Commit 9bac1ca5 authored by Lars Velten's avatar Lars Velten
Browse files

vignettes now install correctly

parent a4ce081d
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Vignette Author" />
<meta name="date" content="2019-01-23" />
<title>CIBERSORT to decompose the composition of bone marrow niches</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css" data-origin="pandoc">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
for (var j = 0; j < rules.length; j++) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' || rule.style.backgroundColor === '') continue;
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
</head>
<body>
<h1 class="title toc-ignore">CIBERSORT to decompose the composition of bone marrow niches</h1>
<h4 class="author"><em>Vignette Author</em></h4>
<h4 class="date"><em>2019-01-23</em></h4>
<div id="unsupervised-analysis" class="section level2">
<h2>Unsupervised analysis</h2>
<p>Object NicheDataLCM contains read counts of samples of microscopically defined niches. We first use PCA to have an unsupervised look at the data, and flag the two outliers driving PC1 and 2 for removal.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">require</span>(RNAMagnet)
<span class="kw">require</span>(Seurat)
<span class="kw">require</span>(ggplot2)
n.pca &lt;-<span class="st"> </span><span class="kw">prcomp</span>(<span class="kw">t</span>(DESeq2<span class="op">::</span><span class="kw">varianceStabilizingTransformation</span>(<span class="kw">as.matrix</span>(NicheDataLCM)) ))
<span class="kw">qplot</span>(<span class="dt">x =</span> n.pca<span class="op">$</span>x[,<span class="dv">1</span>], <span class="dt">y =</span> n.pca<span class="op">$</span>x[,<span class="dv">2</span>], <span class="dt">color =</span> NicheMetaDataLCM<span class="op">$</span>biological.class) <span class="op">+</span><span class="st"> </span><span class="kw">scale_color_discrete</span>(<span class="dt">name=</span><span class="st">&quot;Sample type&quot;</span>) <span class="op">+</span><span class="st"> </span><span class="kw">xlab</span>(<span class="st">&quot;PC1&quot;</span>) <span class="op">+</span><span class="st"> </span><span class="kw">ylab</span>(<span class="st">&quot;PC2&quot;</span>)</code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">outliers &lt;-<span class="st"> </span>n.pca<span class="op">$</span>x[,<span class="dv">1</span>] <span class="op">&gt;</span><span class="st"> </span><span class="dv">70</span> <span class="op">|</span><span class="st"> </span>n.pca<span class="op">$</span>x[,<span class="dv">2</span>] <span class="op">&lt;</span><span class="st"> </span><span class="op">-</span><span class="dv">40</span>
remove &lt;-<span class="st"> </span><span class="kw">colnames</span>(NicheDataLCM)[outliers]</code></pre></div>
</div>
<div id="cibersort" class="section level2">
<h2>CIBERSORT</h2>
<p>Next, we used <a href="https://www.nature.com/articles/nmeth.3337">!CIBERSORT</a> to decompose the “bulk” RNA-seq profiles from LCM-seq into the cell populations identified by single cell RNA sequencing. CIBERSORT is an algorithm for estimating the cell type composition of a bulk sample, given a gene expression profile of the sample and a known gene expression profile for each cell type potentially contributing to the sample. Mathematically, the expected expression level <span class="math inline">\(x_j\)</span> of gene <span class="math inline">\(j\)</span> in a bulk sample is the sum of cell type averages, <span class="math inline">\(s_{ij}\)</span>, weighted by cell type fractions ai: <span class="math display">\[ x_j=\sum_i{a_i s_{ij}} \]</span> CIBERSORT uses support vector regression to robustly solve that well-defined system of linear equations. In our manuscript (supplementary note), we demonstrate that CIBERSORT excels at comparing relative cell type abundancies between niches (i.e. ‘cell type X localizes to niche A over niche B and niche C’), but performs only moderately at estimating cell type proportions within a single niche (i.e. it cannot draw statements like ‘niche A consists to 70% of cell type X and 30% of cell type Y’). It is therefore important to focus on analyses of the first type.</p>
<p>To set up CIBERSORT, we first comoute the population-wise mean expression of all marker genes. Since the different HSPC subpopulations are too similar to be reasonably distinguished by CIBERSORT, we merge them to one.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="cf">for</span> (pop <span class="cf">in</span> <span class="kw">c</span>(<span class="st">&quot;Ery/Mk prog.&quot;</span>,<span class="st">&quot;Neutro prog.&quot;</span>,<span class="st">&quot;Mono prog.&quot;</span>,<span class="st">&quot;Gran/Mono prog.&quot;</span>,<span class="st">&quot;LMPPs&quot;</span>,<span class="st">&quot;Mk prog.&quot;</span>,<span class="st">&quot;Eo/Baso prog.&quot;</span>,<span class="st">&quot;Ery prog.&quot;</span>)) NicheData10x &lt;-<span class="st"> </span><span class="kw">RenameIdent</span>(NicheData10x, pop, <span class="st">&quot;HSPC&quot;</span>)
usegenes &lt;-<span class="st"> </span><span class="kw">unique</span>(NicheMarkers10x<span class="op">$</span>gene[(NicheMarkers10x<span class="op">$</span>myAUC <span class="op">&gt;</span><span class="st"> </span><span class="fl">0.8</span> <span class="op">|</span>NicheMarkers10x<span class="op">$</span>myAUC <span class="op">&lt;</span><span class="st"> </span><span class="fl">0.2</span>) ])
mean_by_cluster &lt;-<span class="st"> </span><span class="kw">do.call</span>(cbind, <span class="kw">lapply</span>(<span class="kw">unique</span>(NicheData10x<span class="op">@</span>ident), <span class="cf">function</span>(x) {
<span class="kw">apply</span>(NicheData10x<span class="op">@</span>raw.data[usegenes,NicheData10x<span class="op">@</span>cell.names][,NicheData10x<span class="op">@</span>ident <span class="op">==</span><span class="st"> </span>x], <span class="dv">1</span>,mean )
}))
<span class="kw">colnames</span>(mean_by_cluster) &lt;-<span class="st"> </span><span class="kw">unique</span>(NicheData10x<span class="op">@</span>ident)</code></pre></div>
<p>…and we then run the function <code>runCIBERSORT</code>.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#character vector that maps column names of NicheDataLCM to sample type</span>
LCM_design &lt;-<span class="st"> </span>NicheMetaDataLCM<span class="op">$</span>biological.class
<span class="kw">names</span>(LCM_design) &lt;-<span class="st"> </span>NicheMetaDataLCM<span class="op">$</span>id
CIBER &lt;-<span class="st"> </span><span class="kw">runCIBERSORT</span>(NicheDataLCM, mean_by_cluster, LCM_design, <span class="dt">mc.cores=</span><span class="dv">3</span>)
<span class="kw">head</span>(CIBER)
<span class="co">#&gt; CellType SampleID Fraction SampleClass</span>
<span class="co">#&gt; 1 HSPC S1 0.006869989 ARTERIES</span>
<span class="co">#&gt; 2 large pre-B. S1 0.000000000 ARTERIES</span>
<span class="co">#&gt; 3 Erythroblasts S1 0.074509555 ARTERIES</span>
<span class="co">#&gt; 4 Monocytes S1 0.008871448 ARTERIES</span>
<span class="co">#&gt; 5 pro-B S1 0.000000000 ARTERIES</span>
<span class="co">#&gt; 6 T cells S1 0.020245421 ARTERIES</span></code></pre></div>
<p>We can plot the result using standard R commands.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">
