Skip to content
Snippets Groups Projects
Commit c08565cb authored by Constantin Pape's avatar Constantin Pape
Browse files

PEP8

parent 2199c143
No related branches found
No related tags found
No related merge requests found
......@@ -7,11 +7,10 @@ from vigra.sampling import resize
def get_bbs(data):
shape = data.shape
num_cells = (np.max(data)).astype('int') + 1
cells_bbs = [[] for i in range(num_cells)]
mins_and_maxs = extractRegionFeatures(data.astype('float32'), data.astype('uint32'),
features = ['Coord<Maximum >', 'Coord<Minimum >'])
features=['Coord<Maximum >', 'Coord<Minimum >'])
mins = mins_and_maxs['Coord<Minimum >'].astype('uint32')
maxs = mins_and_maxs['Coord<Maximum >'].astype('uint32') + 1
for cell in range(num_cells):
......@@ -31,7 +30,7 @@ def get_cell_sizes(data):
for z in range(Z):
for x in range(X):
for y in range(Y):
label = data[z,x,y]
label = data[z, x, y]
cell_sizes[label] += 1
cell_sizes = np.array(cell_sizes)
return cell_sizes
......@@ -45,21 +44,22 @@ def get_cell_expression(segm_data, all_genes):
cell_bbs = get_bbs(segm_data)
for cell_idx in range(len(labels)):
cell_label = labels[cell_idx]
if cell_label == 0: continue
if cell_label == 0:
continue
cell_size = cell_sizes[cell_label]
bb = cell_bbs[cell_label]
cell_masked = (segm_data[bb]==cell_label)
genes_in_cell = all_genes[tuple([slice(0,None),] + list(bb))]
cell_masked = (segm_data[bb] == cell_label)
genes_in_cell = all_genes[tuple([slice(0, None)] + list(bb))]
for gene in range(num_genes):
gene_expr = genes_in_cell[gene]
gene_expr_sum = np.sum(gene_expr[cell_masked]>0)
gene_expr_sum = np.sum(gene_expr[cell_masked] > 0)
cells_expression[cell_idx, gene] = gene_expr_sum / cell_size
return labels, cells_expression
def write_genes_table(segm_file, genes_file, table_file, labels):
DSET = 't00000/s00/4/cells'
NEW_SHAPE = (570,518,550)
NEW_SHAPE = (570, 518, 550)
GENES_DSET = 'genes'
NAMES_DSET = 'gene_names'
......@@ -73,17 +73,15 @@ def write_genes_table(segm_file, genes_file, table_file, labels):
gene_names = [i.decode('utf-8') for i in f[NAMES_DSET]]
num_genes = len(gene_names)
downsampled_data = resize(segment_data.astype("float32"), shape = NEW_SHAPE, order=0).astype('uint16')
downsampled_data = resize(segment_data.astype("float32"), shape=NEW_SHAPE, order=0).astype('uint16')
avail_labels, expression = get_cell_expression(downsampled_data, all_genes)
with open(genes_table_file, 'w') as genes_table:
csv_writer = csv.writer(genes_table, delimiter='\t')
_ = csv_writer.writerow(['label_id',] + gene_names)
_ = csv_writer.writerow(['label_id'] + gene_names)
for label in labels:
if label in avail_labels:
idx = avail_labels.index(label)
_ = csv_writer.writerow([label, ] + list(expression[idx]))
_ = csv_writer.writerow([label] + list(expression[idx]))
else:
_ = csv_writer.writerow([label, ] + [0] * num_genes)
_ = csv_writer.writerow([label] + [0] * num_genes)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment