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1. Introduction
1.1. Drug discovery

Drug discovery is the process of identifying probable new therapeutic entities. It

combines the use of computational, experimental, translational tools, and clinical

models. Despite advances in understanding biological systems at a molecular level,

drug discovery remains a lengthy, costly and complex process with high attrition rates.

[1].
An essential step in drug discovery is finding new chemical leads. A chemical

lead is a molecule with good potency in biological assays that reflect the targeted

mechanism. The lead is a molecule used in cell assays and model systems to validate a

particular target's druggability and therapeutic potential. Still, it may not have all the

characteristics of a drug. A drug must achieve high and sustained plasma

concentrations after oral dosing to exert the desired effect. The atomicity, consistency,

isolation, and durability (ADMET) of a chemical lead will need to be determined to

evaluate its potential as a drug candidate.

Structure-guided drug discovery (Figure 1) is an integral part of most drug

design programs and keeps evolving continuously; new technologies are appearing,

maturing, and replacing existing ones, thus emerging as new standards. By the early

2000s, high-throughput screening (HTS) became a dominant strategy in the field. This

led to an increase in marketed drugs against well-identified molecular targets. However,

when examined against new or more complex targets, vast libraries of compounds

produced less satisfactory results. At the same time, the colossal size of the chemical

space needs to be considered. The number of possible small molecule entities with

molecular weights approximating a drug is estimated to be 1063 – more than the number

of stars in the universe [2]. In this context, a library of ten million compounds at the

upper limit of those used in traditional HTS seems trivial. However, alternative

approaches, namely, the fragment screening approach, have been developed,

addressing some of these issues.
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Figure 1 - Schematic of the structure-based drug discovery pipeline [3]. After identification of the

drug target, its structure and drug-binding site are determined. Atomically resolved structures enable rapid

refinements of lead compounds and optimization of the drug candidate. SAR investigates the relationship

between a molecule's biological activity and its three-dimensional structure. The QSAR model is when

relationships become quantified [4].
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1.2. Identification of chemical leads
1.2.1. High-throughput screening

HTS comprises the screening of large chemical libraries for activity against

biological targets via automation, miniaturized assays, and large-scale data analysis.

HTS is currently one of the dominant paradigms for lead identification in the

pharmaceutical industry. The method screens up to a few million compounds against

the target of interest via an activity or interaction assay. Identified hits are then followed

up and optimized into chemical leads.

1.2.2. Fragment-based drug discovery

Fragment-Based Drug Discovery (FBDD) identifies small molecules binding to

targets. It involves the screening of low-molecular-weight compounds against a target

macromolecule of clinical significance. The process helps identify starting hits for the

development of potent and bioactive molecules through medicinal chemistry. FBDD

emerged as an alternative to HTS. It employs a different approach: Instead of screening

millions of compounds to find drug-sized starting points, FBDD starts with smaller pools

of smaller compounds. Fragments have less than twenty heavy atoms. Unlike the

astronomical number of drug-like molecules with up to thirty heavy atoms, the number

of possible fragments (the fragment chemical space) is much smaller. Thus, it can be

thoroughly screened with just a few hundred experiments. In the most modern version

of fragment screening, libraries composed of 500 to 1000 or more fragments are

screened by X-ray crystallography against a target protein. This leads not only to the

identification of fragment hits (typically between 2% and 10% of the fragments in the

library) but to a complete structural characterization of the three-dimensional binding

mode of these fragments, which is then used to facilitate their optimization into potent

molecules with drug-like properties. The drawback of this approach compared to

traditional HTS is that fragments being small, tend to show weak binding and moderate

specificity, also occupying only parts of the active cavity.
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Figure 2 - Fragment-based drug discovery [2]. Around one thousand fragments are screened. The

fragments are around 150-250 MW. The chosen fragment library contains a diverse set of chemical

functionalities that are represented in drugs. The binding mechanism of the fragment hit is established in

the target protein. Fragments are grown to form new interactions using structure-based drug design.

Fragment hits can create high-quality interactions and can be optimized into potent lead molecules,

despite their initial low potency due to their small size.
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Fragments need to be optimized into bigger compounds with higher affinity and

specificity through medicinal chemistry, for which the structural information produced is

valuable (Figure 2). On the other hand, fragment screening can be applied when HTS

fails, for example, when no identifiable activity or binding assay compatible with HTS is

available. Another advantage of the fragment screening approach is that it can also help

identify allosteric binding sites. Currently, both HTS and fragment screening approaches

are routinely applied in drug design.

1.3. X-ray based high-throughput fragment screening
1.3.1. Detecting fragment hits in crystallographic datasets

X-ray crystallography can be used to obtain atomic and molecular structures of

biological molecules (Figure 3). When a powerful and highly focused X-ray is shone

through a protein crystal (typically at a synchrotron facility), the crystalline atoms cause

a beam of incident X-rays to diffract into several directions. After measuring the angles

and intensities of these diffracted beams and after thorough data processing, the

three-dimensional distribution of the density of electrons within the crystal can be

generated. This allows determining the mean positions of the atoms in the crystal as

well as their chemical bonds and their disorder. X-ray crystallography is commonly used

as a screening tool for FBDD. Efficient fragment cocktail design and soaking

methodologies have evolved to maximize throughput while minimizing false

positives/negatives [5], [6]. Technical improvements at synchrotron beamlines have

increased data collection rates. The combination of resources and efficient experimental

design has resulted in multiple successful crystallographic screening campaigns. The

three-dimensional crystal structure of the fragment bound to its target enables

structure-based drug design while revealing insights regarding protein dynamics and

function. X-ray crystallography provides structural information that enables rapid and

efficient assessment of hits concerning tractability for structure-based drug design and

fragment expansion. However, the application of X-ray crystallography as a primary

screening method has been under-appreciated due to its relatively low throughput and

highly resource-intensive nature [7]. Nevertheless, recent technological developments

have changed this [6].
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Figure 3 - Workflow for solving molecular structures by X-ray crystallography [8]. First, high

throughput crystallization techniques are used for the preparation of crystals with high diffraction power.

Crystals should be large enough to produce a regular and high-resolution diffraction pattern when placed

in an intense beam of X-rays. Next, the intensities and angles of diffracted X-rays are measured, with

each compound having a unique diffraction pattern. Previous reflections disappear, and emerging ones

appear along with the rotation of the crystal. At every orientation, the intensity of every spot is recorded.

Finally, multiple diffraction images constituting a full dataset are collected and combined computationally.

These contain chemical information that enables obtaining and refining a model from the arrangement of

atoms within the crystal. The subsequent refined model of the atomic arrangement is called a crystal

structure. Any crystallographic structure described in a publication should be deposited in a public

repository, namely the PDB.
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1.3.2. Exploiting the results of fragment screening for drug
development

A fragment screening campaign produces multiple fragment hits, each of them

binding to different regions of the same binding pocket. The following step uses this

structural information to develop optimized compounds - with high affinity and high

selectivity - through molecular modeling and medicinal chemistry (Figure 2) [9]​.

The fundamental principles of FBDD have changed the strategies of drug

discovery. Nonetheless, the main technical challenge for fragment discovery is knowing

how to optimize fragments into leads. As discussed, structural information has been

vital in identifying the optimal vectors for fragment evolution, but faster approaches for

compound optimization are still necessary. Most improvements in compound binding

affinity, particularly in the early stages of optimization, prevent the protein–compound

complex dissociation. On the other hand, the low throughput aspect of X-ray

crystallography is now being addressed by laboratories worldwide, such as the high

throughput crystallization facility at the EMBL in Grenoble. Thus, contributing to

providing more fragment hits for each project and contributing to a more significant

impact of X-ray-based fragment screening in drug design (Figures 4 and 5).

1.4. Structural data processing, analysis, and
integration

1.4.1. Data collection
Diffraction experiments are carried out after obtaining a crystal. First, the X-ray

irradiating through the crystal is diffracted and recorded. Then, diffraction data, including

the location and intensity of diffraction points, are recorded by specific detectors. A

complete dataset (about 3000 diffraction images) can be collected in a few minutes in

modern beamlines at synchrotrons. In addition, numerous samples can be tested in a

day because of fully automated sample changers and beamlines. Therefore, an entire

fragment screening campaign can be completed within just a few days of data collection

time.
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Figure 4 - Fragments binding to
the RAS protein [10]. ​RAS is a

GDP/GTP-binding guanosine

triphosphatase implicated in

signal transduction of cell growth

and differentiation. ​ The

schematic shows the secondary

structure of RAS (α​- ​helices in ​

red and β​ - ​ sheets in ​ blue​)

bound to guanosine diphosphate

(in grey). (a) A molecule was

designed to covalently tether to

an oncogenic RAS-G12C mutant

(bonding indicated by the arrow). ​

(b)​ ​ (c)​ Small fragments bind to

similar sites on RAS.

Figure 5 - Discovery of a novel
binding site in Hepatitis C virus
NS3 [11]. (a) Fragment screening

identified a fragment bound in a

previously unrecognized cleft of

the Hepatitis C virus

protease/helicase NS3 (b). That

cleft is found between the

helicase (​blue) and protease

(​red​) domains. (c) In addition,

optimization generated a

compound that locked the

domains together, which leads to

activity inhibition.
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1.4.2. Data processing
The analysis of the diffraction data allows us to obtain the electron density, which

will, in turn, be used to build the atomic model of the protein (Figure 3). Pipedream

(Figure 6) is a fully automated data processing pipeline that facilitates the use and

integration of autoPROC [12], BUSTER [13], Rhofit [14], and Phaser [15] into a

high-throughput fragment screening pathway. It automates:

● Data reduction and indexing with autoPROC.

● Molecular replacement with Phaser.

● Structure refinement with BUSTER.

● Automated ligand fitting with Rhofit, with subsequent BUSTER post-refinement of

the top solution.

The pipeline processes the collected diffraction images to extract indexes and

intensity for each of the reflections. These are then scaled and merged to produce a

single diffraction dataset. Finally, by applying the phases to the crystallographic dataset

(in fragment screening, this is achieved by the molecular replacement method), it is

possible to reconstruct the electron density and build the atomic model.

