'hidden_kern': 13,
'gamma_input': 1.0,
'grid_mean_predictor': None,
'gamma_readout': 0.99}
models = []
for n in range(n_seeds):
#Build model object to load weights of trained model instances
model = se2d_fullgaussian2d(**model_config_tunned, dataloaders=dataloaders, seed=n)
#Load weights from saved model state
model_state = torch.load(join(path_models,models_name+str(n)+'.pth'))
model.load_state_dict(model_state, strict=False)
if torch.cuda.is_available():
model.cuda()
#Change model mode to evaluation mode
model.eval()
models.append(model)
```
%% Cell type:code id: tags:
``` python
model.core
```
%%%% Output: execute_result
SE2dCore(
(_input_weights_regularizer): LaplaceL2norm(
(laplace): Laplace()
)
(features): Sequential(
(layer0): Sequential(
(conv): Conv2d(1, 64, kernel_size=(15, 15), stride=(1, 1), bias=False)
(norm): BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)
(nonlin): ELU(alpha=1.0, inplace=True)
)
(layer1): Sequential(
(ds_conv): DepthSeparableConv2d(
(in_depth_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(spatial_conv): Conv2d(64, 64, kernel_size=(13, 13), stride=(1, 1), padding=(6, 6), groups=64, bias=False)
(out_depth_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(norm): BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)
(nonlin): ELU(alpha=1.0, inplace=True)
)
(layer2): Sequential(
(ds_conv): DepthSeparableConv2d(
(in_depth_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(spatial_conv): Conv2d(64, 64, kernel_size=(13, 13), stride=(1, 1), padding=(6, 6), groups=64, bias=False)
(out_depth_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(norm): BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)
(nonlin): ELU(alpha=1.0, inplace=True)
)
(layer3): Sequential(
(ds_conv): DepthSeparableConv2d(
(in_depth_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(spatial_conv): Conv2d(64, 64, kernel_size=(13, 13), stride=(1, 1), padding=(6, 6), groups=64, bias=False)
(out_depth_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(norm): BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)
(nonlin): ELU(alpha=1.0, inplace=True)
)
)
) [SE2dCore regularizers: gamma_input = 1.0|skip = 0]
%% Cell type:markdown id: tags:
# MEI generation
%% Cell type:code id: tags:
``` python
#Parameters for MEI generation
MEIParameter = {
#Parameters used for MEI generation for V1 neurons used in paper Walker et al. 2019:
#1000, 1.5, 0.01, 3.0, 0.125, 0.1, 0.1, 0, False, -1, 11.0)
#1000, 1.5, 0.01, 3.0, 0.125, 0.1, 0.1, 0, True, -1, -1)
'iter_n' : 1000, # int number of iterations to run
'start_sigma' : 2.34, # float starting sigma value
'end_sigma' : 0.16, # float ending sigma value
'start_step_size' : 3.0, # float starting step size
'end_step_size' : 0.125, # float ending step size
'precond' : 0.13, # float strength of gradient preconditioning filter falloff
'step_gain' : 0.1, # float scaling of gradient steps
'jitter' : 0, # int size of translational jittering
'blur' : True, # bool whether to apply bluring or not
'norm' : -1, # float norm adjustment after step, negative to turn off
'train_norm' : -1 # float norm adjustment during step, negative to turn off
}
```
%% Cell type:code id: tags:
``` python
#Initialize MEI class object by defining model/s, dataset and MEI algorithm parameters to be used
MEIS = MEI.multi_MEI_class(dataset_name = dataset_name, dat = dat, dataloaders = dataloaders, models = models, n_seeds = n_seeds, MEIParameter = MEIParameter)
```
%% Cell type:code id: tags:
``` python
#Select target neurons for MEI generation
targets_list = range(3)
for target in targets_list:
#Generate MEI for one target unit
mei_target = MEIS.generate(target, track = False) #track=True to plot neuron activation values and corresponding generated images through the gradient ascent algorithm
```
%%%% Output: stream
Working on neuron_id=0
Working with images with mu=127.67724537037037, sigma=55.45213271323961
getting image size:
starting drawing
finished step 0 in octave 0
finished step 100 in octave 0
finished step 200 in octave 0
finished step 300 in octave 0
finished step 400 in octave 0
finished step 500 in octave 0
finished step 600 in octave 0
finished step 700 in octave 0
finished step 800 in octave 0
finished step 900 in octave 0
%%%% Output: stream
100%|█████████████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 179.81it/s]
%%%% Output: stream
Working on neuron_id=1
Working with images with mu=127.67724537037037, sigma=55.45213271323961
getting image size:
starting drawing
finished step 0 in octave 0
finished step 100 in octave 0
finished step 200 in octave 0
finished step 300 in octave 0
finished step 400 in octave 0
finished step 500 in octave 0
finished step 600 in octave 0
finished step 700 in octave 0
finished step 800 in octave 0
finished step 900 in octave 0
%%%% Output: stream
100%|█████████████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 193.11it/s]
%%%% Output: stream
Working on neuron_id=2
Working with images with mu=127.67724537037037, sigma=55.45213271323961
getting image size:
starting drawing
finished step 0 in octave 0
finished step 100 in octave 0
finished step 200 in octave 0
finished step 300 in octave 0
finished step 400 in octave 0
finished step 500 in octave 0
finished step 600 in octave 0
finished step 700 in octave 0
finished step 800 in octave 0
finished step 900 in octave 0
%%%% Output: stream
100%|█████████████████████████████████████████████████████████████████████████████| 1000/1000 [00:05<00:00, 192.53it/s]
%% Cell type:code id: tags:
``` python
#Directory to save generated MEIs results
path_MEIs = join(path_dataset[0], "results")
os.makedirs(path_MEIs)
#Plot and save generated MEIs images
for TargetUnit in targets_list:
mei_target = MEIS.MEIProperties['neuron_id : '+str(TargetUnit)]['mei']
fig, axs = plt.subplots(1, figsize=(15,4))
axs.imshow(mei_target)
axs.set_title('MEI unit '+str(TargetUnit))
plt.savefig(join(path_MEIs,"MEI_unit_"+str(TargetUnit)+models_name+".png"))
```
%%%% Output: display_data
![]()
%%%% Output: display_data
![]()
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
# Save generated MEIS properties from the MEIS object to directory
import pickle
info_to_save_MEIS = {'dataset_name': MEIS.dataset_name,
'models': MEIS.models,
'n_seeds': MEIS.n_seeds,
'MEIParameter': MEIS.MEIParameter,
'MEIProperties': MEIS.MEIProperties}
with open(join(path_MEIs, "MEIS_" + models_name + ".pkl"), 'wb') as file:
pickle.dump(info_to_save_MEIS, file, pickle.HIGHEST_PROTOCOL)
```
%% Cell type:markdown id: tags:
--------------------------------
%% Cell type:code id: tags:
``` python
torch.cuda.empty_cache()
```
%% Cell type:markdown id: tags:
-----------------------------
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment