Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • bogdanow/embl_hpc
  • grp-bio-it-workshops/embl_hpc
2 results
Show changes
Commits on Source (34)
Showing
with 415 additions and 9 deletions
.odp#
*.odp#
## Instructional Material
This instructional material is
made available under the [Creative Commons Attribution
license][cc-by-human]. The following is a human-readable summary of
(and not a substitute for) the [full legal text of the CC BY 4.0
license][cc-by-legal].
You are free:
* to **Share**---copy and redistribute the material in any medium or format
* to **Adapt**---remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the
license terms.
Under the following terms:
* **Attribution**---You must give appropriate credit (mentioning that
your work is derived from work that is Copyright © European Molcular Biology Laboratory,
provide a [link to the
license][cc-by-human], and indicate if changes were made. You may do
so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.
**No additional restrictions**---You may not apply legal terms or
technological measures that legally restrict others from doing
anything the license permits. With the understanding that:
Notices:
* You do not have to comply with the license for elements of the
material in the public domain or where your use is permitted by an
applicable exception or limitation.
* No warranties are given. The license may not give you all of the
permissions necessary for your intended use. For example, other
rights such as publicity, privacy, or moral rights may limit how you
use the material.
## Software
Except where otherwise noted, the example programs
provided by the European Molecular Biology Laboratory are made available under the
[OSI][osi]-approved
[MIT license][mit-license].
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
[cc-by-human]: https://creativecommons.org/licenses/by/4.0/
[cc-by-legal]: https://creativecommons.org/licenses/by/4.0/legalcode
[mit-license]: https://opensource.org/licenses/mit-license.html
[ci]: http://communityin.org/
[osi]: https://opensource.org
......@@ -2,9 +2,16 @@
# Intro
Teaching material used during the High Performance Computing session of the EMBL Software Carpentry course.
Teaching material for cluster computing course at EMBL.
# Commands
Directory structure:
- `novice/`: material for the EMBL-internal Bio-IT course, _Introduction to Cluster Computing at EMBL_
- `intermediate/`: material for the EMBL-internal Bio-IT course, _Intermediate Cluster Computing_
- `swc/`: material for the HPC session of [Software Carpentry](https://software-carpentry.org/) workshops run at EMBL
Each of the above directories has an `exercises/` subdirectory, containing files needed for exercises during the course.
# Commands (for EMBL Cluster)
Below are most of the commands used during the practical, so they can be copy/pasted, but I highly recommend typing along if you can.
......@@ -16,7 +23,7 @@ ssh <username>@login.cluster.embl.de
## Clone this git repository
```
git clone https://git.embl.de/msmith/embl_hpc.git
git clone https://git.embl.de/grp-bio-it/embl_hpc.git
```
## Identifying our computer
......@@ -46,13 +53,13 @@ srun ./hpc_example -t 10 -m 100
## Using our reserved training space
```
srun --­­reservation=training ./hpc_example -­t 10 -­m 100
srun --reservation=training ./hpc_example -t 10 -m 100
```
## Running in the background
```
sbatch ­­--reservation=training ./batch_job.sh
sbatch --reservation=training ./batch_job.sh
```
## Redirecting output
......@@ -93,8 +100,8 @@ scancel -u <username>
## Defining time limits
```
sbatch ­­--time=00­00:00:30 \
­­--reservation=training \
sbatch ­­--time=00 00:00:30 \
--reservation=training \
batch_job.sh 60 500
```
......@@ -105,7 +112,7 @@ seff <jobID>
## Emailing output
```
sbatch ­­--mail­user=<first.last>@embl.de \
sbatch ­­--mail-user=<first.last>@embl.de \
­­--reservation=training \
./batch_job.sh 20 500
```
......@@ -120,7 +127,7 @@ module load BWA
## BWA example
```
nano bwa/bwa_batch.sh
sbatch ­­­­--reservation=training bwa/bwa_batch.sh
sbatch --reservation=training bwa/bwa_batch.sh
```
## Running interactive jobs
......