The diffraction experiment data represents a reciprocal space of the crystal lattice

[16]. The position of each diffraction 'spot', whose intensity is recorded and proportional

to the square of the structure factor amplitude, is governed by the size and shape of the

unit cell and the inherent symmetry within the crystal. The structure factor contains

information about the amplitude and the phase of a wave. Both of which should be

known to obtain an interpretable electron density map that enables building a molecule

model. However, the phase cannot be directly recorded during a diffraction experiment.

This phenomenon is known as the phase problem. Instead, the initial phase estimates

can be obtained in various ways, such as Ab initio phasing and molecular replacement.

In fragment screening, the method used is the molecular replacement.
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Figure 6 - Schematic of Pipedream’s workflow [17]. Pipedream is a pipeline that automates data

reduction and indexing with autoPROC, molecular replacement with Phaser, structure refinement with

BUSTER, and ligand fitting with Rhofit, with subsequent BUSTER post-refinement the top solution.

Additional details about each tool are available in the supplementary data section.
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An initial atomic model can be established automatically after obtaining initial

phases by molecular refinement. However, this model is typically incomplete or contains

errors. This model can be manually improved by evaluating the adjustment of the

atomic positions to the electron density, thus getting an improved model and ideally

yielding a better set of phases. A new model can then be fitted to a novel electron

density map. Finally, further refinement is performed, which continuously proceeds until

the correlation between the diffraction data and the model is maximized. Model quality

indicators include chemical bonding features of stereochemistry, hydrogen bonding, and

the distribution of bond lengths and angles are complementary measures.

1.4.3. Large scale data management in structural biology
The volume and diversity of biological data have increased dramatically. It is

estimated that by 2025, structural data, alongside genomics, will generate one

zetta-base per year. NoSQL databases have played an essential role in managing these

large volumes of data [18]. Omics have recently become a target of the NoSQL

movement. NoSQL can be regarded as an umbrella term for non-relational database

systems that provide alternative mechanisms for storing, retrieving, and modeling data

to traditional relational databases and SQL. There are different types of NoSQL

database models such as key-value, wide column, document-oriented, and graph

databases. In addition, some NoSQL databases may be hybrids, using more than one

database model at once.

Graph databases assemble abstractions of vertices and relationships in

connected structures, making it possible to build models that are mapped closer to the

real problem. Graphs often represent datasets and their relationships, and the

importance of the information embedded in relationships has caused the increase of

graph database initiatives [19]. It occurs due to various factors, such as recommending

systems, circuits in engineering, social media, chemical, and biological networks [20].
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Graph databases are database management systems (DBMS) with create, read,

update, delete (CRUD) methods, which can store graphs natively or emulate them in a

different database model [21]. A critical aspect of graph databases is that they are

highly efficient at capturing relationships, making it possible to discover strong

associations between data points in real-time.

1.5. High-throughput fragment screening at EMBL
Grenoble

EMBL Grenoble hosts the High Throughput Crystallization (HTX) laboratory, a

large-scale user facility providing crystallography assistance. Since 2003, the platform

has offered services to over 800 scientists and handled over 1000 samples per year.

The laboratory focuses on developing new methods in macromolecular crystallography,

including methods for sample evaluation and quality control [22] and the CrystalDirectTM

technology. This enables fully automated crystal mounting and processing [23], [5]. The

facility has also developed CRIMS (Figures 7 and 8), a web-based laboratory

information system that automates communication between crystallization and

synchrotron data collection facilities. The combination of the CrystalDirectTM technology

and CRIMS gave birth to the concept of online crystallography (Figure 7). This includes

fully automated, remote-controlled crystallography pipelines integrating crystallization

screening, crystal optimization, crystal harvesting, crystal mounting, and cryo-cooling

and automated X-ray data collection [24] into continuous workflows controlled through

web interfaces. This approach accelerates the progression of challenging projects by

minimizing the delay between crystal growth and measurement. Moreover, the

automation of data collection and data processing in collaboration with GPhL allowed it

to build a fully automated, remote-controlled crystallography pipeline to support

high-throughput crystallization screening, ultra-rapid structure solution, and large-scale

fragment screening in drug design programs. However, improved data processing and

analysis pipelines are needed to cope with the volume of data generated.
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Figure 7 - Schematic of the concept of online crystallography [25]. CRIMS is built upon three

modules: CRIMS-Lab for high-throughput crystallography experiment design, CRIMS-Connect for

automated data retrieval, and CRIMS-Pipedream (collaboration with GPhL) for automated data

processing. This combination speeds up the analysis of compound and fragment screening campaigns

and gives real-time access to the results.
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1.6. Project outline

New technologies for X-ray-based fragment screening have enabled the screen

of extensive fragment libraries: more than 1000 fragments per target and multiple

targets per year at a single facility. This opens up new opportunities for developing

chemical tools and translational research in the academic field and drug development in

the pharmaceutical industry. However, the increase of data generates the need for

efficient high-volume data processing. One of the problems in the field is that the

characteristics of the different datasets within a single project may vary in quality and

properties. However, current data processing pipelines use generic parameters for the

whole project. Therefore, they can not adapt to the properties of the specific datasets,

which affects the quality of the results and can hinder the identification of fragment hits.

