Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
platy-browser-data
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Christian Tischer
platy-browser-data
Commits
e4dbeb4d
Commit
e4dbeb4d
authored
5 years ago
by
Constantin Pape
Browse files
Options
Downloads
Patches
Plain Diff
Update cilia attributes WIP
parent
1c89101f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
analysis/cilia.py
+142
-13
142 additions, 13 deletions
analysis/cilia.py
scripts/attributes/cilia_attributes.py
+9
-4
9 additions, 4 deletions
scripts/attributes/cilia_attributes.py
with
151 additions
and
17 deletions
analysis/cilia.py
+
142
−
13
View file @
e4dbeb4d
import
json
from
concurrent
import
futures
import
numpy
as
np
import
h5py
import
pandas
as
pd
from
scipy.ndimage.morphology
import
binary_dilation
from
heimdall
import
view
from
heimdall
import
view
,
to_source
from
elf.skeleton
import
skeletonize
from
scripts.attributes.cilia_attributes
import
(
compute_centerline
,
load_seg
,
get_bb
,
load_seg
,
make_indexable
)
def
view_centerline
(
obj
,
resolution
):
path
=
compute_centerline
(
obj
,
[
res
*
1000
for
res
in
resolution
])
# NOTE the current paths don't look that great.
# probably need to play with the teasar parameters a bit to improve this
def
view_centerline
(
raw
,
obj
,
path
,
compare_skeleton
=
False
):
path
=
make_indexable
(
path
)
cline
=
np
.
zeros
(
obj
.
shape
,
dtype
=
'
bool
'
)
cline
=
binary_dilation
(
cline
,
iterations
=
2
)
view
(
obj
.
astype
(
'
uint32
'
),
cline
.
astype
(
'
uint32
'
))
cline
=
np
.
zeros
(
obj
.
shape
,
dtype
=
'
uint32
'
)
cline
[
path
]
=
1
if
compare_skeleton
:
coords
,
_
=
skeletonize
(
obj
)
coords
=
make_indexable
(
coords
)
skel
=
np
.
zeros
(
obj
.
shape
,
dtype
=
'
uint32
'
)
skel
[
coords
]
=
1
view
(
raw
,
obj
.
astype
(
'
uint32
'
),
cline
,
skel
)
else
:
view
(
raw
,
obj
.
astype
(
'
uint32
'
),
cline
)
def
check_lens
():
def
check_lens
(
cilia_ids
=
None
,
compare_skeleton
=
False
):
path
=
'
../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5
'
path_raw
=
'
../data/rawdata/sbem-6dpf-1-whole-raw.h5
'
table
=
'
../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv
'
table
=
pd
.
read_csv
(
table
,
sep
=
'
\t
'
)
table
.
set_index
(
'
label_id
'
)
with
open
(
'
precomputed_cilia.json
'
)
as
f
:
skeletons
=
json
.
load
(
f
)
if
cilia_ids
is
None
:
cilia_ids
=
range
(
len
(
table
))
resolution
=
[.
025
,
.
01
,
.
01
]
with
h5py
.
File
(
path
)
as
f
:
with
h5py
.
File
(
path
,
'
r
'
)
as
f
,
h5py
.
File
(
path_raw
,
'
r
'
)
as
fr
:
ds
=
f
[
'
t00000/s00/0/cells
'
]
dsr
=
fr
[
'
t00000/s00/0/cells
'
]
for
cid
in
range
(
len
(
table
))
:
for
cid
in
cilia_ids
:
if
cid
in
(
0
,
1
,
2
):
continue
print
(
cid
)
obj_path
=
skeletons
[
cid
]
if
obj_path
is
None
:
print
(
"
Skipping cilia
"
,
cid
)
continue
print
(
len
(
obj_path
))
bb
=
get_bb
(
table
,
cid
,
resolution
)
raw
=
dsr
[
bb
]
obj
=
ds
[
bb
]
==
cid
view_centerline
(
raw
,
obj
,
obj_path
,
compare_skeleton
)
def
precompute
():
path
=
'
../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5
'
table
=
'
../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv
'
table
=
pd
.
read_csv
(
table
,
sep
=
'
\t
'
)
table
.
set_index
(
'
label_id
'
)
resolution
=
[.
025
,
.
01
,
.
01
]
with
h5py
.
File
(
path
)
as
f
:
ds
=
f
[
'
t00000/s00/0/cells
'
]
def
precomp
(
cid
):
if
cid
in
(
0
,
1
,
2
):
return
print
(
cid
)
obj
=
load_seg
(
ds
,
table
,
cid
,
resolution
)
view_centerline
(
obj
,
resolution
)
if
obj
.
sum
()
==
0
:
return
path
=
compute_centerline
(
obj
,
[
res
*
1000
for
res
in
resolution
])
return
path
n_cilia
=
len
(
table
)
with
futures
.
ThreadPoolExecutor
(
16
)
as
tp
:
tasks
=
[
tp
.
submit
(
precomp
,
cid
)
for
cid
in
range
(
n_cilia
)]
# tasks = [tp.submit(precomp, cid) for cid in (3, 4, 5)]
results
=
[
t
.
result
()
for
t
in
tasks
]
with
open
(
'
precomputed_cilia.json
'
,
'
w
'
)
as
f
:
json
.
dump
(
results
,
f
)
def
grid_search
():
path
=
'
../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5
'
table
=
'
../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv
'
table
=
pd
.
read_csv
(
table
,
sep
=
'
\t
'
)
table
.
set_index
(
'
label_id
'
)
label_id
=
11
penalty_scales
=
[
1000
,
2500
,
5000
,
10000
]
penalty_exponents
=
[
2
,
4
,
8
,
16
]
resolution
=
[.
