Skip to content
Snippets Groups Projects

RoiSet facilitates object detection models

Merged Christopher Randolph Rhodes requested to merge dev_obj_det into staging
1 file
+ 7
1
Compare changes
  • Side-by-side
  • Inline
+ 7
1
@@ -5,12 +5,12 @@ import numpy as np
from pathlib import Path
import pandas as pd
from skimage import draw
from model_server.base.roiset import filter_df_overlap_bbox, filter_df_overlap_seg, RoiSetExportParams, RoiSetMetaParams
from model_server.base.roiset import RoiSet
from model_server.base.accessors import generate_file_accessor, InMemoryDataAccessor, write_accessor_data_to_file, PatchStack
from model_server.base.models import DummyInstanceSegmentationModel
from model_server.base.process import smooth
import model_server.conf.testing as conf
data = conf.meta['image_files']
@@ -193,6 +193,12 @@ class TestRoiSetMonoProducts(BaseTestRoiSetMonoProducts, unittest.TestCase):
self.assertTrue(all(np.unique(roiset.get_object_class_map('dummy_class').data) == [0, 1]))
return roiset
def test_transfer_classification(self):
roiset1 = RoiSet.from_binary_mask(self.stack, self.seg_mask)
smoothed_mask = self.seg_mask.apply(lambda x: smooth(x, sig=3.0))
roiset2 = RoiSet.from_binary_mask(self.stack, smoothed_mask)
self.assertTrue(False)
def test_classify_by_with_derived_channel(self):
class ModelWithDerivedInputs(DummyInstanceSegmentationModel):
def infer(self, img, mask):
Loading