Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
title: Intensity measurements
layout: page
---
## Intensity measurements
### Activity: Measure intensities in image regions
* Open image: xy_float__h2b_bg_corr.tif
* Measure for both nuclei:
* Maximum intensity
* Average intensity
* Median intensity
* Sum intensity
* Discuss the interpretation!
* Discuss where to measure!
### Activity: Intensity measurements without pixel based background correction
#### Motivation
There are several good reasons not to subtract the background from each pixel in an image:
* It is a bit tricky to do it right, because one has to convert to float to accomodate floting point and negative values.
* If one has really big image data (TB) one would need (at least) another TB storage for the background corrected version of the image.
#### Workflow
* Open image: xy_calibrated_8bit__two_nuclei_high_background.tif
* Measure for both nuclei and a background region:
* Maximum intensity
* Average intensity
* Median intensity
* Sum intensity
* Discuss how to correct the intensities for the background
* Appreciate that you also need the region areas for this task
* Measure the region areas
* Watch out: the image is calibrated!
* Use the area for the correction.
### Formative assessment: Intensity measurements
Fill in the blanks, using these words: integrated, mean, number_of_pixels, decrease, increase, sum
1. Average intensity is just another word for _____ intensity.
2. The _____ intensity is equal to the mean intensity times the _____ in the measured region.
3. In an 8-bit image, increasing the size of the measurement region can only _____ the sum intensity.
4. In a float image, increasing the size of the measurement region can _____ the sum intensity.