Newer
Older
configfile: "Snake.config_embl.yaml"

Thomas Weber
committed
import pandas as pd
from pprint import pprint
# print(os.listdir(os.getcwd()))
# print(os.listdir("bam"))
# TODO I/O : Function to define inputs ; simplify list/dict system
# TODO Use remote file system to download example files
SAMPLE,BAM = glob_wildcards(config["input_bam_location"] + "{sample}/selected/{bam}.bam")

Thomas Weber
committed
# pprint(SAMPLE)
# pprint(BAM)
SAMPLES = sorted(set(SAMPLE))
CELL_PER_SAMPLE= defaultdict(list)
BAM_PER_SAMPLE = defaultdict(list)
for sample,bam in zip(SAMPLE,BAM):
BAM_PER_SAMPLE[sample].append(bam)
CELL_PER_SAMPLE[sample].append(bam.replace(".sort.mdup",""))
ALLBAMS_PER_SAMPLE = defaultdict(list)
for sample in SAMPLES:
ALLBAMS_PER_SAMPLE[sample] = glob_wildcards(config["input_bam_location"] + "{}/all/{{bam}}.bam".format(sample)).bam
print("Detected {} samples:".format(len(SAMPLES)))
for s in SAMPLES:
print(" {}:\t{} cells\t {} selected cells".format(s, len(ALLBAMS_PER_SAMPLE[s]), len(BAM_PER_SAMPLE[s])))

Thomas Weber
committed
# pprint(BAM_PER_SAMPLE)
# pprint(CELL_PER_SAMPLE)
# FIXME : tmp solution to remove bad cells => need to fix this with combination of ASHLEYS ?
exclude_list = ['BM510x3PE20490']
BAM_PER_SAMPLE = {k:sorted([e for e in v if e.split('.')[0] not in exclude_list]) for k,v in BAM_PER_SAMPLE.items()}
CELL_PER_SAMPLE = {k:sorted([e for e in v if e not in exclude_list]) for k,v in CELL_PER_SAMPLE.items()}

Thomas Weber
committed
# pprint(BAM_PER_SAMPLE)
# pprint(CELL_PER_SAMPLE)
# Current state of the pipeline:
# ==============================
# * count reads in the BAM files (in fixed and variable-width bins of various sizes)
# * determine strand states of each chromosome in each single cell, including SCEs
# * plot all single cell libraries in different window sizes
# * calculate a segmentation into potential SVs using Mosaicatcher
METHODS = [
"simpleCalls_llr4_poppriorsTRUE_haplotagsTRUE_gtcutoff0_regfactor6_filterFALSE",
"simpleCalls_llr4_poppriorsTRUE_haplotagsFALSE_gtcutoff0.05_regfactor6_filterTRUE",
]
# FIXME : move to yaml/json settings or to something else
BPDENS = [
"selected_j{}_s{}_scedist{}".format(joint, single, scedist) for joint in [0.1] for single in [0.5] for scedist in [20]
]

Thomas Weber
committed
# print(BPDENS)
# # Todo: specify an exact version of the singularity file!
# print(SAMPLES)
# print(CELL_PER_SAMPLE)
# print(CELL_PER_SAMPLE.values())
# print([sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e])
# # print(expand([SAMPLES, [sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]]))
# print(expand(["{sample}/{cell}"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]))
# # exit()
# print(expand([config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ))
final_list = [config['input_bam_location'] + "{}/{}.bam".format(key, nested_key) for key in BAM_PER_SAMPLE for nested_key in BAM_PER_SAMPLE[key] ]

Thomas Weber
committed
rule all:
input:
expand(config["output_location"] + "plots/{sample}/{window}.pdf", sample = SAMPLES, window = [100000]),
# expand(config["output_location"] + "counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "plots/{sample}/{window}.pdf", sample=SAMPLES, window=[100000])
# expand(config["output_location"] + "norm_counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "norm_counts/{sample}/{window}.info", sample=SAMPLES, window=[100000])

Thomas Weber
committed
# expand(config["output_location"] + "segmentation/{sample}/{window}.txt", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "snv_calls/{sample}/merged.bam", sample=SAMPLES)
# expand(config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf", sample=SAMPLES, window=[100000], chrom=config["chromosomes"]),

Thomas Weber
committed
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens}.Rdata", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/biAllelic_llr4.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/biAllelic_llr4.complex.tsv", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/{method}.txt",
# sample = SAMPLES,
# window = [100000],
# bpdens = BPDENS,
# method = list(set(m.replace('_filterTRUE','').replace('_filterFALSE','') for m in METHODS))),
# expand(config["output_location"] + "stats-merged/{sample}/stats.tsv", sample = SAMPLES),

Thomas Weber
committed
# expand(config["input_bam_location"] + "{sample}/{folder}/{bam}.{chrom}.txt",
# sample=SAMPLES,
# folder=["all", "selected"],
# bam=final_list,
# chrom=config['chromosomes'])
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/plots/sv_calls/{method}.{chrom}.pdf",
sample = SAMPLE,
chrom = config["chromosomes"],
window = [100000],
bpdens = BPDENS,
method = METHODS),
# expand("ploidy/{sample}/ploidy.{chrom}.txt", sample = SAMPLES, chrom = config["chromosomes"]),
expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/plots/sv_consistency/{method}.consistency-barplot-{plottype}.pdf",
sample = SAMPLES,
window = [100000],
bpdens = BPDENS,
method = METHODS,
plottype = ["byaf","bypos"]),
expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/plots/sv_clustering/{method}-{plottype}.pdf",
sample = SAMPLES,
window = [100000],
bpdens = BPDENS,
method = METHODS,
plottype = ["position","chromosome"]),
expand(config["output_location"] + "halo/{sample}/{window}.json.gz",
sample = SAMPLES,
window = [100000]),
expand(config["output_location"] + "ploidy/{sample}/ploidy.{chrom}.txt", sample = SAMPLES, chrom = config["chromosomes"]),
# expand("stats-merged/{sample}/stats.tsv", sample = SAMPLES),
# expand("postprocessing/merge/{sample}/{window}.{bpdens}/{method}.txt",
# sample = SAMPLES,
# window = [100000],
# bpdens = BPDENS,
# method = list(set(m.replace('_filterTRUE','').replace('_filterFALSE','') for m in METHODS))),

Thomas Weber
committed
# FIXME : To solve : cell wildcard (dict type) comparatively to others that are list type
################################################################################

Thomas Weber
committed
# TMP solution by extracting chrom in BAM files #
################################################################################

Thomas Weber
committed
# rule simplify_bam_files:

Thomas Weber
committed
# bam = config["input_bam_location"] + "{sample}/{folder}/{bam}.bam"
# output:
# bam_with_header = config["output_location"] + "lite_bam_with_full_header/" + "{sample}/{folder}/{bam}.bam"
# bam_without_header = config["output_location"] + "lite_bam_with_lite_header/" + "{sample}/{folder}/{bam}.bam"

Thomas Weber
committed
# config["input_bam_location"] + "bam_modif/{sample}/{folder}/{bam}.log"

Thomas Weber
committed
# cat \
# <(samtools view -H {input.bam} | grep -P "^@HD|^@RG|^\@SQ\\tSN:chr21|^@PG") \
# <(samtools view {input.bam} chr21) |\
# samtools view -bo {output.bam_without_header} \
# > {log} 2>&1 ;
# cat \
# <(samtools view -H {input.bam}) \
# <(samtools view {input.bam} chr21) |\
# samtools view -bo {output.bam_with_header} \
# > {log} 2>&1 ;

Thomas Weber
committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
################################################################################
# Read counting #
################################################################################
# CHECKME : exclude file rule useful ?
rule generate_exclude_file_1:
output:
config["output_location"] + "log/exclude_file.temp"
input:
bam = expand(config["input_bam_location"] + "{sample}/selected/{bam}.bam", sample = SAMPLES[0], bam = BAM_PER_SAMPLE[SAMPLES[0]][0])
log:
config["output_location"] + "log/generate_exclude_file_1.log"
params:
samtools = config["samtools"]
shell:
"""
{params.samtools} view -H {input.bam} | awk "/^@SQ/" > {output}
"""
rule generate_exclude_file_2:
output:
config["output_location"] + "log/exclude_file"
input:
config["output_location"] + "log/exclude_file.temp"
params:
chroms = config["chromosomes"]
run:
with open(input[0]) as f:
with open(output[0],"w") as out:
for line in f:
contig = line.strip().split()[1]
contig = contig[3:]
# if contig not in params.chroms:
# print(contig, file = out)
# CHECKME : same as above for input ???
# TODO : Simplify expand command
# DOCME : mosaic count read orientation ?
rule mosaic_count:
"""
rule fct: Call mosaic count C++ function to count reads in each BAM file according defined window
input: For the moment, individual BAM file in the selected folder of the associated sample
output: counts: read counts for the BAM file according defined window ; info file : summary statistics
bam = lambda wc: expand(config["input_bam_location"] + wc.sample + "/selected/{bam}.bam", bam = BAM_PER_SAMPLE[wc.sample]) if wc.sample in BAM_PER_SAMPLE else "FOOBAR",

Thomas Weber
committed
bai = lambda wc: expand(config["input_bam_location"] + wc.sample + "/selected/{bam}.bam.bai", bam = BAM_PER_SAMPLE[wc.sample]) if wc.sample in BAM_PER_SAMPLE else "FOOBAR",
# excl = config["output_location"] + "log/exclude_file"