The project aims to introduce novel approaches for data analysis to optimize

automated data processing associated with fragment screening at the HTX laboratory in

EMBL Grenoble. It involves architecture, design, and implementation of a new web

service as part of an effort to refactor and optimize data processing in CRIMS, the

software used at the HTX lab, and several other facilities in Europe for crystallographic

data management and analysis. The amount of data produced at this and other similar

facilities is rapidly increasing. This generates challenges in building efficient data

processing pipelines with sufficient capacity to process the data promptly and creates

new opportunities as large amounts of data from multiple projects are centralized in a

single infrastructure, allowing the introduction of advanced computing and machine

learning approaches. The current work focuses on refactoring the existing data

processing infrastructure by introducing a new service built upon an underlying graph

database. In addition, we approach graph databases to investigate their advantage over

relational databases in response to these particular data challenges:
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Figure 8 - CRIMS service-oriented architecture (SOA) structural components. The system operates

through small and lightweight services that execute specific and single functionalities. The application

encompasses seven main services: crystal manager, ISPyB checker (retrieves data from ESRF and

Petra-III synchrotron beamlines), SLS checker (retrieves data from the SLS synchrotron beamlines),

buster (data processing results and reference storage), ligands (data processing specifications and

ligands related data), dataset manager and dataset downloader. These services communicate to

provide full functionalities of CRIMS.
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● Frequent schema exchanges and adaptability of the data model

● Capacity to deal with the introduction of significant volumes of data.

● Data valence for future artificial intelligence applications, as graph databases

focus on relationships between data. New relationships can be easily explored

and implemented without the need for migrations.

The performance of a web application relies on a lot of factors. Relational

databases impact that performance:

● Changes to the data model are difficult to implement (require migrations).

● Efficient and suitable for integrity. However, new and unexpected relationships

between data may be difficult to mine and extract.

● Whenever multiple joins are needed, performance decreases.

Refactoring data processing in CRIMS is expected to be more critical with the

increased volumes of data generated, making performance a key factor. A faster

loading web service gets better user engagement. The speed optimization influences

conversion and usability of CRIMS. More efficient data processing improves user

experience (UX) [26], leading to higher productivity and impacting translational research

and drug design. Implementing a novel graph database prototype establishes the

general concepts and techniques that will allow the expansion and modification of

CRIMS data processing resources to meet new challenges in X-ray-based data

processing and analysis. The new prototype web service is expected to offer an initial

framework into which various other data sources, including additional data processing

software, could be incorporated.
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1.7. Project development strategy

1.7.1. Brainstorming

The first step was to elaborate a development strategy (Figure 9). We had to

decide goals and objectives, make the appropriate analysis associated with refactoring

data processing in CRIMS, and formulate a list of tasks. These steps were driven by

input from ALPX and GPhL, as they are in direct contact with users. Additional

information from the HTX facility members was taken into account. It included feedback

on organizing data processing output to ease the subsequent data analysis.

1.7.2. Planning and research

The next step was developing scheduled work and choosing the technologies

and tools to build suitable infrastructure services. We had to analyze the collected

requirements and create agile user stories [27] on that basis. This provided a general

explanation of the novel data processing service features written from the end-user's

perspective and articulated how a feature will give value to the user. This ensured a

user-oriented development process, enabled collaboration, and drove creative

solutions.

1.7.3. Design and prototyping

This phase involved the backend development of the novel data processing

service. First, we started implementing and prototyping the graph data model. Backend

development includes installing and configuring the content management systems,

database modeling, and frameworks. After completing all the steps in the strategy and

design phase, a preliminary prototype was framed and acted as a setup for subsequent

agile development.
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Figure 9 - Schematic of the project’s development strategy. Input from different stakeholders helped

shape the project’s strategy on different levels. Inputs from the ALPX, GPhL, and HTX teams were the

main pillars of the project. Their insights were later translated into agile user stories, paving the way for

setting up tasks to develop its features. Input from the PDBe-KB team provided insights on efficient graph

data modeling and implementation with Neo4j.

32



1.7.4. Development, data-driven testing, and optimization

Testing was an essential phase in the development process. It was performed to

ensure the user’s requirements after the implementation of the features. Current testing

strategies were data-driven. Representative data was transferred to emulate real-world

scenarios. The features of the written code were thus evaluated and validated, and

actions for removing bugs were taken.

2. Materials and methods

2.1. Architecture pattern

A set of factors drove the choice of the architecture pattern (Figure 10) [28].
These include infrastructure support, developer skillset, project deadlines, and

application size. The SOA style structures CRIMS as a collection of services that are:

highly maintainable and testable, loosely coupled, independently deployable, and

organized around business capabilities. The pattern was chosen for the following

reasons:

● CRIMS already implements an SOA pattern. It enables rapid, frequent, and

reliable delivery of large, complex applications such as the present. It also allows

an organization to evolve the technology stack.