File deleted
File added
File added
#!/bin/bash
#SBATCH -J bwa
#SBATCH --time=00-00:06:00
#SBATCH --mem=4000M
#SBATCH --nodes=1
#SBATCH --tmp=1G
#SBATCH --gres=tmp:1G
#SBATCH --output=bwa.out
#SBATCH --open-mode=append
## load required modules
module load SAMtools BWA
## copy data to /tmp and change directory to /tmp
cp /g/its/home/pecar/benchmarks/msmith_bwa/Ecoli_genome.fa.gz $TMPDIR
cp /g/its/home/pecar/benchmarks/msmith_bwa/reads_*.fq.gz $TMPDIR
cd $TMPDIR
## create an index
bwa index -p ecoli Ecoli_genome.fa.gz
## perform alignment
bwa mem -t $SLURM_CPUS_PER_TASK ecoli reads_1.fq.gz reads_2.fq.gz > aligned.sam
## create a compressed BAM file
samtools view -b aligned.sam > aligned.bam
## copy results back to where job was submitted from
cp aligned.bam $SLURM_SUBMIT_DIR/
#!/bin/bash
#SBATCH -J gromacs
#SBATCH -N 1
#SBATCH -c 8
#SBATCH --hint=nomultithread
#SBATCH -C avx
#SBATCH -t 04:00
module load GROMACS/2018.1-foss-2017b
cp /g/its/home/pecar/benchmarks/pchen_gromacs/1OVA-AB.tpr $TMPDIR
cd $TMPDIR
gmx mdrun -s 1OVA-AB.tpr -nsteps 5000 -ntmpi 1
tail -5 md.log
#!/bin/bash
#SBATCH -J gromacs_gpu
#SBATCH -N 1
#SBATCH -c 4
#SBATCH -p gpu
#SBATCH --gres=gpu:1
#SBATCH -C gpu=1080Ti
#SBATCH -t 02:00
module load GROMACS/2018.1-foss-2017b-CUDA-9.1.85
cp /g/its/home/pecar/benchmarks/pchen_gromacs/1OVA-AB.tpr $TMPDIR
cd $TMPDIR
time gmx mdrun -s 1OVA-AB.tpr -nsteps 5000 -ntmpi 1 -nb gpu
tail -5 md.log
#!/bin/bash
#SBATCH -J gromacs_mpi
#SBATCH -N 1
#SBATCH -n 24
#SBATCH -c 2
#SBATCH -t 01:00
module load GROMACS/2018.1-foss-2017b
cp /g/its/home/pecar/benchmarks/pchen_gromacs/1OVA-AB.tpr $TMPDIR
cd $TMPDIR
#mpirun takes all info from slurm
mpirun gmx_mpi mdrun -s 1OVA-AB.tpr -nsteps 5000
tail -5 md.log
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 4
#SBATCH --mem 4000
#SBATCH -t 0-00:03:00
#SBATCH --array=0-191:10%5
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,"$SLURM_ARRAY_TASK_ID","$((SLURM_ARRAY_TASK_ID+10))",0,0',numWorkers='8'"
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Array $SLURM_ARRAY_TASK_ID took $ELAPSED_TIME seconds."
#!/bin/bash
#SBATCH -n 12
#SBATCH -c 4
#SBATCH --ntasks-per-node=1
#SBATCH --mem 16000
#SBATCH -t 0-00:10:00
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
srun -n 12 --ntasks-per-node=1 cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
srun -n 12 --ntasks-per-node=1 cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,0,16,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,17,32,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,33,48,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,49,64,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,65,80,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,81,96,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,97,104,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,105,120,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,121,137,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,138,165,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,166,183,0,0',numWorkers='12'" &
srun -n 1 /g/almf/software/Fiji.app/ImageJ-linux64 --mem=16000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,184,200,0,0',numWorkers='12'" &
wait
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Elapsed time on `hostname` with $SLURM_CPUS_PER_TASK cores and 12x12: $ELAPSED_TIME"
#excercise for the reader: copy results back to working dir
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 24
#SBATCH --mem 180000
#SBATCH -t 0-00:10:00
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,0,16,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,17,32,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,33,48,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,49,64,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,65,80,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,81,96,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,97,104,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,105,120,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,121,137,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,138,165,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,166,183,0,0',numWorkers='4'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,184,200,0,0',numWorkers='4'" &
wait
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Elapsed time on `hostname` with $SLURM_CPUS_PER_TASK cores and 12x4: $ELAPSED_TIME"
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 24
#SBATCH --mem 180000
#SBATCH -t 0-00:10:00
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,0,100,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,101,200,0,0',numWorkers='24'" &
wait
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Elapsed time with $SLURM_CPUS_PER_TASK cores and 2x24: $ELAPSED_TIME"
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 24
#SBATCH --mem 180000
#SBATCH -t 0-00:10:00
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,0,50,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,51,100,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,101,150,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,151,200,0,0',numWorkers='24'" &
wait
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Elapsed time on `hostname` with $SLURM_CPUS_PER_TASK cores and 4x24: $ELAPSED_TIME"
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 24
#SBATCH --mem 180000
#SBATCH -t 0-00:10:00
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,0,33,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,34,66,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,67,99,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,100,133,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,134,166,0,0',numWorkers='24'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,167,200,0,0',numWorkers='24'" &
wait
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Elapsed time on `hostname` with $SLURM_CPUS_PER_TASK cores and 6x24: $ELAPSED_TIME"
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 24
#SBATCH --mem 180000
#SBATCH -t 0-00:10:00
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,0,25,0,0',numWorkers='12'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,26,50,0,0',numWorkers='12'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,51,75,0,0',numWorkers='12'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,76,100,0,0',numWorkers='12'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,101,125,0,0',numWorkers='12'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,126,150,0,0',numWorkers='12'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,151,175,0,0',numWorkers='12'" &
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,176,200,0,0',numWorkers='12'" &
wait
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Elapsed time on `hostname` with $SLURM_CPUS_PER_TASK cores and 8x12: $ELAPSED_TIME"
#!/bin/bash
#SBATCH -N 1
#SBATCH -c 24
#SBATCH --mem 180000
#SBATCH -t 0-01:00:00
module load Java
module load X11
mkdir -p ~/.imagej
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/IJ_Prefs.txt ~/.imagej/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/fib-sem--cell--8x8x8nm.tif $TMPDIR/
cp /g/its/home/pecar/benchmarks/tischer_fib-sem-cell-crop/bg-er.classifier $TMPDIR/
cd $TMPDIR
START_TIME=$SECONDS
/g/almf/software/Fiji.app/ImageJ-linux64 --mem=32000M --ij2 --allow-multiple --headless --run "Apply Classifier" "inputImageFile='fib-sem--cell--8x8x8nm.tif',memoryMB='32000',quitAfterRun='true',classifierFile='bg-er.classifier',dataSetID='fib-sem--cell--8x8x8nm',outputModality='Save class probabilities as Tiff slices',outputDirectory='.',inputModality='Open using ImageJ1 virtual',saveResultsTable='false',classificationIntervalXYZT='0,496,0,516,0,200,0,0',numWorkers='128'"
ELAPSED_TIME=$(($SECONDS - $START_TIME))
echo "Elapsed time on `hostname` with $SLURM_CPUS_PER_TASK cores: $ELAPSED_TIME"
#!/bin/bash
#SBATCH -J tomsa_mpi
#also try -N with --ntasks-per-node
#SBATCH -n 24
#SBATCH -C "net10G|net25G"
#SBATCH --switches=1
#SBATCH --mem-per-cpu=20
#SBATCH --time=00:05:00
module load foss/2017b
cd $SCRATCHDIR
tar zxf /g/its/home/pecar/benchmarks/turonova_tomsa/data.tgz
START=$SECONDS
mpirun tomsa -param params.txt -folder ./results
echo took $((SECONDS-START)) seconds witn $SLURM_NTASKS tasks across $SLURM_NNODES nodes
#cp results/* $SLURM_SUBMIT_DIR/
No preview for this file type