Skip to content
Snippets Groups Projects
verify_multichannel_ilastik_inputs.py 4.79 KiB
Newer Older
from pathlib import Path

import h5py
import numpy as np
import pandas as pd

from base.accessors import generate_file_accessor, write_accessor_data_to_file, InMemoryDataAccessor
from extensions.ilastik.models import IlastikPixelClassifierModel, IlastikObjectClassifierFromPixelPredictionsModel

def get_input_files(where_ilp: Path) -> list:
    files = []
    with h5py.File(where_ilp, 'r') as h5:
        infos = h5['Input Data/infos']
        for lane in infos.keys():
            lane_dict = {}
            for role in infos[lane].keys():
                if len(infos[lane][role]) == 0:
                    continue
                rel_path = Path(infos[lane][role]['filePath'][()].decode())
                lane_dict[role] = where_ilp.parent / rel_path
            files.append(lane_dict)
    return files

if __name__ == '__main__':
    where_out = Path('c:/Users/rhodes/projects/proj0015-model-server/issues/0032_multiple_input_channels/output')
    root = Path('w:/03_analysis/Trial3_LSM900')
    max_files = 1
    ilps = [
        '01_ilastik_files/relpath_240301_LSM900_DNA_PC.ilp',
        '01_ilastik_files/relpath_240320_LSM900_DNA_OC_new.ilp',
        '01_ilastik_files/relpath_240301_LSM900_TM_PC.ilp',
        '01_ilastik_files/relpath_240320_LSM900_TM_OC_new.ilp'
    ]
    records = []
    for f in ilps:
        ilp = root / f
        assert ilp.exists()
        outdir = where_out / ilp.stem
        outdir.mkdir(parents=True, exist_ok=True)

        if ilp.stem.upper().endswith('_PC'):
            mod = IlastikPixelClassifierModel(
                params={'project_file': str(ilp)},
                enforce_embedded=False
            )
            infiles = get_input_files(ilp)
            for ln in infiles[0:max_files]:
                acc_raw = generate_file_accessor(root / ln['Raw Data'])
                pxmap = mod.infer(acc_raw)[0]
                pxmap_fn = 'pxmap_' + ln['Raw Data'].stem + '.tif'
                write_accessor_data_to_file(outdir / pxmap_fn, pxmap)
                record = {
                    'classifier': str(ilp.relative_to(root)),
                    'input_raw_data': str(ln['Raw Data'].relative_to(root)),
                    'input_raw_data_chroma': acc_raw.chroma,
                    'input_raw_data_dtype': acc_raw.dtype,
                    'input_raw_data_shape_dict': acc_raw.shape_dict,
                    'output_file': pxmap_fn,
                    'output_dtype': pxmap.dtype,
                    'output_chroma': pxmap.chroma,
                    'output_shape_dict': pxmap.shape_dict,
                }
                records.append(record)

        elif ilp.stem.upper().endswith('_OC_NEW'):
            mod = IlastikObjectClassifierFromPixelPredictionsModel(
                params={'project_file': str(ilp)},
                enforce_embedded=False
            )
            infiles = get_input_files(ilp)
            for ln in infiles[0:max_files]:
                acc_raw = generate_file_accessor(root / ln['Raw Data'])
                pa_pxmap = root / ln['Prediction Maps']

                if pa_pxmap.parts[-2].upper().endswith('.H5'):
                    pa_h5f = root / Path(*pa_pxmap.parts[0:-1])
                    h5_key = pa_pxmap.parts[-1]
                    pxmap_data = h5py.File(pa_h5f)[h5_key][()] # C x Y x X ?
                    pxmap_yxc = np.moveaxis(
                        pxmap_data,
                        [1, 2, 0],
                        [0, 1, 2]
                    )
                    acc_pxmap = InMemoryDataAccessor(np.expand_dims(pxmap_yxc, -1))
                else:
                    acc_pxmap = generate_file_accessor(pa_pxmap)
                obmap = mod.infer(acc_raw, acc_pxmap)[0]
                obmap_fn = 'obmap_' + ln['Raw Data'].stem + '.tif'
                write_accessor_data_to_file(outdir / obmap_fn, obmap)
                record = {
                    'classifier': str(ilp.relative_to(root)),
                    'input_raw_data': str(ln['Raw Data'].relative_to(root)),
                    'input_raw_data_chroma': acc_raw.chroma,
                    'input_raw_data_dtype': acc_raw.dtype,
                    'input_raw_data_shape_dict': acc_raw.shape_dict,
                    'input_pxmap': str(ln['Prediction Maps'].relative_to(root)),
                    'input_pxmap_chroma': acc_pxmap.chroma,
                    'input_pxmap_dtype': acc_pxmap.dtype,
                    'input_pxmap_shape_dict': acc_pxmap.shape_dict,
                    'output_file': obmap_fn,
                    'output_dtype': obmap.dtype,
                    'output_chroma': obmap.chroma,
                    'output_shape_dict': obmap.shape_dict,
                }
                records.append(record)

        else:
            raise Exception(f'unidentified project file {ilp}')

    pd.DataFrame(records).to_csv(where_out / 'record.csv', index=False)
    print('Finished')