● The pattern allows easier deployment through a practical and streamlined

delivery pipeline and a high degree of application and component decoupling

within the application.

2.2. Pattern topology

The API REST-based topology [28] was helpful in exposing small, self-contained

individual services through APIs. APIs are interfaces that allow machine-to-machine

communication. They helped solve problems by reducing the time and cost of

developing the service and increased the likelihood of producing effective software.
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Figure 10 - Trade-offs of different software architecture patterns [29]. The six most used patterns

(columns) are compared according to ten features (rows) on a star scale from 1 to 5 (1 is a poor resource

and 5 is an excellent resource).
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An API is a set of instructions on how two software can communicate. This

topology consists of service components that contain modules that perform specific

functions independent from the rest of the services. These service components are

accessed using a REST-based interface implemented through a separately deployed

web-based API layer.

2.3. Framework
2.3.1. Backend framework

Django [30] enabled the rapid development of a secure and maintainable

service. Three factors mainly drove the choice of the web framework:

● Database driver maintenance and performance. To build an application, we want

to connect to Neo4j from our technology stack. Fortunately, it is straightforward to

use a driver which connects to Neo4j via Bolt or HTTP.

● The framework was chosen based on the libraries it provides: Python reduces

development time, no need to reinvent the wheel.

● Skillset and available expertise inside the team.

2.3.2. Database management system
The novel data processing service was built upon the freely available graph

database Neo4j [31]. Like many other graph databases, it is built upon the property

graph model. Labeled nodes are connected via directed, typed relationships. Both

nodes and relationships hold arbitrary key-value pairs.

The graph data model was created using Arrows [32], a web-based tool for

drawing pictures of graphs for use in documents or presentations. It provides methods

to draw nodes, relationships, properties, and labels. In addition, the model can be

exported into multiple formats, such as Cypher. This makes it easier to create graphs in

a Neo4j database.
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Figure 11 - Underlying microservices of each CRIMS service. Each CRIMS service is packaged as

three Docker images: a database image, a server image, and an API image. Each image is deployed as a

microservice container instance. A | Currently, each service is built upon three microservices: a

PostgreSQL [33] database, an NGINX [34] web server - that can be used as a load balancer, and an

HTTP cache -, and a Laravel [35] API. B | The novel data processing service is built upon a Neo4j

database, an NGINX web server, and Django API.
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2.3.3. Data accessibility and representation
The database should be accessed through a technology stack. This is

implemented using a driver which connects to Neo4j via Bolt or HTTP. Neomodel [36] is

an Object Graph Mapping (OGM) for the Neo4j graph database. It enables mapping

nodes and relationships in the graph to objects and references in a domain model.

Neomodel includes standard Django model style definitions and enforces the schema

through cardinality restrictions.

The nodes that are fetched by the API are just instances of the defined model

classes. We want to return JavaScript Object annotatioN (JSON) files to the fetch calls

made in the frontend. We had to create our serialization methods and manage the logic

of those since sometimes we would need to serialize only the directly related nodes to a

specific node. Data serialization is the process of getting data from the object format to

a parseable format.

The Django REST framework [37] is a powerful and flexible toolkit for building

web APIs. It implements:

● Serialization that supports non-ORM data sources.

● Authentication policies, including packages for OAuth1a and OAuth2.

● Customizable, maintained, and extensively documented.

2.3.4. Containerization and deployment
Three Docker [38] images are available with all libraries and dependencies

(Neo4j, Nginx, and Django). It allows consistent development and deployment of the

code on an extensive range of systems. Docker is used to quickly and confidently

deploy working services and to scale horizontally. Each CRIMS service is packaged as

three Docker images (Figure 11): a database image, a server image, and an API image.

Each image is deployed as a microservice container instance.
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3. Results

3.1. CRIMS novel SOA

As shown in Figure 8, the existing “ligands service” database was built upon

PostgreSQL. It stores data related to data processing results/specifications and ligands

at once. This initial framework is the main target of the refactoring efforts. The aim of the

novel data processing service implementation is two-fold:

● It is meant to replace the “ligands service”: the database layer contains data

processing results/specifications without any data related to ligands.

● It sets the premises to the parallel implementation of another new service: “Data

processing scheduler.” The latter is expected to emulate a bridge between the

web servers and the data processing servers (Figure 12). First, all the

information needed is transferred from the novel data processing service and the

dataset manager service. Subsequently, data processing is then triggered

through the scripts stored on the data processing servers.

3.2. Graph data model construction

Amid the brainstorming sessions, we analyzed the collected requirements and

created several agile user stories (Figure 13). This provided means for expressing a

user-centered view of the service's needs and the questions that arise in satisfying this

need.

Suppose we take the example of the user story in Figure 13E. This story

expresses a user's need, which motivates the shape and content of our data model.

From a data modeling perspective, the "AS A" clause establishes a context comprising

two entities -a user and a data processing step-. The "I WANT" clause then poses a

question: which data processing step has the user launched and wishes to retrieve its

results?
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Figure 12 - CRIMS SOA new structural components. Two new services are expected to be added to

the system’s service stack. First, the novel data processing service (Graph database API) would store

everything related to data processing. Second, the “Data processing scheduler” would emulate a bridge

between the web and data processing servers. The service follows the same architecture presented in

Figure 11.
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This data model is a direct implementation of the question presented by the user

story. Thus, it allows queries that similarly reflect the structure of the question we want

to ask of the data. This helps identify entities and relationships in the produced model

(Figure 15).

The Velankar team manages the PDBe-KB (https://pdbe-kb.org), a

community-driven, collaborative resource for literature-derived, manually curated, and

computationally predicted structural and functional annotations of macromolecular

structure data, contained in the PDB. Considering that Neo4j powers PDBe-KB, we

fostered the collaboration between our team and the data bank team to get insights and

benefit from their expertise in graph database implementation.

The PDBe-KB team expressed that they ran into performance issues with graph

databases under certain specific conditions. They had to implement several caching

mechanisms to improve performance. The problem was usually seen when they

traversed multiple nodes to retrieve data rather than having many properties on a single

node. They collected data as it was sensible to view it in a graph rather than ensuring it

was organized, so querying was fast.

A case example was given as follows. When they wanted to get interactions

between amino acids in a complex, it was quicker to run software on a PDB entry than

to get the same data from the graph database. It involved joining lots of nodes: the

resulting query is about twenty lines long. Thus, the team is now experimenting with

extracting data from the graph database and loading it into a relational database table to

power their APIs. The trick here is to use the graph database to collate the data and

then provide it in a flat format for the relational database to load in a single table.

That said, the PDBe-KB team’s input helped shape our graph data model to

improve the end-performance of the novel data processing service. Two crucial points

highly impacted the modeling process:
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Figure 13 - Agile user stories collected from stakeholders. User needs and requirements generate

agile user stories. These are epic stories: they contain an abstract idea. Nevertheless, these stories

paved the way for setting up tasks to implement the business logic of the novel data processing service.

Equally, API implementation and graph data modeling were driven by these stories. User stories were

identified together with the stakeholders through face-to-face meetings.
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● Graph databases are better than relational databases for data mining. In the

case of the PBDe-KB team, they allowed collating data in ways that were just not

possible with relational databases.

● Graph databases are inadequate when querying multiple nodes and properties.

Relational databases are better when the data can be fit in well-formatted tables.

Based on this input, we changed the graph data modeling methods in a way that

optimized results. Whenever the transition from node properties to separate nodes is

possible, the changes were carried out. Furthermore, the development process is

heading towards using a hybrid data model: the graph database for data mining and the

relational database for collating the collected data in a flat-formatted table to speed up

data retrieval and visualization.

The Velankar team’s input was reflected in the early decisions we encountered,

such as whether to model data as a property on a node or as a relationship to a

separate node. For example, the data in Figure 14A models coordinate type as a

property on the coordinate node. To write a query, finding the type of coordinates is very

simple. It would find the coordinate node it wants to know about and then return the type

property values. However, to find out which coordinates share types, we would need a

much more complex query to find each coordinate node, loop through each of the types

in the property array, and compare each value in the second coordinates’ property array

of types. This would impact performance (nested looping and comparison of node

properties), and the query would be much more complex, as well. The code block in

Figure 14B is what the syntax would look like for each query. A shift in logic and

complexity of the loop in the second query appears.
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Figure 14 - Modelling data as a property on a node. A: the “coordinates” node has one property key

with two possible values: PDB and mmCIF. B: The first query enables you to find the type for particular

coordinates. The second query enables loop through “coordinates” nodes to find those that share the

same type.

Figure 15 - Modelling data as separate nodes. A: the coordinates and types are modelled as separate

nodes. B: The first query enables you to find the type for particular coordinates. The second query finds

the coordinates and the type they are related to, then looks for other coordinates that have the same type.
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Instead, if we were to model our coordinates and types as separate nodes and

create a relationship between the two, we would develop a model that looks something

like Figure 15A. This creates an entirely separate node for the type, allowing the

connection of all the coordinates with a shared type to that type node. This would

implicate changes in the queries. To find the types of particular coordinates, it first

needs to find the coordinate node it is looking for (in this case, 'Example file') and then

find the node connected to that file through the "IS" relationship. The difference is in the

syntax (Figure 15B) for the second query to find which coordinates share types. It is

much simpler than the earlier version because it uses a natural graph pattern

(entity-relationship-entity) to find the information needed. First, the query finds the

coordinates and the type they are related to then looks for the second file in that same

type.

Both versions of the data model are helpful. However, the optimal option

depends on the types of queries we intend to run against our data. For example, if we

plan to analyze individual items and return only details about that entity (like types on

particular coordinates), then the first data model would serve perfectly well for our

needs. However, if we need to identify common ground between entities or look at a

group of nodes, then the second data model would improve the performance of those

types of queries. The end goal was to enable future use of the novel data processing

service in data-mining approaches. Thus, we have implemented the second method in

the resulting data model (Figure 16).
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Figure 16 - Graph data model of the novel data processing service. The abstract model organizes

data elements and standardizes how they relate to one another and the properties of real-world entities.

The properties of each node are not provided in this schema for the sake of visibility. The current version

is the result of 11 rounds of modeling.

46



Agile user stories, input from developers, and data helped generate the latest

version of the graph data model shown in Figure 16 and described in Figure 17. It

encompasses 39 node types, eight relationship types, and approximately 250 property

keys. In addition, the database layer enables the storage of:

● Reflection data (MTZ files) and macromolecular coordinates (PDB and mmCIF

files).

● Reports generated from the Pipedream pipeline.

● Information about computation and storage hosts.

● Information about incoming datasets and relative data collection locations and

parameters.

● The type of each data processing step and the tool that enabled the step.

● Command-line options for each data processing software.

3.3. Data access layer implementation

Based on the data model mentioned above, the data access layer’s components

were implemented. REST services for the node and relationship models were

implemented using HTTP, which defines four request CRUD methods::

- GET: fetch the resource addressed by the URL.

- POST: send data to the URL and receive a response.

- PUT/PATCH: send a resource to be placed at the URL specified address.

- DELETE: discard the resource addressed by the URL.

As shown in Figure 18, the first set of instructions would enable the reception

and registration of data processing results. The second set of instructions would enable

the recovery of data processing results for the frontend display. The third set of

instructions would enable the recovery of data processing specifications and settings.
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Figure 17 - Database layer specifications of the novel data processing service. The layer is powered

by Neo4j (https://neo4j.com). The current version encompasses 39 node types, eight relationship types,

and approximately 250 property keys.
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Data-driven testing (Figure 19) using a sample JSON formatted data was carried

out to test the implemented instructions. Suppose we take the example of registering

data processing settings. The file contains information that would be directly transferred

to novel data processing service API gateways. JSON data would then be parsed and

stored inside the database layer. The features of the written code were thus evaluated

and validated, and actions for removing bugs were taken. We successfully registered

data processing settings related to datasets, users, storage host, computation host,

data collection, and construct in the given example. When a POST request was

prompted to the ‘’/storeInput’’ URL with the sample data (Figure 19A), nodes and

properties were created accordingly inside the database layer (Figure 19B).

4. Discussions
Since the first implementation of the service, the data model shifted and will keep

shifting to meet new requirements. Rigid schemas and complex modeling processes

imposed by relational databases portray them as a bad fit for the rate at which data

changes over time (data velocity) in this application. To maintain the integrity of the

data, the solution required a data model that did not sacrifice performance and

supported ongoing evolution. The relational database is considered an adequate tool if

the application is well-understood with minimal data model changes. In the case of

refactoring data processing in CRIMS, the path led somewhere else. We were

trail-blazing into uncharted territory. In the beginning, we could not have established a

plan for a database with all the correct answers because user requirements evolved

alongside CRIMS. We needed a data model that's agile and grows alongside

development without lagging.

The capacity to deal with data volume is another critical driver behind CRIMS

adoption of the graph database. In particular, query execution times increased as the

size of tables and the number of JOINs grew. This is not always the defect of the

relational databases themselves, however. Instead, it has to do with the underlying data

model. The graph database came in great help to avoid JOIN pain as it puts

relationships at the center [39].
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Figure 18 - Layers and interactions of the novel data processing service. An API gateway gives a

single entry point and provides an interface to access data, logic, or functionality from back-end services

[40]. For example, the current version of the novel data processing service operates through an API

gateway. The first set of instructions would enable the reception and registration of data processing

results. The second set of instructions would enable the recovery of data processing results for the

frontend display. Finally, the third set of instructions would enable the recovery of data processing

specifications and settings.
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Data acquisition is often experimental. In some cases, the service captured

temporary data points intended for future use. The data that proved to be valuable to

the service was usually kept around, but those data points often fell by the wayside if it

was not worthwhile. Consequently, these experimental additions and eliminations

affected the data model regularly. Both forms of data velocity are problematic for

relational databases to handle. Frequently high write loads come with expensive

processing costs, and regular data structure changes come with high operational costs.

Graph databases address these challenges by having more flexible data models.

The valence of a data point is measured as the ratio of connections to the total

number of possible connections. The more connections within the data point, the higher

its valence. Over time, highly dense data networks tend to develop, growing both the big

data and its complexity. This is significant because dense yet unevenly connected data

is difficult to unpack and explore with traditional analytics, such as those based on

relational DBMS data stores. In the novel data processing service, the graph database

sets the premises for applying artificial intelligence methods. They will be expressed as

the most populated path between input data and high-quality results. This will help

auto-generate optimal command lines ("paths") for data processing based on quality

metrics for the datasets that need to be processed.
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Figure 19 - Data-driven testing for handling the registration of data processing settings. A: JSON

sample data contains information about the nodes (user, construct, dataset, computation host, storage

host, and data collection) and key-value properties required to be registered in the graph database. The

data was transferred to the novel data processing service and successfully registered in the database

layer. B: visualization of the created nodes in the Neo4j browser.
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5. Conclusions and perspectives
The novel data processing service prototype went through significant changes

even in mid-development. Nevertheless, we have successfully prototyped graph data to

support automated data processing. While other parts of the data processing service

will have to be refactored as part of a long term ongoing project in the laboratory, we

could already see that the graph database technology has shown to be efficient,

particularly in response to these four data challenges: adaptability of the underlying data

model, data volume, data testing, and data valence.

● We have successfully built a prototype microservice based on using a graph

database to support fragment screening data processing and analysis. Based on

the abovementioned results, the graph data model has been validated as a good

fit for the novel data processing service with advantages over the existing

relational database system. The graph database technology helped us overcome

the rapid change of specific data points and the rapid change of the data model

itself. Furthermore, the flexibility of the graph data model allowed us to add new

nodes and relationships without compromising the existing network.

● We have achieved a significant step in refactoring the CRIMS infrastructure for

fragment screening data analysis through this work. In the future, the use of this

technology will allow us to introduce machine learning approaches into our

pipelines to optimize automated data processing. For example, the graph

database can be queried to unravel the most used and most efficient command

lines to run the data processing software.

● As a consequence of this study, future versions of CRIMS will integrate the graph

database technology for data processing and will probably be extended to other

areas. Additionally, the novel infrastructure sets the premises for integrating other

data processing software other than Pipedream.
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Consequently, a graph database has shown superior results over a relational

database in this application, providing appropriate performance in terms of volume and

velocity and excellent results in testing [41]. Nevertheless, understanding how NoSQL

databases overcome these challenges is only the prelude to finding the proper

database implementation for a given use case.
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7. Supplementary data

7.1. Project source code
The novel data processing source code is available in the following public GitLab

repository: https://gitlab.com/Yorgomoubayed/master-thesis.git

7.2. Data processing

7.2.1. Data reduction and indexing
The autoPROC framework encloses several third-party programs that help users

navigate various steps from images to a fully processed, scaled, and merged dataset.

The modules that put together this framework are intended as an offline tool for fully

automatic processing diffraction images from experiments. The typical steps during this

process involve:

● Image analysis, spot search, and indexing.

● Analysis of diffraction quality and detector parameters.

● Refinement of initial unit-cell parameters.

● Determination of the most likely space group.

● Integration of all images.

● Scaling and merging of integrated intensities.

7.2.2. Molecular replacement
Phaser automates phasing macromolecular crystal structures by both molecular

replacement and experimental phasing methods. The phasing algorithms implemented

in Phaser have been developed using maximum likelihood and multivariate statistics.

The algorithms have proved to be significantly better for molecular replacement than

traditional methods in discriminating correct solutions from noise. In addition, the new

algorithms give optimal phases with low mean phase error for the phases given by the

refined structure for single-wavelength anomalous dispersion experimental phasing.
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Figure 20 - Schematic of Pipedream’s decision tree [42]. The user either inputs unprocessed image

datasets or MTZ output from preprocessed image datasets. Image datasets are processed with

autoPROC, and MTZ files are checked for reduction. After indexing check, processing goes through

Phaser then Buster. If no ligands fit, Rhofit is run until an adequate ligand is found. Once a ligand is fit, the

pipeline output is generated. A subsequent refinement step of the optimal ligand solution is performed for

better results.
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7.1.3. Structure refinement
BUSTER is a maximum-likelihood macromolecular refinement package. It

assembles the structural model, scales observed and calculated structure-factor

amplitudes, and computes the model likelihood. Additionally, it models the parts of the

structure for which an atomic model is not yet available as low-resolution probability

distributions for the random positions of the missing atoms. BUSTER handles a variety

of cases typical for macromolecular refinement:

● Protein structures with or without ligands or co-factors.

● DNA and RNA structures.

● High- and low-resolution structures.

● Presence of non-crystallographic symmetry.

● Already well-refined structures or structures near the beginning of the refinement

process.

7.1.4. Automated ligand fitting
Rhofit is for fitting ligands into different densities. It can change bond lengths and

angles within the ligand. The tool enables:

● Searches for correct ring conformations, including macrocycles.

● Searches for the correct chirality if this is not known for an input ligand.

● It uses the gelly geometry function to assess ligand strain and protein-ligand

contacts, so its results will be compatible with further BUSTER refinement.

● Runs a large number of independent tests and selects the best solutions that it

finds.
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Abstract
Recent developments in X-ray-based fragment screening are making significant

contributions to the structure-based drug design process. However, they also produce a

steep increase in data generated and new needs for data processing and analysis

infrastructure. This project aimed to design, implement and validate a new module for

automated fragment screening data processing based on a graph database for future

integration into the CRIMS infrastructure. This has led to the successful implementation

of a novel graph database and associated services, establishing the general concepts

and techniques that will enable the expansion and refactoring of CRIMS data

processing resources to meet the new requirements. In addition, the service is expected

to offer an initial framework into which various other data sources, including additional

data processing software, could be incorporated and open the way to implement

advanced computing technologies, including machine learning approaches.

Keywords
Crystallography, high-throughput crystallization, structural biology, fragment screening,

drug design, drug discovery, data processing, service-oriented architecture, graph

databases, RESTful API.
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