025
,
.
01
,
.
01
]
with
h5py
.
File
(
path
)
as
f
:
ds
=
f
[
'
t00000/s00/0/cells
'
]
def
precomp
(
cid
,
penalty_scale
,
penalty_exponent
):
print
(
"
scale:
"
,
penalty_scale
,
"
exponent:
"
,
penalty_exponent
)
obj
=
load_seg
(
ds
,
table
,
cid
,
resolution
)
path
=
compute_centerline
(
obj
,
[
res
*
1000
for
res
in
resolution
],
penalty_scale
=
penalty_scale
,
penalty_exponent
=
penalty_exponent
)
return
{
'
penalty_scale
'
:
penalty_scale
,
'
penalty_exponent
'
:
penalty_exponent
,
'
path
'
:
path
}
with
futures
.
ThreadPoolExecutor
(
16
)
as
tp
:
tasks
=
[
tp
.
submit
(
precomp
,
label_id
,
penalty_scale
,
penalty_exponent
)
for
penalty_scale
in
penalty_scales
for
penalty_exponent
in
penalty_exponents
]
results
=
[
t
.
result
()
for
t
in
tasks
]
with
open
(
'
grid_search.json
'
,
'
w
'
)
as
f
:
json
.
dump
(
results
,
f
)
def
eval_gridsearch
():
with
open
(
'
grid_search.json
'
)
as
f
:
results
=
json
.
load
(
f
)
path_raw
=
'
../data/rawdata/sbem-6dpf-1-whole-raw.h5
'
path
=
'
../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5
'
table
=
'
../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv
'
table
=
pd
.
read_csv
(
table
,
sep
=
'
\t
'
)
table
.
set_index
(
'
label_id
'
)
label_id
=
11
resolution
=
[.
025
,
.
01
,
.
01
]
with
h5py
.
File
(
path
,
'
r
'
)
as
f
,
h5py
.
File
(
path_raw
,
'
r
'
)
as
fr
:
ds
=
f
[
'
t00000/s00/0/cells
'
]
dsr
=
fr
[
'
t00000/s00/0/cells
'
]
bb
=
get_bb
(
table
,
label_id
,
resolution
)
raw
=
dsr
[
bb
]
obj
=
(
ds
[
bb
]
==
label_id
).
astype
(
'
uint32
'
)
sources
=
[
to_source
(
raw
,
name
=
'
raw
'
),
to_source
(
obj
,
name
=
'
mask
'
)]
for
res
in
results
:
line
=
np
.
zeros_like
(
obj
)
path
=
make_indexable
(
res
[
'
path
'
])
line
[
path
]
=
1
name
=
'
%i_%i
'
%
(
res
[
'
penalty_scale
'
],
res
[
'
penalty_exponent
'
])
sources
.
append
(
to_source
(
line
,
name
=
name
))
view
(
*
sources
)
if
__name__
==
'
__main__
'
:
check_lens
()
# precompute()
# grid_search()
check_lens
([
11
],
compare_skeleton
=
True
)
# eval_gridsearch()
This diff is collapsed.
Click to expand it.
scripts/attributes/cilia_attributes.py
+
9
−
4
View file @
e4dbeb4d
...
...
@@ -17,8 +17,10 @@ def get_mapped_cell_ids(cilia_ids, manual_mapping_table_path):
return
cell_ids
def
compute_centerline
(
obj
,
resolution
,
return_teasar
=
False
):
teasar
=
Teasar
(
obj
,
resolution
)
def
compute_centerline
(
obj
,
resolution
,
penalty_scale
=
1000
,
penalty_exponent
=
16
,
return_teasar
=
False
):
teasar
=
Teasar
(
obj
,
resolution
,
penalty_scale
=
penalty_scale
,
penalty_exponent
=
penalty_exponent
)
src
=
teasar
.
root_node
target
=
np
.
argmax
(
teasar
.
distances
)
path
=
teasar
.
get_path
(
src
,
target
)
...
...
@@ -31,17 +33,20 @@ def make_indexable(path):
return
tuple
(
np
.
array
([
p
[
i
]
for
p
in
path
],
dtype
=
'
uint64
'
)
for
i
in
range
(
3
))
def
load_seg
(
ds
,
base_table
,
cid
,
resolution
):
def
get_bb
(
base_table
,
cid
,
resolution
):
# get the row for this cilia id
row
=
base_table
.
loc
[
cid
]
# compute the bounding box
bb_min
=
(
row
.
bb_min_z
,
row
.
bb_min_y
,
row
.
bb_min_x
)
bb_max
=
(
row
.
bb_max_z
,
row
.
bb_max_y
,
row
.
bb_max_x
)
bb
=
tuple
(
slice
(
int
(
mi
/
re
),
int
(
ma
/
re
))
for
mi
,
ma
,
re
in
zip
(
bb_min
,
bb_max
,
resolution
))
return
bb
def
load_seg
(
ds
,
base_table
,
cid
,
resolution
):
# load segmentation from the bounding box and get foreground
bb
=
get_bb
(
base_table
,
cid
,
resolution
)
obj
=
ds
[
bb
]
==
cid
return
obj
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment