Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
morphoseq
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Neveu
morphoseq
Commits
989649c0
Commit
989649c0
authored
5 years ago
by
Pierre Neveu
Browse files
Options
Downloads
Patches
Plain Diff
Add new file
parents
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
nmf.py
+91
-0
91 additions, 0 deletions
nmf.py
with
91 additions
and
0 deletions
nmf.py
0 → 100644
+
91
−
0
View file @
989649c0
# NMF by alternative non-negative least squares using projected gradients
# Author: Chih-Jen Lin, National Taiwan University
# Python/numpy translation: Anthony Di Franco
from
numpy
import
*
from
numpy.linalg
import
norm
from
time
import
time
from
sys
import
stdout
def
nmf
(
V
,
Winit
,
Hinit
,
tol
,
timelimit
,
maxiter
):
"""
(W,H) = nmf(V,Winit,Hinit,tol,timelimit,maxiter)
W,H: output solution
Winit,Hinit: initial solution
tol: tolerance for a relative stopping condition
timelimit, maxiter: limit of time and iterations
"""
W
=
Winit
;
H
=
Hinit
;
initt
=
time
();
gradW
=
dot
(
W
,
dot
(
H
,
H
.
T
))
-
dot
(
V
,
H
.
T
)
gradH
=
dot
(
dot
(
W
.
T
,
W
),
H
)
-
dot
(
W
.
T
,
V
)
initgrad
=
norm
(
r_
[
gradW
,
gradH
.
T
])
# print 'Init gradient norm %f' % initgrad
tolW
=
max
(
0.001
,
tol
)
*
initgrad
tolH
=
tolW
for
iter
in
xrange
(
1
,
maxiter
):
# stopping condition
projnorm
=
norm
(
r_
[
gradW
[
logical_or
(
gradW
<
0
,
W
>
0
)],
gradH
[
logical_or
(
gradH
<
0
,
H
>
0
)]])
if
projnorm
<
tol
*
initgrad
or
time
()
-
initt
>
timelimit
:
break
(
W
,
gradW
,
iterW
)
=
nlssubprob
(
V
.
T
,
H
.
T
,
W
.
T
,
tolW
,
1000
)
W
=
W
.
T
gradW
=
gradW
.
T
if
iterW
==
1
:
tolW
=
0.1
*
tolW
(
H
,
gradH
,
iterH
)
=
nlssubprob
(
V
,
W
,
H
,
tolH
,
1000
)
if
iterH
==
1
:
tolH
=
0.1
*
tolH
# if iter % 10 == 0: stdout.write('.')
#print '\nIter = %d Final proj-grad norm %f' % (iter, projnorm)
return
(
W
,
H
)
def
nlssubprob
(
V
,
W
,
Hinit
,
tol
,
maxiter
):
"""
H, grad: output solution and gradient
iter: #iterations used
V, W: constant matrices
Hinit: initial solution
tol: stopping tolerance
maxiter: limit of iterations
"""
H
=
Hinit
WtV
=
dot
(
W
.
T
,
V
)
WtW
=
dot
(
W
.
T
,
W
)
alpha
=
1
;
beta
=
0.1
;
for
iter
in
xrange
(
1
,
maxiter
):
grad
=
dot
(
WtW
,
H
)
-
WtV
projgrad
=
norm
(
grad
[
logical_or
(
grad
<
0
,
H
>
0
)])
if
projgrad
<
tol
:
break
# search step size
for
inner_iter
in
xrange
(
1
,
20
):
Hn
=
H
-
alpha
*
grad
Hn
=
where
(
Hn
>
0
,
Hn
,
0
)
d
=
Hn
-
H
gradd
=
sum
(
grad
*
d
)
dQd
=
sum
(
dot
(
WtW
,
d
)
*
d
)
suff_decr
=
0.99
*
gradd
+
0.5
*
dQd
<
0
;
if
inner_iter
==
1
:
decr_alpha
=
not
suff_decr
;
Hp
=
H
;
if
decr_alpha
:
if
suff_decr
:
H
=
Hn
;
break
;
else
:
alpha
=
alpha
*
beta
;
else
:
if
not
suff_decr
or
(
Hp
==
Hn
).
all
():
H
=
Hp
;
break
;
else
:
alpha
=
alpha
/
beta
;
Hp
=
Hn
;
if
iter
==
maxiter
:
print
'
Max iter in nlssubprob
'
return
(
H
,
grad
,
iter
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment