...
 
Commits (3)
.Rproj.user
.Rhistory
.RData
.Ruserdata
intro-to-bioinf.Rproj
.DS_Store
---
title: 'Introduction to Bioinformatics with R and Bioconductor'
author: "Thomas Schwarzl"
date: "26/3/2019"
output:
slidy_presentation:
theme: simplex
css: styles.css
header-includes:
- \newcommand{\bcenter}{\begin{center}}
- \newcommand{\ecenter}{\end{center}}
logo : img/embl_logo_small.png
biglogo : img/embl_logo.png
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
```
## Welcome
<div class="midcenter" style="margin-left:-300px; margin-top:-200px;"><img src="img/Wikipedia_welcome_committee_topicon_graphic.PNG" width="600"></img></div>
## About me - Thomas Schwarzl
<img src="img/Thomas_Schwarzl.jpeg" height=150></img>
Positions | Locations
----------------------------------------- | -----------------------------
Chemical enigneer | HTL17 Vienna (Austria)
BSc in Bioinformatics | FH Hagenberg (Austria)
PhD in Bioinformatics and Systems Biology | UCD Dublin (Ireland)
PostDoc in Hentze and Huber lab | EMBL Heidelberg (Germany)
Staff Scientist Hentze and Huber lab | EMBL Heidelberg (Germany)
## About the (other) trainers
<div><img src="img/FlorianHuber.jpg" class="portrait" />
Florian Huber<br />
<span class="subtext">EIPOD PostDoc in Typas and Beltrao groups</span></div>
<br class="clear" />
<div><img src="img/TheaVanRossum.jpg" class="portrait" />Thea Van Rossum<br /><span class="subtext">PostDoc in Bork group</span></div>
<br class="clear" />
<div><img src="img/BerndKlaus.png" class="portrait" />(Bernd Klaus)<br/>
<span class="subtext">previously Biostatistician at EMBL </span></div>
<br class="clear" />
## About the teaching assistents
<div><img src="img/CharlesGirardot.jpeg" class="portrait" />Charles Girardot<br /><span class="subtext">Head of Genome Biology Computational Support group</span></div>
<br class="clear" />
<div><img src="img/SudeepSahadevan.jpeg" class="portrait" />Sudeep Sahadevan<br /><span class="subtext">Bioinformatics Engineer in Hentze group</span></div>
<br class="clear" />
## About the course organizers
<div><img src="img/ElisabethZielonka.jpg" class="portrait" />Elisabeth Zielonka<br /><span class="subtext">Scientific Organiser</span></div>
<br class="clear" />
<div><img src="img/Luca-Ruse.jpg" class="portrait" />George Luca-Ruse<br /><span class="subtext">Course Organiser</span></div>
<br class="clear" />
## What is bioinformatics
> - Data preprocessing
> - Exploration
> - Statistical analysis
> - Visualisation
## Course program
> - *Monday* - R refresher / Data processing
> - *Tuesday* - Data processing Visualisation and Exploration
> - *Wednesday* - Hypothesis testing and Statistical analyses
> - *Thursday* - Applied analyses
## Exact program and house rules
--> to Elli
This source diff could not be displayed because it is too large. You can view the blob instead.
.title-slide {
background-image: url('img/embl_background.jpg');
}
.portrait {
float: left;
height: 150px;
margin: 0px 15px 15px 0px;
}
.midcenter {
position: fixed;
top: 50%;
left: 50%;
}
.clear {
clear:both;
}
.center {
text-align: center;
}
.fleft {
float: left; margin: 0px 15px 15px 0px;
}
#nextsteps {
color: blue;
}
.emphasized {
font-size: 1.2em;
}
.subtext {
font-size: 0.7em;
}
---
title: "Introduction to _Bioconductor_"
author: "Thomas Schwarzl adapted from Valerie Obenchain (valerie.obenchain@roswellpark.org)<br />
Lori Shepherd (lori.shepherd@roswellpark.org)<br />
Martin Morgan (martin.morgan@roswellpark.org)<br />
Stanford University, Stanford, CA"
output:
slidy_presentation:
theme: paper
---
```{r style, echo = FALSE, results = 'asis'}
BiocStyle::markdown()
options(width=100, max.print=1000)
knitr::opts_chunk$set(
eval=as.logical(Sys.getenv("KNITR_EVAL", "TRUE")),
cache=as.logical(Sys.getenv("KNITR_CACHE", "TRUE")))
```
```{r packages, eval=TRUE, echo=FALSE, warning=FALSE, message=FALSE}
suppressPackageStartupMessages({
library(BioC2016Introduction)
library(SummarizedExperiment)
library(airway)
})
```
# _Bioconductor_
### Physically
- Collection of 1211 software, 916 annotation and 293 experimental
data R packages.
- Web site (http://bioconductor.org) for package distribution and
other resources.
- Support site (https://support.bioconductor.org) for user questions.
# _Bioconductor_
### Conceptually
- Analysis and comprehension of high throughput genomic data
# Core principles: Volume of data
### Type of research question
- Designed experiments
- Population samples
- ...
# Core principles: Volume of data
### Technological artifacts
- Differences in sequencing depth between samples
- Bias in the genomic regions sampled
# Reproducibility
- Cisplatin-resistant non-small-cell lung cancer gene sets
- Hsu et al. 2007 J Clin Oncol 25:
[4350-4357](http://jco.ascopubs.org/content/25/28/4350.abstract)
[retracted](http://jco.ascopubs.org/content/28/35/5229.long)
![](our_figures/HsuEtAl-F1-large-a.jpg)
# Reproducibility
- Baggerly & Coombes 2009 Ann Appl Stat
[3: 1309-1334](http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.aoas/1267453942)
![](our_figures/BaggerlyCoombes2009-fig2a.jpg)
# Lessons
- Record each step of the analysis
- Coordinated manipulation of feature, sample, and assay data
- Informative labels on visualizations
# How to be reproducible?
- Use software 'objects' that take care of some of the tedious
book-keeping
- Document our analysis in scripts and 'markdown' documents
# Example: `SummarizedExperiment`
![](our_figures/SE_Description.png)
# Example: `SummarizedExperiment`
Underlying data is a matrix
- Regions of interest (e.g., genes) x samples
- `assay()` -- e.g., matrix of counts of reads overlapping genes
# Example: `SummarizedExperiment`
Include information about rows
- `rowRanges()` -- gene identifiers, or _genomic ranges_ describing
the coordinates of each gene
# Example: `SummarizedExperiment`
Include information about columns
- `colData()` -- describing samples, experimental design, ...
# Example: `SummarizedExperiment`
```{r airway-SummarizedExperiment, eval=F}
library(airway) # An 'ExperimentData' package...
data(airway) # ...with a sample data set...
airway # ...that is a SummarizedExperiment
head(assay(airway)) # contains a matrix of counts
head(rowRanges(airway)) # information about the genes...
colData(airway)[, 1:3] # ...and samples
## coordinated subsetting
untrt <- airway[, airway$dex == 'untrt']
head(assay(untrt))
colData(untrt)[, 1:3]
```
# Packages!
- Discover and navigate via [biocViews][]
- Package 'landing page'
- Title, author / maintainer, short description, citation,
installation instructions, ..., download statistics
- All user-visible functions have help pages, most with runnable
examples
- 'Vignettes' an important feature in Bioconductor -- narrative
documents illustrating how to use the package, with integrated code
- 'Workflows' make use of multiple packages for complete end-to-end
analysis
- 'Release' (every six months) and 'devel' branches
- [Support site](https://support.bioconductor.org);
[videos](https://www.youtube.com/user/bioconductor), [recent
courses](http://bioconductor.org/help/course-materials/)
# Visualization
Inter-operability between packages made easier by using similar data structures
Examples (details later)
- `SummarizedExperiment`
- `DNAStringSet`
- `GenomicRanges`
# Comprehension is more than statistical analysis
### Annotation
- Mapping from technical to user-friendly identifiers
- Assigning genes to pathways
- Placing our results in the context of large-scale analyses
# Comprehension is more than statistical analysis
### Objects
- Represent complicated data types
- Foster interoperability
- S4 object system
- Introspection: `methods()`, `getClass()`, `selectMethod()`
- 'accessors' and other documented functions / methods for
manipulation, rather than direct access to the object structure
- Interactive help
- `method?"substr,<tab>"` to select help on methods, `class?D<tab>`
for help on classes
# A sequence analysis package tour
![Alt Sequencing Ecosystem](our_figures/SequencingEcosystem.png)
# BiocViews
- Bioconductor packages are listed on the [biocViews][] page.
- tags from a controlled vocabulary
# Landing page
'landing page', e.g., for
[GenomicRanges][].
- description, authors, and installation instructions.
- references to scientific literature
- vignettes and reference manual
- indication of cross-platform availability
- download statistics.
# Installation
A package needs to be installed once, using the instructions on the
landing page. Once installed, the package can be loaded into an R
session
```{r require}
library(GenomicRanges)
```
and the help system queried interactively, as outlined above:
```{r help, eval=FALSE}
help(package="GenomicRanges")
vignette(package="GenomicRanges")
vignette(package="GenomicRanges", "GenomicRangesHOWTOs")
?GRanges
```
# Types of Packages
Now examples for popular packages for high-throughput analyses
# Differential expression
- Important packages for analysis of differential expression include
[edgeR][] and [DESeq2][]; both have excellent vignettes for
exploration. Additional research methods embodied in Bioconductor
packages can be discovered by visiting the [biocViews][] web page,
searching for the 'DifferentialExpression' view term, and narrowing
the selection by searching for 'RNA seq' and similar.
# ChIP-seq
- Popular ChIP-seq packages include [csaw][] an d[DiffBind][] for
comparison of peaks across samples, [ChIPQC][] for quality
assessment, and [ChIPseeker][] for annotating results (e.g.,
discovering nearby genes). What other ChIP-seq packages are listed
on the [biocViews][] page?
# Variants
- Working with called variants (VCF files) is facilitated by packages
such as [VariantAnnotation][], [VariantFiltering][], [ensemblVEP][],
and [SomaticSignatures][]; packages for calling variants include,
e.g., [h5vc][] and [VariantTools][].
# Copy number variants
- Several packages identify copy number variants from sequence data,
including [cn.mops][]; from the [biocViews][] page, what other copy
number packages are available? The [CNTools][] package provides some
useful facilities for comparison of segments across samples.
# Microbiome and Metagenomic analysis
- Microbiome and metagenomic analysis is facilitated by packages such
as [phyloseq][] and [metagenomeSeq][].
# Metabolomics, Chemoinformatics, Image analysis
- Metabolomics, chemoinformatics, image analysis, and many other
high-throughput analysis domains are also represented in
Bioconductor; explore these via biocViews and title searches.
# Genomic Ranges
Working with sequences, alignments, common web file formats, and raw
data; these packages rely very heavily on the [IRanges][] /
[GenomicRanges][] infrastructure that we will encounter later in the
course.
# Sequences
- The [Biostrings][] package is used to represent DNA and other
sequences, with many convenient sequence-related functions. Check
out the functions documented on the help page `?consensusMatrix`,
for instance. Also check out the [BSgenome][] package for working
with whole genome sequences, e.g., `?"getSeq,BSgenome-method"`
# Alignments
- The [GenomicAlignments][] package is used to input reads aligned to
a reference genome. See for instance the `?readGAlignments` help
page and `vigentte(package="GenomicAlignments",
"summarizeOverlaps")`
- [rtracklayer][]'s `import` and `export` functions can read in many
common file types, e.g., BED, WIG, GTF, ..., in addition to querying
and navigating the UCSC genome browser. Check out the `?import` page
for basic usage.
- The [ShortRead][] and [Rsamtools][] packages can be used for
lower-level access to FASTQ and BAM files, respectively. Explore the
[ShortRead vignette](http://bioconductor.org/packages/release/bioc/vignettes/ShortRead/inst/doc/Overview.pdf)
and Scalable Genomics labs to see approaches to effectively
processing the large files.
# Visualization
- The [Gviz][] package provides great tools for visualizing local
genomic coordinates and associated data.
- [epivizr][] drives the [epiviz](http://epiviz.cbcb.umd.edu/) genome
browser from within R; [rtracklayer][] provides easy ways to
transfer data to and manipulate UCSC browser sessions.
- Additionl packages include [ggbio][], [OmicCircos][], ...
# DNA or amino acid sequences
_Biostrings_, _ShortRead_, _BSgenome_
# Classes
- XString, XStringSet, e.g., DNAString (genomes),
DNAStringSet (reads)
# Methods
- [Cheat sheat](http://bioconductor.org/packages/release/bioc/vignettes/Biostrings/inst/doc/BiostringsQuickOverview.pdf)
- Manipulation, e.g., `reverseComplement()`
- Summary, e.g., `letterFrequency()`
- Matching, e.g., `matchPDict()`, `matchPWM()`
# Related packages
- [BSgenome][]
- Whole-genome representations
- Model and custom
- [ShortRead][]
- FASTQ files
# Example
- Whole-genome sequences are distrubuted by ENSEMBL, NCBI, and others
as FASTA files; model organism whole genome sequences are packaged
into more user-friendly `BSgenome` packages. The following
calculates GC content across chr14.
```{r BSgenome-require, message=FALSE}
require(BSgenome.Hsapiens.UCSC.hg19)
chr14_range = GRanges("chr14", IRanges(1, seqlengths(Hsapiens)["chr14"]))
chr14_dna <- getSeq(Hsapiens, chr14_range)
letterFrequency(chr14_dna, "GC", as.prob=TRUE)
```
# Ranges: _GenomicRanges_, _IRanges_
Ranges represent:
- Data, e.g., aligned reads, ChIP peaks, SNPs, CpG islands, ...
- Annotations, e.g., gene models, regulatory elements, methylated
regions
- Ranges are defined by chromosome, start, end, and strand
- Often, metadata is associated with each range, e.g., quality of
alignment, strength of ChIP peak
Many common biological questions are range-based
- What reads overlap genes?
- What genes are ChIP peaks nearest?
- ...
# GenomicRanges
The [GenomicRanges][] package defines essential classes and methods
### `GRanges`
![Alt ](our_figures/GRanges.png)
# GenomicRanges
### `GRangesList`
![Alt ](our_figures/GRangesList.png)
# GenomicRanges
### Range operations
![Alt Ranges Algebra](our_figures/RangeOperations.png)
# Ranges
- IRanges
- `start()` / `end()` / `width()`
- List-like -- `length()`, subset, etc.
- 'metadata', `mcols()`
- GRanges
- 'seqnames' (chromosome), 'strand'
- `Seqinfo`, including `seqlevels` and `seqlengths`
# Intra-range methods
- Independent of other ranges in the same object
- GRanges variants strand-aware
- `shift()`, `narrow()`, `flank()`, `promoters()`, `resize()`,
`restrict()`, `trim()`
- See `?"intra-range-methods"`
# Inter-range methods
- Depends on other ranges in the same object
- `range()`, `reduce()`, `gaps()`, `disjoin()`
- `coverage()` (!)
- see `?"inter-range-methods"`
# Between-range methods
- Functions of two (or more) range objects
- `findOverlaps()`, `countOverlaps()`, ..., `%over%`, `%within%`,
`%outside%`; `union()`, `intersect()`, `setdiff()`, `punion()`,
`pintersect()`, `psetdiff()`
# Example
```{r ranges, message=FALSE, eval=F}
require(GenomicRanges)
gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+")
shift(gr, 1) # 1-based coordinates!
range(gr) # intra-range
reduce(gr) # inter-range
coverage(gr)
setdiff(range(gr), gr) # 'introns'
```
# IRangesList, GRangesList
- List: all elements of the same type
- Many *List-aware methods, but a common 'trick': apply a vectorized
function to the unlisted representaion, then re-list
grl <- GRangesList(...)
orig_gr <- unlist(grl)
transformed_gr <- FUN(orig)
transformed_grl <- relist(, grl)
# Aligned reads: _GenomicAlignments_, _Rsamtools_
Classes -- GenomicRanges-like behaivor
- GAlignments, GAlignmentPairs, GAlignmentsList
- SummarizedExperiment
- Matrix where rows are indexed by genomic ranges, columns by a
DataFrame.
Methods
- `readGAlignments()`, `readGAlignmentsList()`
- Easy to restrict input, iterate in chunks
- `summarizeOverlaps()`
# Example
- Find reads supporting the junction identified above, at position
19653707 + 66M = 19653773 of chromosome 14
```{r bam-require, eval=F}
require(GenomicRanges)
require(GenomicAlignments)
require(Rsamtools)
## our 'region of interest'
roi <- GRanges("chr14", IRanges(19653773, width=1))
## sample data
require('RNAseqData.HNRNPC.bam.chr14')
bf <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]], asMates=TRUE)
## alignments, junctions, overlapping our roi
paln <- readGAlignmentsList(bf)
j <- summarizeJunctions(paln, with.revmap=TRUE)
j_overlap <- j[j %over% roi]
## supporting reads
paln[j_overlap$revmap[[1]]]
```
# Called variants: _VariantAnnotation_, _VariantFiltering_
Classes -- GenomicRanges-like behavior
- VCF -- 'wide'
- VRanges -- 'tall'
Functions and methods
- I/O and filtering: `readVcf()`, `readGeno()`, `readInfo()`,
`readGT()`, `writeVcf()`, `filterVcf()`
- Annotation: `locateVariants()` (variants overlapping ranges),
`predictCoding()`, `summarizeVariants()`
- SNPs: `genotypeToSnpMatrix()`, `snpSummary()`
# Example
- Read variants from a VCF file, and annotate with respect to a known
gene model
```{r vcf, message=FALSE}
## input variants
require(VariantAnnotation)
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- readVcf(fl, "hg19")
seqlevels(vcf) <- "chr22"
## known gene model
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
coding <- locateVariants(rowRanges(vcf),
TxDb.Hsapiens.UCSC.hg19.knownGene,
CodingVariants())
head(coding)
```
# Related packages
- [ensemblVEP][]
- Forward variants to Ensembl Variant Effect Predictor
- [VariantTools][], [h5vc][]
- Call variants
- [VariantFiltering][]
- Filter variants using criteria such as coding consequence, MAF,
..., inheritance model
# Integrated data representations: _SummarizedExperiment_
![](our_figures/SE_Description.png)
[SummarizedExperiment][]
- 'feature' x 'sample' `assays()`
- `colData()` data frame for desciption of samples
- `rowRanges()` _GRanges_ / _GRangeList_ or data frame for description
of features
- `exptData()` to describe the entire object
```{r SummarizedExperiment}
library(SummarizedExperiment)
library(airway)
data(airway)
airway
colData(airway)
airway[, airway$dex %in% "trt"]
```
# Annotation: _org_, _TxDb_, _AnnotationHub_, _biomaRt_, ...
- _Bioconductor_ provides extensive access to 'annotation' resources
(see the [AnnotationData][] biocViews hierarchy); some interesting
examples to explore during this lab include:
- [biomaRt][], [PSICQUIC][], [KEGGREST][] and other packages for
querying on-line resources; each of these have informative vignettes.
- [AnnotationDbi][] is a cornerstone of the
[Annotation Data][AnnotationData] packages provided by Bioconductor.
- **org** packages (e.g., [org.Hs.eg.db][]) contain maps between
different gene identifiers, e.g., ENTREZ and SYMBOL. The basic
interface to these packages is described on the help page `?select`
- **TxDb** packages (e.g., [TxDb.Hsapiens.UCSC.hg19.knownGene][])
contain gene models (exon coordinates, exon / transcript
relationships, etc) derived from common sources such as the hg19
knownGene track of the UCSC genome browser. These packages can be
queried, e.g., as described on the `?exonsBy` page to retrieve all
exons grouped by gene or transcript.
- **BSgenome** packages (e.g., [BSgenome.Hsapiens.UCSC.hg19][])
contain whole genomes of model organisms.
- [VariantAnnotation][] and [ensemblVEP][] provide access to sequence
annotation facilities, e.g., to identify coding variants; see the
[Introduction to VariantAnnotation](http://bioconductor.org/packages/release/bioc/vignettes/ShortRead/inst/doc/Overview.pdf)
vignette for a brief introduction.
- Take a quick look at the [annotation work
flow](http://bioconductor.org/help/workflows/annotation/annotation/)
on the Bioconductor web site.
# Scalable computing
1. Efficient _R_ code
- Vectorize!