CIBER &lt;-<span class="st"> </span><span class="kw">subset</span>(CIBER,CellType <span class="op">%in%</span><span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;Adipo-CAR&quot;</span>,<span class="st">&quot;Ng2+ MSCs&quot;</span>,<span class="st">&quot;Osteoblasts&quot;</span>, <span class="st">&quot;Arteriolar fibro.&quot;</span>, <span class="st">&quot;Sinusoidal ECs&quot;</span>, <span class="st">&quot;Osteo-CAR&quot;</span>,<span class="st">&quot;Chondrocytes&quot;</span>,<span class="st">&quot;Endosteal fibro.&quot;</span>, <span class="st">&quot;Fibro/Chondro p.&quot;</span>, <span class="st">&quot;Stromal fibro.&quot;</span>, <span class="st">&quot;Arteriolar ECs&quot;</span>, <span class="st">&quot;Smooth muscle&quot;</span>) <span class="op">&amp;</span><span class="st"> </span><span class="op">!</span>SampleID <span class="op">%in%</span><span class="st"> </span>remove)
labeler &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;ARTERIES&quot;</span> =<span class="st"> &quot;Arteriolar&quot;</span>, <span class="st">&quot;ENDOSTEUM&quot;</span> =<span class="st"> &quot;Endosteal&quot;</span>, <span class="st">&quot;HIGH SINUSOIDS&quot;</span> =<span class="st"> &quot;Sinusoidal&quot;</span>, <span class="st">&quot;LOW SINUSOIDS&quot;</span> =<span class="st"> &quot;Non-vascular&quot;</span>, <span class="st">&quot;SUB-ENDOSTEUM&quot;</span> =<span class="st"> &quot;Sub-Endosteal&quot;</span>, <span class="st">&quot;Other&quot;</span> =<span class="st"> &quot;darkgrey&quot;</span>)
<span class="kw">ggplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> SampleClass, <span class="dt">y=</span> Fraction,<span class="dt">color =</span> CellType),<span class="dt">data=</span>CIBER) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>(<span class="dt">stat=</span><span class="st">&quot;summary&quot;</span>, <span class="dt">fun.y=</span>mean) <span class="op">+</span><span class="st"> </span><span class="kw">facet_wrap</span>(<span class="op">~</span><span class="st"> </span>CellType, <span class="dt">scales=</span><span class="st">&quot;free_y&quot;</span>) <span class="op">+</span><span class="st"> </span>
<span class="st"> </span><span class="kw">theme_bw</span>(<span class="dt">base_size=</span><span class="dv">12</span>) <span class="op">+</span><span class="st"> </span><span class="kw">theme</span>(<span class="dt">axis.text.x =</span> <span class="kw">element_text</span>(<span class="dt">angle=</span><span class="dv">90</span>, <span class="dt">color=</span><span class="st">&quot;black&quot;</span>),<span class="dt">axis.text.y =</span> <span class="kw">element_blank</span>(), <span class="dt">panel.grid =</span> <span class="kw">element_blank</span>()) <span class="op">+</span><span class="st"> </span>
<span class="st"> </span><span class="kw">geom_errorbar</span>(<span class="dt">stat=</span><span class="st">&quot;summary&quot;</span>, <span class="dt">fun.ymin=</span><span class="cf">function</span>(x) <span class="kw">mean</span>(x)<span class="op">+</span><span class="kw">sd</span>(x)<span class="op">/</span><span class="kw">sqrt</span>(<span class="kw">length</span>(x)),<span class="dt">fun.ymax=</span><span class="cf">function</span>(x) <span class="kw">mean</span>(x)<span class="op">-</span><span class="kw">sd</span>(x)<span class="op">/</span><span class="kw">sqrt</span>(<span class="kw">length</span>(x)), <span class="dt">width=</span><span class="fl">0.2</span>) <span class="op">+</span><span class="st"> </span>
<span class="st"> </span><span class="kw">ylab</span>(<span class="st">&quot;CIBERSORT estimate (a.u.)&quot;</span>) <span class="op">+</span><span class="st"> </span><span class="kw">scale_color_manual</span>(<span class="dt">values =</span> NicheDataColors, <span class="dt">guide=</span>F) <span class="op">+</span><span class="st"> </span><span class="kw">xlab</span>(<span class="st">&quot;Niche&quot;</span>) <span class="op">+</span><span class="st"> </span><span class="kw">scale_x_discrete</span>(<span class="dt">labels =</span> labeler)</code></pre></div>
<p><img src="" /><!-- --></p>
</div>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment