Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SVLT
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ALMF
SVLT
Commits
3e8ca3db
Commit
3e8ca3db
authored
1 year ago
by
Christopher Randolph Rhodes
Browse files
Options
Downloads
Patches
Plain Diff
Moved dataframe logic outside of constructor; losing alignment of patch stacks df
parent
8fef2d8d
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
model_server/extensions/chaeo/tests/test_zstack.py
+5
-5
5 additions, 5 deletions
model_server/extensions/chaeo/tests/test_zstack.py
model_server/extensions/chaeo/zmask.py
+83
-37
83 additions, 37 deletions
model_server/extensions/chaeo/zmask.py
with
88 additions
and
42 deletions
model_server/extensions/chaeo/tests/test_zstack.py
+
5
−
5
View file @
3e8ca3db
...
...
@@ -123,16 +123,16 @@ class TestZStackDerivedDataProducts(unittest.TestCase):
id_map
=
get_label_ids
(
self
.
seg_mask
)
roiset
=
RoiSet
(
id_map
,
self
.
stack_ch_pa
,
params
=
RoiSetMetaParams
(
mask_type
=
'
boxes
'
))
df
=
roiset
.
df
df
=
roiset
.
get_df
(
filters
=
None
)
from
model_server.extensions.chaeo.zmask
import
project_stack_from_focal_points
dff
=
df
[
df
[
'
keeper
'
]]
#
dff = df[df['keeper']]
img
=
project_stack_from_focal_points
(
df
f
[
'
centroid-0
'
].
to_numpy
(),
df
f
[
'
centroid-1
'
].
to_numpy
(),
df
f
[
'
zi
'
].
to_numpy
(),
df
[
'
centroid-0
'
].
to_numpy
(),
df
[
'
centroid-1
'
].
to_numpy
(),
df
[
'
zi
'
].
to_numpy
(),
self
.
stack
,
degree
=
4
,
)
...
...
This diff is collapsed.
Click to expand it.
model_server/extensions/chaeo/zmask.py
+
83
−
37
View file @
3e8ca3db
...
...
@@ -15,7 +15,7 @@ from model_server.base.process import pad, rescale, resample_to_8bit
from
model_server.extensions.chaeo.annotators
import
draw_boxes_on_3d_image
from
model_server.extensions.chaeo.products
import
export_patches_from_zstack
,
export_multichannel_patches_from_zstack
from
extensions.chaeo.params
import
RoiSetMetaParams
,
RoiSetExportParams
from
extensions.chaeo.params
import
RoiFilter
,
RoiSetMetaParams
,
RoiSetExportParams
from
model_server.extensions.chaeo.accessors
import
MonoPatchStack
from
model_server.extensions.chaeo.process
import
mask_largest_object
from
model_server.extensions.chaeo.products
import
get_patches_from_zmask_meta
,
get_patch_masks
,
export_patch_masks_from_zstack
...
...
@@ -32,17 +32,57 @@ class RoiSet(object):
acc_raw
:
GenericImageDataAccessor
,
params
:
RoiSetMetaParams
=
RoiSetMetaParams
(),
):
# parse filters
filters
=
params
.
filters
query_str
=
'
label > 0
'
# always true
if
filters
is
not
None
:
for
k
,
val
in
filters
.
dict
(
exclude_unset
=
True
).
items
():
assert
k
in
(
'
area
'
,
'
solidity
'
)
vmin
=
val
[
'
min
'
]
vmax
=
val
[
'
max
'
]
assert
vmin
>=
0
query_str
=
query_str
+
f
'
&
{
k
}
>
{
vmin
}
&
{
k
}
<
{
vmax
}
'
# # parse filters
# filters = params.filters
# query_str = 'label > 0' # always true
# if filters is not None:
# for k, val in filters.dict(exclude_unset=True).items():
# assert k in ('area', 'solidity')
# vmin = val['min']
# vmax = val['max']
# assert vmin >= 0
# query_str = query_str + f' & {k} > {vmin} & {k} < {vmax}'
#
# # build dataframe of objects, assign z index to each object
# argmax = acc_raw.data.argmax(axis=3, keepdims=True)[:, :, 0, 0].astype('uint16')
# df = (
# pd.DataFrame(
# regionprops_table(
# acc_obj_ids,
# intensity_image=argmax,
# properties=('label', 'area', 'intensity_mean', 'solidity', 'bbox', 'centroid')
# )
# )
# .rename(
# columns={'bbox-0': 'y0', 'bbox-1': 'x0', 'bbox-2': 'y1', 'bbox-3': 'x1',}
# )
# )
# df['zi'] = df['intensity_mean'].round().astype('int')
# df['keeper'] = False
# df.loc[df.query(query_str).index, 'keeper'] = True
# self.df = df
# remaining zmask_meta write ops
self
.
acc_obj_ids
=
acc_obj_ids
self
.
acc_raw
=
acc_raw
self
.
_df
=
self
.
make_df
(
self
.
acc_raw
,
self
.
acc_obj_ids
)
# remaining zmask_meta write ops
self
.
zmask_meta
,
_
,
self
.
interm
=
build_zmask_from_object_mask
(
acc_obj_ids
,
acc_raw
,
self
.
get_df
(
filters
=
params
.
filters
),
params
=
params
,
)
self
.
count
=
len
(
self
.
zmask_meta
)
self
.
object_id_labels
=
self
.
interm
[
'
label_map
'
]
self
.
object_class_map
=
None
@staticmethod
def
make_df
(
acc_raw
,
acc_obj_ids
):
# build dataframe of objects, assign z index to each object
argmax
=
acc_raw
.
data
.
argmax
(
axis
=
3
,
keepdims
=
True
)[:,
:,
0
,
0
].
astype
(
'
uint16
'
)
df
=
(
...
...
@@ -54,27 +94,26 @@ class RoiSet(object):
)
)
.
rename
(
columns
=
{
'
bbox-0
'
:
'
y0
'
,
'
bbox-1
'
:
'
x0
'
,
'
bbox-2
'
:
'
y1
'
,
'
bbox-3
'
:
'
x1
'
,}
columns
=
{
'
bbox-0
'
:
'
y0
'
,
'
bbox-1
'
:
'
x0
'
,
'
bbox-2
'
:
'
y1
'
,
'
bbox-3
'
:
'
x1
'
,
}
)
)
df
[
'
zi
'
]
=
df
[
'
intensity_mean
'
].
round
().
astype
(
'
int
'
)
df
[
'
keeper
'
]
=
False
df
.
loc
[
df
.
query
(
query_str
).
index
,
'
keeper
'
]
=
True
self
.
df
=
df
return
df
# remaining zmask_meta write ops
self
.
zmask_meta
,
_
,
self
.
interm
=
build_zmask_from_object_mask
(
acc_obj_ids
,
acc_raw
,
df
,
params
=
params
,
)
self
.
acc_obj_ids
=
acc_obj_ids
self
.
acc_raw
=
acc_raw
self
.
count
=
len
(
self
.
zmask_meta
)
self
.
object_id_labels
=
self
.
interm
[
'
label_map
'
]
self
.
object_class_map
=
None
def
get_df
(
self
,
filters
:
RoiFilter
=
None
)
->
pd
.
DataFrame
:
query_str
=
'
label > 0
'
# always true
if
filters
is
not
None
:
# parse filters
for
k
,
val
in
filters
.
dict
(
exclude_unset
=
True
).
items
():
assert
k
in
(
'
area
'
,
'
solidity
'
)
vmin
=
val
[
'
min
'
]
vmax
=
val
[
'
max
'
]
assert
vmin
>=
0
query_str
=
query_str
+
f
'
&
{
k
}
>
{
vmin
}
&
{
k
}
<
{
vmax
}
'
# df.loc[df.query(query_str).index, 'keeper'] = True
return
self
.
