Newer
Older
configfile: "Snake.config_embl.yaml"
from pprint import pprint
# print(os.listdir(os.getcwd()))
# print(os.listdir("bam"))
# TODO I/O : Function to define inputs ; simplify list/dict system
# TODO Use remote file system to download example files
SAMPLE,BAM = glob_wildcards(config["input_bam_location"] + "{sample}/selected/{bam}.bam")
pprint(SAMPLE)
pprint(BAM)
SAMPLES = sorted(set(SAMPLE))
CELL_PER_SAMPLE= defaultdict(list)
BAM_PER_SAMPLE = defaultdict(list)
for sample,bam in zip(SAMPLE,BAM):
BAM_PER_SAMPLE[sample].append(bam)
CELL_PER_SAMPLE[sample].append(bam.replace(".sort.mdup",""))
ALLBAMS_PER_SAMPLE = defaultdict(list)
for sample in SAMPLES:
ALLBAMS_PER_SAMPLE[sample] = glob_wildcards(config["input_bam_location"] + "{}/all/{{bam}}.bam".format(sample)).bam
print("Detected {} samples:".format(len(SAMPLES)))
for s in SAMPLES:
print(" {}:\t{} cells\t {} selected cells".format(s, len(ALLBAMS_PER_SAMPLE[s]), len(BAM_PER_SAMPLE[s])))
pprint(BAM_PER_SAMPLE)
pprint(CELL_PER_SAMPLE)
# FIXME : tmp solution to remove bad cells => need to fix this with combination of ASHLEYS ?
exclude_list = ['BM510x3PE20490']
BAM_PER_SAMPLE = {k:sorted([e for e in v if e.split('.')[0] not in exclude_list]) for k,v in BAM_PER_SAMPLE.items()}
CELL_PER_SAMPLE = {k:sorted([e for e in v if e not in exclude_list]) for k,v in CELL_PER_SAMPLE.items()}
pprint(BAM_PER_SAMPLE)
pprint(CELL_PER_SAMPLE)
# Current state of the pipeline:
# ==============================
# * count reads in the BAM files (in fixed and variable-width bins of various sizes)
# * determine strand states of each chromosome in each single cell, including SCEs
# * plot all single cell libraries in different window sizes
# * calculate a segmentation into potential SVs using Mosaicatcher
METHODS = [
"simpleCalls_llr4_poppriorsTRUE_haplotagsTRUE_gtcutoff0_regfactor6_filterFALSE",
"simpleCalls_llr4_poppriorsTRUE_haplotagsFALSE_gtcutoff0.05_regfactor6_filterTRUE",
]
# FIXME : move to yaml/json settings or to something else
BPDENS = [
"selected_j{}_s{}_scedist{}".format(joint, single, scedist) for joint in [0.1] for single in [0.5] for scedist in [20]
]
print(BPDENS)
# Todo: specify an exact version of the singularity file!
print(SAMPLES)
print(CELL_PER_SAMPLE)
print(CELL_PER_SAMPLE.values())
print([sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e])
# print(expand([SAMPLES, [sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]]))
print(expand(["{sample}/{cell}"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]))
# exit()
print(expand([config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ))

Thomas Weber
committed
rule all:
input:
# expand(config["output_location"] + "counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000])
# expand(config["output_location"] + "plots/{sample}/{window}.pdf", sample=SAMPLES, window=[100000])
# expand(config["output_location"] + "norm_counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "norm_counts/{sample}/{window}.info", sample=SAMPLES, window=[100000])

Thomas Weber
committed
# expand(config["output_location"] + "segmentation/{sample}/{window}.txt", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "snv_calls/{sample}/merged.bam", sample=SAMPLES)
# expand(config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf", sample=SAMPLES, window=[100000], chrom=config["chromosomes"]),

Thomas Weber
committed
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
expand(config["output_location"] + "haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens}.Rdata", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),

Thomas Weber
committed
# FIXME : To solve : cell wildcard (dict type) comparatively to others that are list type
################################################################################
# Read counting #
################################################################################
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# CHECKME : exclude file rule useful ?
# rule generate_exclude_file_1:
# output:
# temp("log/exclude_file.temp")
# input:
# bam = expand("bam/{sample}/selected/{bam}.bam", sample = SAMPLES[0], bam = BAM_PER_SAMPLE[SAMPLES[0]][0])
# log:
# "log/generate_exclude_file_1.log"
# params:
# samtools = config["samtools"]
# shell:
# """
# {params.samtools} view -H {input.bam} | awk "/^@SQ/" > {output}
# """
# rule generate_exclude_file_2:
# output:
# "log/exclude_file"
# input:
# "log/exclude_file.temp"
# params:
# chroms = config["chromosomes"]
# run:
# with open(input[0]) as f:
# with open(output[0],"w") as out:
# for line in f:
# contig = line.strip().split()[1]
# contig = contig[3:]
# # if contig not in params.chroms:
# # print(contig, file = out)
# CHECKME : same as above for input ???
# TODO : Simplify expand command
# DOCME : mosaic count read orientation ?
rule mosaic_count:
"""
rule fct: Call mosaic count C++ function to count reads in each BAM file according defined window
input: For the moment, individual BAM file in the selected folder of the associated sample
output: counts: read counts for the BAM file according defined window ; info file : summary statistics
bam = lambda wc: expand(config["input_bam_location"] + wc.sample + "/selected/{bam}.bam", bam = BAM_PER_SAMPLE[wc.sample]) if wc.sample in BAM_PER_SAMPLE else "FOOBAR",
# excl = "log/exclude_file"
output:
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info"
config["output_location"] + "log/{sample}/mosaic_count.{window}.log"
mc_command = config["mosaicatcher"]
{params.mc_command} count \
--verbose \
--do-not-blacklist-hmm \
-o {output.counts} \
-i {output.info} \
-w {wildcards.window} \
{input.bam}
> {log} 2>&1
# FIXME : Missing plots in final PDF ; R script + inputs to check
rule plot_mosaic_counts:
"""
rule fct: Plot function of read counts for each bam file
input: mosaic count outputs (counts & info)
output: Generate figure based on couting results
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info"
config["output_location"] + "plots/{sample}/{window}.pdf"
config["output_location"] + "log/plot_mosaic_counts/{sample}/{window}.log"
plot_command = "Rscript " + config["plot_script"]
shell:
"""
{params.plot_command} {input.counts} {input.info} {output} > {log} 2>&1
"""
################################################################################
# Normalize counts #
################################################################################
# TODO : Reference blacklist BED file to retrieve easily on Git/Zenodo/remote system

Thomas Weber
committed
# TODO : check if inversion file is corresponded to previously published
rule merge_blacklist_bins:
"""
rule fct: Call Python script to merge HGVSC normalization defined file & inversion whitelist file
input: norm: HGSVC predefined BED file by the group ; whitelist: whitelist inversion file predefined by the group
norm = "utils/normalization/HGSVC.{window}.txt",
whitelist = "utils/normalization/inversion-whitelist.tsv",
merged = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv"
config["output_location"] + "log/merge_blacklist_bins/{window}.log"
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/merge-blacklist.py --merge_distance 500000 {input.norm} --whitelist {input.whitelist} --min_whitelist_interval_size 100000 > {output.merged} 2>> {log}
# FIXME : snakemake ambiguity with I/O paths
# CHECKME : Check R code for normalization
rule normalize_counts:
"""
rule fct: Normalization of mosaic counts based on merged normalization file produced with a linear relation (count * scaling_factor)
input: counts: counts file coming from `rule mosaic_count` ; norm: merged normalization file produced by `rule merge_blacklist_bins`
output: normalized counts based predefined factors for each window
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
norm = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv",
config["output_location"] + "norm_counts/{sample}/{window}.txt.gz"
config["output_location"] + "log/normalize_counts/{sample}/{window}.log"
shell:
"""
Rscript utils/normalize.R {input.counts} {input.norm} {output} 2>&1 > {log}
"""
# FIXME : cleaner way to symlink info files
rule link_normalized_info_file:
"""
rule fct: Symlink info file ouput mosaic count to normalization count directory
input: Global summary statistics produced by mosaic count
output: symlink in norm_counts output directory
info = config["output_location"] + "counts/{sample}/{window}.info"
info = config["output_location"] + "norm_counts/{sample}/{window}.info"
run:
d = os.path.dirname(output.info)
file = os.path.basename(output.info)
shell("cd {d} && ln -s {input.info} {file}")
################################################################################
# Joint Segmentation #
################################################################################
# CHECKME : @Marco mention on Gitlab
# CHECKME : parameters
# DOCME : check segmentation results to better understand
"""
rule fct: Identify breakpoints of futur SV based on normalized read counts
input: mosaic [normalized] counts
output: Segmentation tab file
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt.fixme"
log:
config["output_location"] + "log/segmentation/{sample}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
"""
# FIXME: no difference observed before/after awk command
# FIXME: This is a workaround because latest versions of "mosaic segment" don't compute the "bps" column properly. Remove once fixed in the C++ code.
rule fix_segmentation:
"""
rule fct:
input:
output:
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt.fixme"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v name={wildcards.sample} -v window={wildcards.window} -f utils/command2.awk {input} > {output}
"""
# Pick a few segmentations and prepare the input files for SV classification
# TODO : replace R script by integrating directly pandas in the pipeline
# CHECKME : used ???
rule prepare_segments:
"""
rule fct: selection of appropriate segmentation according breakpoint density (k) selected by the user : many : 60%, medium : 40%, few : 20%
input: mosaic segment output segmentation file
output: lite file with appropriate k according the quartile defined by the user
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt"
output:
config["output_location"] + "segmentation2/{sample}/{window}.{bpdens,(many|medium|few)}.txt"
log:
config["output_location"] + "log/prepare_segments/{sample}/{window}.{bpdens}.log"
params:
quantile = lambda wc: config["bp_density"][wc.bpdens]
script:
"utils/helper.prepare_segments.R"
################################################################################
# Single-Cell Segmentation #
################################################################################
# TODO : replace awk external file command with something else
rule extract_single_cell_counts:
"""
rule fct: extract from count the rows coming from the given cell
input: mosaic count output file for the sample according a given window
output: count per cell file for the sample according a given window
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window,[0-9]+}.txt.gz"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
zcat {input} | awk -v name={wildcards.cell} -f utils/command1.awk | gzip > {output}
"""
rule segment_one_cell:
rule fct: Same as `rule segmentation` : mosaic segment function but for individual cell
input: mosaic count splitted by cell produced by `rule extract_single_cell_counts`
output: Segmentation file for an individual cell
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"
config["output_location"] + "segmentation-per-cell/{sample}/{cell}/{window,\d+}.txt"
config["output_location"] + "log/segmentation-per-cell/{sample}/{cell}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
# URGENT : If one bad cell is detected => pipeline stop => need to fix this
################################################################################
# StrandPhaseR things #
################################################################################
# DOCME : how to handle when multiple chrom orientation
"""
RPE1-WT RPE1WTPE20492 chr10 0 27300000 WW
RPE1-WT RPE1WTPE20492 chr10 27300000 110600000 WC
RPE1-WT RPE1WTPE20492 chr10 110600000 127100000 CC
RPE1-WT RPE1WTPE20492 chr10 127100000 133797422 WC
"""
"selected_j0.1_s0.5_scedist20"
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance 500 000 \
--sce_add_cutoff 20 000 000 \
--min_diff_jointseg 0.1 \
--min_diff_singleseg 0.5 \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
{input.singleseg} > {log} 2>&1
"""
rule segmentation_selection:
"""
rule fct:
input: mosaic read counts (txt.gz) & stats info (.info) + joint & sc segmentation
output: initial_strand_state used for the following by strandphaser
"""
input:
counts=config["output_location"] + "counts/{sample}/{window}.txt.gz",
jointseg=config["output_location"] + "segmentation/{sample}/{window}.txt",
singleseg=lambda wc: [config["output_location"] + "segmentation-per-cell/{}/{}/{}.txt".format(wc.sample, cell, wc.window) for cell in CELL_PER_SAMPLE[wc.sample]],
info=config["output_location"] + "counts/{sample}/{window}.info",
output:
jointseg=config["output_location"] + "segmentation2/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",
singleseg=config["output_location"] + "segmentation-singlecell/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",

Thomas Weber
committed
strand_states=config["output_location"] + "strand_states/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}/initial_strand_state",
config["output_location"] + "log/segmentation_selection/{sample}/{window}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.log"
params:
cellnames = lambda wc: ",".join(cell for cell in CELL_PER_SAMPLE[wc.sample]),
sce_min_distance = 500000,
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance {params.sce_min_distance} \
--sce_add_cutoff {wildcards.additional_sce_cutoff}000000 \
--min_diff_jointseg {wildcards.min_diff_jointseg} \
--min_diff_singleseg {wildcards.min_diff_singleseg} \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
"""
# TODO : replace R script by integrating directly pandas in the pipeline / potentialy use piped output to following rule ?

Thomas Weber
committed
"""
rule fct: extract only segmentation with WC orientation
input: initial_strand_state file coming from rule segmentation_selection & info file from mosaic count output
output: filtered TSV file with start/end coordinates of WC-orientated segment to be used by strandphaser
"""

Thomas Weber
committed
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# URGENT : hard coded 500000 file name ???
# info = config["output_location"] + "counts/{sample}/500000.info"
# FIXME : quick workaround with {window} wc
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_input.txt"
log:
config["output_location"] + "log/convert_strandphaser_input/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_input.R"
# TODO : make something similar to mosaic with C++ dep
# CHECKME : check if possible to write something more snakemak"ic" & compliant with conda/singularity running env
# WARNING : I/O path definition
# WARNING : Try to find a solution to install stranphaser in a conda environment => contact david porubsky to move on the bioconductor ?

Thomas Weber
committed
# rule install_StrandPhaseR:
# output:
# "utils/R-packages/StrandPhaseR/R/StrandPhaseR"
# log:
# "log/install_StrandPhaseR.log"
# shell:
# """
# TAR=$(which tar) Rscript utils/install_strandphaser.R > {log} 2>&1
# """
# TODO : replace by clean config file if possible or by temporary removed file
rule prepare_strandphaser_config_per_chrom:
"""
rule fct: prepare config file used by strandphaser
input: input used only for wildcards : sample, window & bpdens
output: config file used by strandphaser
"""

Thomas Weber
committed
config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state"
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR.{chrom}.config"
run:
with open(output[0], "w") as f:
print("[General]", file = f)
print("numCPU = 1", file = f)
print("chromosomes = '" + wildcards.chrom + "'", file = f)
if (config["paired_end"]):
print("pairedEndReads = TRUE", file = f)
else:
print("pairedEndReads = FALSE", file = f)
print("min.mapq = 10", file = f)
print("", file = f)
print("[StrandPhaseR]", file = f)
print("positions = NULL", file = f)
print("WCregions = NULL", file = f)
print("min.baseq = 20", file = f)
print("num.iterations = 2", file = f)
print("translateBases = TRUE", file = f)
print("fillMissAllele = NULL", file = f)
print("splitPhasedReads = TRUE", file = f)
print("compareSingleCells = TRUE", file = f)
print("callBreaks = FALSE", file = f)
print("exportVCF = '", wildcards.sample, "'", sep = "", file = f)
print("bsGenome = '", config["R_reference"], "'", sep = "", file = f)
# # TODO : TMP solution
# # CHECKME : need to check with people if SNP genotyping file is mandatory => will simplify things
# def locate_snv_vcf(wildcards):
# if "snv_calls" not in config or wildcards.sample not in config["snv_calls"] or config["snv_calls"][wildcards.sample] == "":
# if "snv_sites_to_genotype" in config and config["snv_sites_to_genotype"] != "" :
# if os.path.isfile(config["snv_sites_to_genotype"]):
# return "snv_genotyping/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "external_snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
rule run_strandphaser_per_chrom:
"""
rule fct: run strandphaser for each chromosome
input: strandphaser_input.txt from rule convert_strandphaser_input ; genotyped snv for each chrom by freebayes ; configfile created by rule prepare_strandphaser_config_per_chrom ; bam folder
output:
"""
input:
wcregions = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_input.txt",
snppositions = config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf",
configfile = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR.{chrom}.config",
# DOCME : used as an input to call the installation

Thomas Weber
committed
# strandphaser = "utils/R-packages/StrandPhaseR/R/StrandPhaseR",
# strandphaser = config["strandphaser"],
bamfolder = config["input_bam_location"] + "{sample}/selected"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt",
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf"
log:
"log/run_strandphaser_per_chrom/{sample}/{window}.{bpdens}/{chrom}.log"
shell:
"""
{config[Rscript]} utils/StrandPhaseR_pipeline.R \

Thomas Weber
committed
{config[output_location]}strand_states/{wildcards.sample}/{wildcards.window}.{wildcards.bpdens}/StrandPhaseR_analysis.{wildcards.chrom} \
{input.configfile} \
{input.wcregions} \
{input.snppositions} \
$(pwd)/utils/R-packages/ \
"""
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
rule compress_vcf:
"""
rule fct:
input:
output:
"""
input:
vcf="{file}.vcf",
output:
vcf="{file}.vcf.gz",
# log:
# "log/compress_vcf/{file}.log"
shell:
"bgzip {input.vcf}"
rule index_vcf:
"""
rule fct:
input:
output:
"""
input:
vcf="{file}.vcf.gz",
output:
tbi="{file}.vcf.gz.tbi",
shell:
"tabix -p vcf {input.vcf}"
rule merge_strandphaser_vcfs:
input:
vcfs=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz", chrom=config["chromosomes"]),
tbis=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz.tbi", chrom=config["chromosomes"]),
output:
vcf=config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.vcf.gz"
log:
"log/merge_strandphaser_vcfs/{sample}/{window}.{bpdens}.log"
shell:
"(bcftools concat -a {input.vcfs} | bcftools view -o {output.vcf} -O z --genotype het --types snps - ) > {log} 2>&1"
rule combine_strandphaser_output:
input:
expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", chrom = config["chromosomes"])
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_output.txt"
log:
"log/combine_strandphaser_output/{sample}/{window}.{bpdens}.log"
shell:
"""
set +o pipefail
cat {input} | head -n1 > {output};
tail -q -n+2 {input} >> {output};
"""
rule convert_strandphaser_output:
input:
phased_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_output.txt",
initial_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# info = config["output_location"] + "counts/{sample}/500000_fixed.info"
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/final.txt"
log:
"log/convert_strandphaser_output/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_output.R"
################################################################################
# Haplotagging #
################################################################################
rule haplotag_bams:
input:
vcf = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz",
tbi = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz.tbi",
bam = config["input_bam_location"] + "{sample}/selected/{bam}.bam",
bai = config["input_bam_location"] + "{sample}/selected/{bam}.bam.bai"
output:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/{bam}.bam",
log:
config["output_location"] + "log/haplotag_bams/{sample}/{window}.{bpdens}/{bam}.log"
params:
ref = config["reference"]
shell:
"whatshap haplotag -o {output.bam} -r {params.ref} {input.vcf} {input.bam} > {log} 2>{log}"
rule create_haplotag_segment_bed:
input:
segments = config["output_location"] + "segmentation2/{sample}/{size}{what}.{bpdens}.txt",
output:
bed = config["output_location"] + "haplotag/bed/{sample}/{size,[0-9]+}{what}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.bed",
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v s={wildcards.size} -f utils/command3.awk {input.segments} > {output.bed}
"""
rule create_haplotag_table:
input:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam",
bai = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam.bai",
bed = config["output_location"] + "haplotag/bed/{sample}/{window}.{bpdens}.bed"
output:
tsv = config["output_location"] + "haplotag/table/{sample}/by-cell/haplotag-counts.{cell}.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
log:
config["output_location"] + "log/create_haplotag_table/{sample}.{cell}.{window}.{bpdens}.log"
script:
"utils/haplotagTable.snakemake.R"
rule merge_haplotag_tables:
input:
tsvs = lambda wc: [config["output_location"] + "haplotag/table/{}/by-cell/haplotag-counts.{}.{}.{}.tsv".format(wc.sample,cell,wc.window,wc.bpdens) for cell in BAM_PER_SAMPLE[wc.sample]],
output:
tsv = config["output_location"] + "haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
shell:
"(head -n1 {input.tsvs[0]} && tail -q -n +2 {input.tsvs}) > {output.tsv}"
rule mosaiClassifier_calc_probs:
input:
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info",
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt",
bp = config["output_location"] + "segmentation2/{sample}/{window}.{bpdens}.txt"
output:
output = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/probabilities.Rdata"
log:
config["output_location"] + "log/mosaiClassifier_calc_probs/{sample}/{window}.{bpdens}.log"
script:
"utils/mosaiClassifier.snakemake.R"
rule create_haplotag_likelihoods:
input:
haplotag_table = config["output_location"] + "haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens}.tsv",
sv_probs_table = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata",
output:
config["output_location"] + "haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.Rdata"
log:
config["output_location"] + "log/create_haplotag_likelihoods/{sample}.{window}.{bpdens}.log"
script:
"utils/haplotagProbs.snakemake.R"
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
################################################################################
# Call SNVs #
################################################################################
# TODO : to move in utils category
rule mergeBams:
"""
rule fct:
input:
output:
"""
input:
lambda wc: expand(config["input_bam_location"] + wc.sample + "/all/{bam}.bam", bam = ALLBAMS_PER_SAMPLE[wc.sample]) if wc.sample in ALLBAMS_PER_SAMPLE else "FOOBAR",
output:
config["output_location"] + "snv_calls/{sample}/merged.bam"
log:
config["output_location"] + "log/mergeBams/{sample}.log"
threads:
4
shell:
# FIXME : Samtools 1.10 from Conda env not working ; 1.9 from Seneca working > change it into conda env yml file
config["samtools"] + " merge -@ {threads} {output} {input} 2>&1 > {log}"
# "samtools" + " merge -@ {threads} {output} {input} 2>&1 > {log}"
# TODO : to move in utils category
rule index_bam:
"""
rule fct:
input:
output:
"""
input:
"{file}.bam"
output:
"{file}.bam.bai"
log:
"{file}.bam.log"
shell:
config["samtools"] + " index {input} 2> {log}"
# "samtools" + " index {input} 2> {log}"
rule regenotype_SNVs:
"""
rule fct:
input:
output:
"""
input:
bam = config["output_location"] + "snv_calls/{sample}/merged.bam",
bai = config["output_location"] + "snv_calls/{sample}/merged.bam.bai",
sites = config["snv_sites_to_genotype"],
output:
vcf = config["output_location"] + "snv_genotyping/{sample}/{chrom,chr[0-9A-Z]+}.vcf"
log:
config["output_location"] + "log/snv_genotyping/{sample}/{chrom}.log"
params:
fa = config["reference"],
# bcftools = config["bcftools"]
shell:
# CHECKME : Samtools / BCFtools / freebayes path definition through conda env
# CHECKME : interest of using -r parameters for freebayes => split by chroms
"""
(freebayes \
-f {params.fa} \
-r {wildcards.chrom} \
-@ {input.sites} \
--only-use-input-alleles {input.bam} \
--genotype-qualities \
| bcftools view \
--exclude-uncalled \
--genotype het \
--types snps \

Thomas Weber
committed
--include "QUAL>=10" \
> {output.vcf}) 2> {log}
"""