Newer
Older
# MetaSNV, a metagenomic SNV calling pipeline
The metaSNV pipeline performs variant calling on aligned metagenomic samples.
Download
========
Via Git:
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
or [download](https://git.embl.de/rmuench/metaSNP/repository/archive.zip?ref=master) a zip file of the repository.
Dependencies
============
* [Boost-1.53.0 or above](http://www.boost.org/users/download/)
* [htslib](http://www.htslib.org/)
* Python-2.7 or above
#### Installing dependencies on Ubuntu/debian
On an Ubuntu/debian system, the following sequence of commands will install all
required packages (the first two are only necessary if you have not enabled the
universe repository before):
sudo add-apt-repository "deb http://archive.ubuntu.com/ubuntu $(lsb_release -sc) universe"
sudo apt-get update
sudo apt-get install libhts-dev libboost-dev
### Installing dependencies using anaconda
If you use [anaconda](https://www.continuum.io/downloads), you can create an
environment with all necessary dependencies using the following commands:
conda create --name metaSNV boost htslib pkg-config
source activate metaSNV
export CFLAGS=-I$CONDA_ENV_PATH/include
export LD_LIBRARY_PATH=$CONDA_ENV_PATH/lib:$LD_LIBRARY_PATH
If you do not have a C++ compiler, anaconda can also install G++:
conda create --name metaSNV boost htslib pkg-config
source activate metaSNV
# Add this command:
conda install gcc
export CFLAGS=-I$CONDA_ENV_PATH/include
export LD_LIBRARY_PATH=$CONDA_ENV_PATH/lib:$LD_LIBRARY_PATH
Setup & Compilation
===================
make
Workflow:
=========
## Required Files:
* **'all\_samples'** = a list of all BAM files, one /path/2/sample.bam per line (no duplicates)
* **'ref\_db'** = the reference database in fasta format (f.i. multi-sequence fasta)
## Optional Files:
* **'db\_ann'** = a gene annotation file for the reference database.
## To use one of the provided reference databases:
./getRefDB.sh
## 2. Run metaSNV
metaSNV.py project_dir/ all_samples ref_db ref_fasta [options]
## 3. Part II: Post-Processing (Filtering & Analysis)
### a) Filtering:
Note: requires SNP calling (Part II) to be done!
Caution: Perform this step seperately for individual SNPs and population SNPs.
usage: metaSNP_filtering.py
positional arguments:
perc_FILE input file with horizontal genome (taxon) coverage (breadth) per sample (percentage covered)
cov_FILE input file with average genome (taxon) coverage
(depth) per sample (average number reads per site)
snp_FILE input files from SNP calling
all_samples list of input BAM files, one per line
output_dir/ output folder
optional arguments:
-h, --help show this help message and exit
-p PERC, --perc PERC Coverage breadth: Horizontal coverage cutoff
(percentage taxon covered) per sample (default: 40.0)
-c COV, --cov COV Coverage depth: Average vertical coverage cutoff per
taxon, per sample (default: 5.0)
-m MINSAMPLES, --minsamples MINSAMPLES
Minimum number of sample required to pass the coverage
cutoffs per genome (default: 2)
-s SNPC, --snpc SNPC FILTERING STEP II: SNP coverage cutoff (default: 5.0)
-i SNPI, --snpi SNPI FILTERING STEP II: SNP occurence (incidence) cutoff
within samples_of_interest (default: 0.5)
### b) Analysis:
> TODO: include R scripts for computing pairwise distances and visualization
Example Tutorial
================
## 1. Run the setup & compilation steps and download the provided reference database.
./getRefDB.sh
## 2. Go to the EXAMPLE directory and download the samples with the getSamplesScript.sh
$ cd EXAMPLE
$ ./getSamplesScript.sh
## 3. Initiate a new project in the parent directory
$ metaSNV_New tutorial
## 4. Generate the 'all_samples' file
$ find `pwd`/EXAMPLE/samples -name “*.bam” > tutorial/all_samples
## 5. Prepare and run the coverage estimation
$ metaSNV_COV tutorial/ tutorial/all_samples > runCoverage
$ bash runCoverage
## 6. Perform a work load balancing step for run time optimization.
$ metaSNV_OPT tutorial/ db/Genomev9_definitions 5
$ bash runCoverage
## 7. Prepare and run the SNV calling step
$ metaSNV_SNP tutorial/ tutorial/all_samples db/RepGenomesv9.fna -a db/RefOrganismDB_v9_gene.clean -l tutorial/bestsplits/ > runSNPcall
$ bash runSNPcall
## 8. Run the post processing / filtering steps
### a) Compute allele frequencies for each position that pass the given thresholds.
$ metaSNV_filtering.py tutorial/tutorial.all_perc.tab tutorial/tutorial.all_cov.tab tutorial/snpCaller/called_SNVs.best_split_* tutorial/all_samples tutorial/filtered/pop/
### b) Compute pair-wise distances between samples on their SNP profiles and create a PCoA plot.
Advanced usage (tools and scripts)
==================================
If you are interested in using the pipeline in a more manual way (for example
the metaSNV caller stand alone), you will find the executables for the
individual steps in the `src/` directory.
metaSNV caller
--------------
Calls SNVs from samtools pileup format and generates two outputs.
usage: ./snpCall [options] < stdin.mpileup > std.out.popSNPs
Options:
-f, faidx indexed reference genome.
-g, gene annotation file.
-i, individual SNVs.
Note: Expecting samtools mpileup as standard input
### __Output__
1. Population SNVs (pSNVs):
Population wide variants that occur with a frequency of 1 % at positions with at least 4x coverage.
2. Individual specific SNVs (iSNVs):
Non population variants, that occur with a frequency of 10 % at positions with at least 10x coverage.
[qaCompute](https://github.com/CosteaPaul/qaTools)
-------------------------------------------------
Computes normal and span coverage from a bam/sam file.
Also counts unmapped and sub-par quality reads.
### __Parameters:__
m - Compute median coverage for each contig/chromosome.
Will make running a bit slower. Off by default.
q [INT] - Quality threshold. Any read with a mapping quality under
INT will be ignored when computing the coverage.
NOTE: bwa outputs mapping quality 0 for reads that map with
equal quality in multiple places. If you want to condier this,
set q to 0.
d - Print coverage histrogram over each individual contig/chromosome.
These details will be printed in file <output>.detail
p [INT] - Print coverage profile to bed file, averaged over given window size.
i - Silent run. Will not print running info to stdout.
s [INT] - Compute span coverage. (Use for mate pair libs)
Instead of actual read coverage, using the options will consider
the entire span of the insert as a read, if insert size is
lower than INT.
For an accurate estimation of span coverage, I recommend
setting an insert size limit INT around 3*std_dev of your lib's
insert size distribution.
c [INT] - Maximum X coverage to consider in histogram.
h [STR] - Use different header.
Because mappers sometimes break the headers or simply don't output them,
this is provieded as a non-kosher way around it. Use with care!
For more info on the parameteres try ./qaCompute
metaSNV_filtering.py
--------------------
usage: metaSNV filtering [-h] [-p PERC] [-c COV] [-m MINSAMPLES] [-s SNPC]
[-i SNPI]
perc_FILE cov_FILE snp_FILE [snp_FILE ...]
all_samples output_dir/
metaSNV filtering
positional arguments:
perc_FILE input file with horizontal genome (taxon) coverage
(breadth) per sample (percentage covered)
cov_FILE input file with average genome (taxon) coverage
(depth) per sample (average number reads per site)
snp_FILE input files from SNP calling
all_samples list of input BAM files, one per line
output_dir/ output folder
optional arguments:
-h, --help show this help message and exit
-p PERC, --perc PERC Coverage breadth: Horizontal coverage cutoff
(percentage taxon covered) per sample (default: 40.0)
-c COV, --cov COV Coverage depth: Average vertical coverage cutoff per
taxon, per sample (default: 5.0)
-m MINSAMPLES, --minsamples MINSAMPLES
Minimum number of sample that have to pass the
filtering criteria in order to write an output for the
representative Genome (default: 2)
-s SNPC, --snpc SNPC FILTERING STEP II: SNP coverage cutoff (default: 5.0)
-i SNPI, --snpi SNPI FILTERING STEP II: SNP occurence (incidence) cutoff
within samples_of_interest (default: 0.5)