_df
.
loc
[
self
.
_df
.
query
(
query_str
).
index
,
:]
def
add_df_col
(
self
,
name
,
se
:
pd
.
Series
)
->
None
:
self
.
_df
[
name
]
=
se
def
get_multichannel_projection
(
self
):
# TODO: document and test
dff
=
self
.
df
[
self
.
df
[
'
keeper
'
]]
...
...
@@ -121,7 +160,7 @@ class RoiSet(object):
def
get_slices
(
self
):
return
[
zm
.
slice
for
zm
in
self
.
zmask_meta
]
def
get_zmask
(
self
,
mask_type
=
'
boxes
'
):
def
get_zmask
(
self
,
mask_type
=
'
boxes
'
,
filters
:
RoiFilter
=
None
):
"""
Return a mask of same dimensionality as raw data
...
...
@@ -135,7 +174,8 @@ class RoiSet(object):
# make an object map where label is replaced by focus position in stack and background is -1
lut
=
np
.
zeros
(
lamap
.
max
()
+
1
)
-
1
lut
[
self
.
df
.
label
]
=
self
.
df
.
zi
df
=
self
.
get_df
(
filters
=
filters
)
lut
[
df
.
label
]
=
df
.
zi
if
mask_type
==
'
contours
'
:
zi_map
=
(
lut
[
lamap
]
+
1.0
).
astype
(
'
int
'
)
...
...
@@ -157,24 +197,30 @@ class RoiSet(object):
return
zi_st
def
classify_by
(
self
,
channel
,
object_classification_model
:
InstanceSegmentationModel
):
def
classify_by
(
self
,
channel
,
object_classification_model
:
InstanceSegmentationModel
,
filters
:
RoiFilter
=
None
):
# adds a column to self._df
# do this on a patch basis, i.e. only one object per frame
obmap_patches
=
object_classification_model
.
label_instance_class
(
self
.
get_raw_patches
(
channel
),
self
.
get_raw_patches
(
channel
),
# TODO: enforce df index
self
.
get_patch_masks
()
)
lamap
=
self
.
object_id_labels
om
=
np
.
zeros
(
lamap
.
shape
,
dtype
=
lamap
.
dtype
)
self
.
df
[
'
instance_class
'
]
=
np
.
nan
# self.df['instance_class'] = np.nan
df
=
self
.
get_df
(
filters
=
filters
)
idx
=
df
.
index
se
=
pd
.
Series
(
data
=
np
.
nan
,
index
=
idx
)
# assign labels to object map:
for
ii
in
range
(
0
,
self
.
count
):
object_id
=
self
.
zmask_meta
[
ii
][
'
info
'
].
label
result_patch
=
mask_largest_object
(
obmap_patches
.
iat
(
ii
))
for
i
in
idx
:
# object_id = self.zmask_meta[i]['info'].label
object_id
=
df
.
loc
[
i
,
'
label
'
]
result_patch
=
mask_largest_object
(
obmap_patches
.
iat
(
i
))
object_class
=
np
.
unique
(
result_patch
)[
1
]
om
[
self
.
object_id_labels
==
object_id
]
=
object_class
se
lf
.
df
[
object_id
,
'
instance_class
'
]
=
object_class
se
.
loc
[
i
]
=
object_class
self
.
object_class_map
=
InMemoryDataAccessor
(
om
)
...
...
@@ -262,7 +308,7 @@ def build_zmask_from_object_mask(
h
,
w
,
c
,
nz
=
zstack
.
shape
meta
=
[]
for
ob
in
df
[
df
[
'
keeper
'
]]
.
itertuples
(
name
=
'
LabeledObject
'
):
for
ob
in
df
.
itertuples
(
name
=
'
LabeledObject
'
):
y0
=
max
(
ob
.
y0
-
ebxy
,
0
)
y1
=
min
(
ob
.
y1
+
ebxy
,
h
)
x0
=
max
(
ob
.
x0
-
ebxy
,
0
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment