import unittest import os import sys import json from shutil import rmtree import numpy as np import pandas import h5py from cluster_tools.node_labels import NodeLabelWorkflow sys.path.append('../..') # check new version of gene mapping against original class TestCellNucleusMapping(unittest.TestCase): tmp_folder = 'tmp' def tearDown(self): try: rmtree(self.tmp_folder) except OSError: pass def test_cell_nucleus_mappings(self): from scripts.attributes.cell_nucleus_mapping import map_cells_to_nuclei segmentation_folder = '../../data/0.1.1/segmentations' seg_path = os.path.join(segmentation_folder, 'sbem-6dpf-1-whole-segmented-cells-labels.h5') segmentation_folder = '../../data/0.0.0/segmentations' nuc_path = os.path.join(segmentation_folder, 'sbem-6dpf-1-whole-segmented-nuclei-labels.h5') with h5py.File(seg_path, 'r') as f: max_id = f['t00000/s00/0/cells'].attrs['maxId'] label_ids = np.arange(max_id + 1, dtype='uint64') output_path = os.path.join(self.tmp_folder, 'table-test.csv') config_folder = os.path.join(self.tmp_folder, 'configs') os.makedirs(config_folder, exist_ok=True) conf = NodeLabelWorkflow.get_config()['global'] shebang = '#! /g/kreshuk/pape/Work/software/conda/miniconda3/envs/cluster_env37/bin/python' conf.update({'shebang': shebang}) with open(os.path.join(config_folder, 'global.config'), 'w') as f: json.dump(conf, f) target = 'local' max_jobs = 60 map_cells_to_nuclei(label_ids, seg_path, nuc_path, output_path, tmp_folder=self.tmp_folder, target=target, max_jobs=max_jobs) table = pandas.read_csv(output_path, sep='\t') assert len(table) == max_id + 1 # make sure each nucleus is mapped only once nucleus_ids = table['nucleus_id'].values nucleus_ids, id_counts = np.unique(nucleus_ids, return_counts=True) nucleus_ids, id_counts = nucleus_ids[1:], id_counts[1:] self.assertEqual(id_counts.sum(), id_counts.size) if __name__ == '__main__': unittest.main()