- Reuse others' work Know -- [DESeq2][], [GenomicRanges][],
[Biostrings][], [dplyr][], [data.table][], [Rcpp][]
2. Iteration
- Chunk-wise
- `open()`, read chunk(s), `close()`.
- e.g., `yieldSize` argument to `Rsamtools::BamFile()`
3. Restriction
- Limit to columns and / or rows of interest
- Exploit domain-specific formats, e.g., BAM files and
`Rsamtools::ScanBamParam()`
- Use a data base
4. Sampling
- Iterate through large data, retaining a manageable sample, e.g.,
`ShortRead::FastqSampler()`
5. Parallel evaluation
- **After** writing efficient code
- Typically, `lapply()`-like operations
- Cores on a single machine ('easy'); clusters (more tedious);
clouds
# Parallel evaluation in _Bioconductor_
- [BiocParallel][] -- `bplapply()` for `lapply()`-like functions,
increasingly used by package developers to provide easy, standard
way of gaining parallel evaluation.
- [GenomicFiles][] -- Framework for working on groups of files,
ranges, or ranges x files
- Bioconductor [AMI][] (Amazon Machine Instance) including
pre-configured StarCluster, and [docker] containers.
# Resources
_R_ / _Bioconductor_
- [Web site][Bioconductor] -- install, learn, use, develop _R_ /
_Bioconductor_ packages
- [Support](http://support.bioconductor.org) -- seek help and
guidance; also
[StackOverflow](http://stackoverflow.com/questions/tagged/r) for _R_
programming questions
- [biocViews](http://bioconductor.org/packages/release/BiocViews.html)
-- discover packages
- Package landing pages, e.g.,
[GenomicRanges](http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html),
including title, description, authors, installation instructions,
vignettes (e.g., GenomicRanges '[How
To](http://bioconductor.org/packages/release/bioc/vignettes/GenomicRanges/inst/doc/GenomicRangesHOWTOs.pdf)'),
etc.
- [Course](http://bioconductor.org/help/course-materials/) and other
[help](http://bioconductor.org/help/) material (e.g., videos, EdX
course, community blogs, ...)
# Publications (General _Bioconductor_)
- Lawrence M, Huber W, Pag&egrave;s H, Aboyoun P, Carlson M, et al. (2013)
Software for Computing and Annotating Genomic Ranges. PLoS Comput
Biol 9(8): e1003118. doi:
[10.1371/journal.pcbi.1003118][GRanges.bib]
- Lawrence, M, and Morgan, M. 2014. Scalable Genomics with R and
Bioconductor. Statistical Science 2014, Vol. 29, No. 2,
214-226. [http://arxiv.org/abs/1409.2864v1][Scalable.bib]
Other
- Lawrence, M. 2014. Software for Enabling Genomic Data
Analysis. Bioc2014 conference [slides][Lawrence.bioc2014.bib].
<!-- Bibliography -->
[R]: http://r-project.org
[Bioconductor]: http://bioconductor.org
[GRanges.bib]: https://doi.org/10.1371/journal.pcbi.1003118
[Scalable.bib]: http://arxiv.org/abs/1409.2864
[Lawrence.bioc2014.bib]:
http://bioconductor.org/help/course-materials/2014/BioC2014/Lawrence_Talk.pdf
[AnnotationData]: http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData
[biocViews]: http://bioconductor.org/packages/release/BiocViews.html#___Software
[AnnotationDbi]: http://bioconductor.org/packages/AnnotationDbi
[AnnotationHub]: http://bioconductor.org/packages/AnnotationHub
[BSgenome.Hsapiens.UCSC.hg19]: http://bioconductor.org/packages/BSgenome.Hsapiens.UCSC.hg19
[BSgenome]: http://bioconductor.org/packages/BSgenome
[BiocParallel]: http://bioconductor.org/packages/BiocParallel
[Biostrings]: http://bioconductor.org/packages/Biostrings
[CNTools]: http://bioconductor.org/packages/CNTools
[ChIPQC]: http://bioconductor.org/packages/ChIPQC
