Skip to content
Snippets Groups Projects
api.py 4.16 KiB
Newer Older
from fastapi import FastAPI, HTTPException

from model_server.ilastik import IlastikImageToImageModel, IlastikPixelClassifierModel, IlastikObjectClassifierModel
from model_server.model import DummyImageToImageModel, ParameterExpectedError
from model_server.workflow import infer_image_to_image
from model_server.workflow_ilastik import infer_px_then_ob_model
session = Session()

@app.on_event("startup")
def startup():
    pass

@app.get('/')
def read_root():
    return {'success': True}
def list_bounce_back(par1=None, par2=None):
    return {'success': True, 'params': {'par1': par1, 'par2': par2}}

@app.get('/paths')
def list_session_paths():
def restart_session(root: str = None) -> dict:
    session.restart(root=root)
@app.get('/models')
def list_active_models():
def load_dummy_model() -> dict:
    return {'model_id': session.load_model(DummyImageToImageModel)}
def load_ilastik_model(model_class: IlastikImageToImageModel, project_file: str, duplicate=True) -> dict:
    """
    Load an ilastik model of a given class and project filename.
    :param model_class:
    :param project_file: (*.ilp) ilastik project filename
    :param duplicate: load another instance of the same project file if True; return existing one if false
    :return: dictionary with single key describing model's ID
    """
    if not duplicate:
        existing_model = session.find_param_in_loaded_models('project_file', project_file)
        if existing_model is not None:
            return existing_model
    try:
        result = {
            'model_id': session.load_model(
                model_class,
                {'project_file': project_file}
            )
        }
    except (FileNotFoundError, ParameterExpectedError):
        raise HTTPException(
            status_code=404,
            detail=f'Could not load project file {project_file}',
        )
    return result

@app.put('/models/ilastik/pixel_classification/load/')
def load_ilastik_pixel_classification_model(project_file: str, duplicate: bool = True) -> dict:
    return load_ilastik_model(IlastikPixelClassifierModel, project_file, duplicate=duplicate)
def load_ilastik_object_classification_model(project_file: str, duplicate: bool = True) -> dict:
    return load_ilastik_model(IlastikObjectClassifierModel, project_file, duplicate=duplicate)
def validate_workflow_inputs(model_ids, inpaths):
    for mid in model_ids:
        if mid not in session.describe_loaded_models().keys():
            raise HTTPException(
                status_code=409,
                detail=f'Model {mid} has not been loaded'
            )
    for inpa in inpaths:
        if not inpa.exists():
            raise HTTPException(
                status_code=404,
                detail=f'Could not find file:\n{inpa}'
            )

@app.put('/infer/from_image_file')
def infer_img(model_id: str, input_filename: str, channel: int = None) -> dict:
    inpath = session.paths['inbound_images'] / input_filename
        session.paths['outbound_images'],
    return record

@app.put('/models/ilastik/pixel_then_object_classification/infer')
def infer_px_then_ob_maps(px_model_id: str, ob_model_id: str, input_filename: str, channel: int = None) -> dict:
    inpath = session.paths['inbound_images'] / input_filename
    validate_workflow_inputs([px_model_id, ob_model_id], [inpath])
    try:
        record = infer_px_then_ob_model(
            inpath,
            session.models[px_model_id]['object'],
            session.models[ob_model_id]['object'],
            session.paths['outbound_images'],
            channel=channel
        )
    except AssertionError:
        raise HTTPException(f'Incompatible models {px_model_id} and/or {ob_model_id}')