[ChIPseeker]: http://bioconductor.org/packages/ChIPseeker
[DESeq2]: http://bioconductor.org/packages/DESeq2
[DiffBind]: http://bioconductor.org/packages/DiffBind
[GenomicAlignments]: http://bioconductor.org/packages/GenomicAlignments
[GenomicFiles]: http://bioconductor.org/packages/GenomicFiles
[GenomicRanges]: http://bioconductor.org/packages/GenomicRanges
[Homo.sapiens]: http://bioconductor.org/packages/Homo.sapiens
[IRanges]: http://bioconductor.org/packages/IRanges
[KEGGREST]: http://bioconductor.org/packages/KEGGREST
[PSICQUIC]: http://bioconductor.org/packages/PSICQUIC
[Rsamtools]: http://bioconductor.org/packages/Rsamtools
[Rsubread]: http://bioconductor.org/packages/Rsubread
[ShortRead]: http://bioconductor.org/packages/ShortRead
[SomaticSignatures]: http://bioconductor.org/packages/SomaticSignatures
[SummarizedExperiment]: http://bioconductor.org/packages/SummarizedExperiment
[TxDb.Hsapiens.UCSC.hg19.knownGene]: http://bioconductor.org/packages/TxDb.Hsapiens.UCSC.hg19.knownGene
[VariantAnnotation]: http://bioconductor.org/packages/VariantAnnotation
[VariantFiltering]: http://bioconductor.org/packages/VariantFiltering
[VariantTools]: http://bioconductor.org/packages/VariantTools
[biomaRt]: http://bioconductor.org/packages/biomaRt
[cn.mops]: http://bioconductor.org/packages/cn.mops
[csaw]: http://bioconductor.org/packages/csaw
[edgeR]: http://bioconductor.org/packages/edgeR
[ensemblVEP]: http://bioconductor.org/packages/ensemblVEP
[h5vc]: http://bioconductor.org/packages/h5vc
[limma]: http://bioconductor.org/packages/limma
[metagenomeSeq]: http://bioconductor.org/packages/metagenomeSeq
[org.Hs.eg.db]: http://bioconductor.org/packages/org.Hs.eg.db
[org.Sc.sgd.db]: http://bioconductor.org/packages/org.Sc.sgd.db
[phyloseq]: http://bioconductor.org/packages/phyloseq
[rtracklayer]: http://bioconductor.org/packages/rtracklayer
[snpStats]: http://bioconductor.org/packages/snpStats
[Gviz]: http://bioconductor.org/packages/Gviz
[epivizr]: http://bioconductor.org/packages/epivizr
[ggbio]: http://bioconductor.org/packages/ggbio
[OmicCircos]: http://bioconductor.org/packages/OmicCircos
[dplyr]: https://cran.r-project.org/package=dplyr
[data.table]: https://cran.r-project.org/package=data.table
[Rcpp]: https://cran.r-project.org/package=Rcpp
[AMI]: http://bioconductor.org/help/bioconductor-cloud-ami/
[docker]: http://bioconductor.org/help/docker/
This source diff could not be displayed because it is too large. You can view the blob instead.
base
BiocStyle
BioC2016Introduction
BiocGenerics
S4Vectors
IRanges
GenomeInfoDb
GenomicRanges
Biobase
matrixStats
BiocParallel
DelayedArray
SummarizedExperiment
airway
XVector
Biostrings
rtracklayer
BSgenome
BSgenome.Hsapiens.UCSC.hg19
Rsamtools
VariantAnnotation
AnnotationDbi
GenomicFeatures
TxDb.Hsapiens.UCSC.hg19.knownGene
---
title: "Annotation"
author: "Thomas Schwarzl"
date: "29/3/2019"
output: html_document
---
```{r}
suppressPackageStartupMessages({
library(Organism.dplyr)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
})
```
```{r}
supportedOrganisms() %>% filter(organism == "Homo sapiens")
```
```{r}
src <- src_organism("TxDb.Hsapiens.UCSC.hg38.knownGene")
```
---
title: "RNASeq-Airway"
author: "Thomas Schwarzl"
date: "28/3/2019"
output: BioCStyle::html_document
---
```{r}
if (!requireNamespace("BiocManager")) install.packages("BiocManager")
BiocManager::install(c("airway"))
```
```{r}
list.of.packages <- c("ggplot2", "Rcpp")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
```