Thomas Weber
committed
counts = config["output_location"] + "counts/{sample}/{window}.txt.fixme.gz",
info = config["output_location"] + "counts/{sample}/{window}.info"
config["output_location"] + "log/{sample}/mosaic_count.{window}.log"
mc_command = config["mosaicatcher"]
{params.mc_command} count \
--verbose \
--do-not-blacklist-hmm \
-o {output.counts} \
-i {output.info} \
-w {wildcards.window} \
{input.bam}
> {log} 2>&1

Thomas Weber
committed
rule tmp_filter_mosaic_count_by_chr:
input:
config["output_location"] + "counts/{sample}/{window}.txt.fixme.gz"
output:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
run:
df = pd.read_csv(input[0], compression='gzip', sep='\t')
df = df.loc[df['chrom'].isin(wildcards.chromosomes)]
df.to_csv(output[0], compression='gzip', sep='\t', index=False)
################################################################################
# Normalize counts #
################################################################################
# TODO : Reference blacklist BED file to retrieve easily on Git/Zenodo/remote system

Thomas Weber
committed
# TODO : check if inversion file is corresponded to previously published
rule merge_blacklist_bins:
"""
rule fct: Call Python script to merge HGVSC normalization defined file & inversion whitelist file
input: norm: HGSVC predefined BED file by the group ; whitelist: whitelist inversion file predefined by the group
norm = "utils/normalization/HGSVC.{window}.txt",
whitelist = "utils/normalization/inversion-whitelist.tsv",
merged = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv"
config["output_location"] + "log/merge_blacklist_bins/{window}.log"
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/merge-blacklist.py --merge_distance 500000 {input.norm} --whitelist {input.whitelist} --min_whitelist_interval_size 100000 > {output.merged} 2>> {log}
# FIXME : snakemake ambiguity with I/O paths
# CHECKME : Check R code for normalization
rule normalize_counts:
"""
rule fct: Normalization of mosaic counts based on merged normalization file produced with a linear relation (count * scaling_factor)
input: counts: counts file coming from `rule mosaic_count` ; norm: merged normalization file produced by `rule merge_blacklist_bins`
output: normalized counts based predefined factors for each window
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
norm = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv",
config["output_location"] + "norm_counts/{sample}/{window}.txt.gz"
config["output_location"] + "log/normalize_counts/{sample}/{window}.log"
shell:
"""
Rscript utils/normalize.R {input.counts} {input.norm} {output} 2>&1 > {log}
"""
# FIXME : cleaner way to symlink info files
rule link_normalized_info_file:
"""
rule fct: Symlink info file ouput mosaic count to normalization count directory
input: Global summary statistics produced by mosaic count
output: symlink in norm_counts output directory
info = config["output_location"] + "counts/{sample}/{window}.info"
info = config["output_location"] + "norm_counts/{sample}/{window}.info"
run:
d = os.path.dirname(output.info)
file = os.path.basename(output.info)
shell("cd {d} && ln -s {input.info} {file}")
################################################################################
# Joint Segmentation #
################################################################################
# CHECKME : @Marco mention on Gitlab
# CHECKME : parameters
# DOCME : check segmentation results to better understand
"""
rule fct: Identify breakpoints of futur SV based on normalized read counts
input: mosaic [normalized] counts
output: Segmentation tab file
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt.fixme"
log:
config["output_location"] + "log/segmentation/{sample}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
"""
# FIXME: no difference observed before/after awk command
# FIXME: This is a workaround because latest versions of "mosaic segment" don't compute the "bps" column properly. Remove once fixed in the C++ code.
rule fix_segmentation:
"""
rule fct:
input:
output:
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt.fixme"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v name={wildcards.sample} -v window={wildcards.window} -f utils/command2.awk {input} > {output}
"""
# Pick a few segmentations and prepare the input files for SV classification
# TODO : replace R script by integrating directly pandas in the pipeline
# CHECKME : used ???
rule prepare_segments:
"""
rule fct: selection of appropriate segmentation according breakpoint density (k) selected by the user : many : 60%, medium : 40%, few : 20%
input: mosaic segment output segmentation file
output: lite file with appropriate k according the quartile defined by the user
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt"
output:
config["output_location"] + "segmentation2/{sample}/{window}.{bpdens,(many|medium|few)}.txt"
log:
config["output_location"] + "log/prepare_segments/{sample}/{window}.{bpdens}.log"
params:
quantile = lambda wc: config["bp_density"][wc.bpdens]
script:
"utils/helper.prepare_segments.R"
################################################################################
# Single-Cell Segmentation #
################################################################################
# TODO : replace awk external file command with something else
rule extract_single_cell_counts:
"""
rule fct: extract from count the rows coming from the given cell
input: mosaic count output file for the sample according a given window
output: count per cell file for the sample according a given window
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window,[0-9]+}.txt.gz"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
zcat {input} | awk -v name={wildcards.cell} -f utils/command1.awk | gzip > {output}
"""
rule segment_one_cell:
rule fct: Same as `rule segmentation` : mosaic segment function but for individual cell
input: mosaic count splitted by cell produced by `rule extract_single_cell_counts`
output: Segmentation file for an individual cell
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"
config["output_location"] + "segmentation-per-cell/{sample}/{cell}/{window,\d+}.txt"
config["output_location"] + "log/segmentation-per-cell/{sample}/{cell}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
# URGENT : If one bad cell is detected => pipeline stop => need to fix this
# DOCME : how to handle when multiple chrom orientation
"""
RPE1-WT RPE1WTPE20492 chr10 0 27300000 WW
RPE1-WT RPE1WTPE20492 chr10 27300000 110600000 WC
RPE1-WT RPE1WTPE20492 chr10 110600000 127100000 CC
RPE1-WT RPE1WTPE20492 chr10 127100000 133797422 WC
"""
"selected_j0.1_s0.5_scedist20"
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance 500 000 \
--sce_add_cutoff 20 000 000 \
--min_diff_jointseg 0.1 \
--min_diff_singleseg 0.5 \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
{input.singleseg} > {log} 2>&1
"""
rule segmentation_selection:
"""
rule fct:
input: mosaic read counts (txt.gz) & stats info (.info) + joint & sc segmentation
output: initial_strand_state used for the following by strandphaser
"""
input:
counts=config["output_location"] + "counts/{sample}/{window}.txt.gz",
jointseg=config["output_location"] + "segmentation/{sample}/{window}.txt",
singleseg=lambda wc: [config["output_location"] + "segmentation-per-cell/{}/{}/{}.txt".format(wc.sample, cell, wc.window) for cell in CELL_PER_SAMPLE[wc.sample]],
info=config["output_location"] + "counts/{sample}/{window}.info",
output:
jointseg=config["output_location"] + "segmentation2/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",
singleseg=config["output_location"] + "segmentation-singlecell/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",

Thomas Weber
committed
strand_states=config["output_location"] + "strand_states/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}/initial_strand_state",
config["output_location"] + "log/segmentation_selection/{sample}/{window}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.log"
params:
cellnames = lambda wc: ",".join(cell for cell in CELL_PER_SAMPLE[wc.sample]),
sce_min_distance = 500000,
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance {params.sce_min_distance} \
--sce_add_cutoff {wildcards.additional_sce_cutoff}000000 \
--min_diff_jointseg {wildcards.min_diff_jointseg} \
--min_diff_singleseg {wildcards.min_diff_singleseg} \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
"""
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
################################################################################
# REGENOTYPE SNV #
################################################################################
rule regenotype_SNVs:
"""
rule fct:
input:
output:
"""
input:
bam = config["output_location"] + "snv_calls/{sample}/merged.bam",
bai = config["output_location"] + "snv_calls/{sample}/merged.bam.bai",
sites = config["snv_sites_to_genotype"],
output:
vcf = config["output_location"] + "snv_genotyping/{sample}/{chrom,chr[0-9A-Z]+}.vcf"
log:
config["output_location"] + "log/snv_genotyping/{sample}/{chrom}.log"
params:
fa = config["reference"],
# bcftools = config["bcftools"]
shell:
# CHECKME : Samtools / BCFtools / freebayes path definition through conda env
# CHECKME : interest of using -r parameters for freebayes => split by chroms
"""
(freebayes \
-f {params.fa} \
-r {wildcards.chrom} \
-@ {input.sites} \
--only-use-input-alleles {input.bam} \
--genotype-qualities \
| bcftools view \
--exclude-uncalled \
--genotype het \
--types snps \
--include "QUAL>=10" \
> {output.vcf}) 2> {log}
"""
################################################################################
# StrandPhaseR things #
################################################################################
# TODO : replace R script by integrating directly pandas in the pipeline / potentialy use piped output to following rule ?

Thomas Weber
committed
"""
rule fct: extract only segmentation with WC orientation
input: initial_strand_state file coming from rule segmentation_selection & info file from mosaic count output
output: filtered TSV file with start/end coordinates of WC-orientated segment to be used by strandphaser
"""

Thomas Weber
committed
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# URGENT : hard coded 500000 file name ???
# info = config["output_location"] + "counts/{sample}/500000.info"
# FIXME : quick workaround with {window} wc
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_input.txt"
log:
config["output_location"] + "log/convert_strandphaser_input/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_input.R"
# TODO : make something similar to mosaic with C++ dep
# CHECKME : check if possible to write something more snakemak"ic" & compliant with conda/singularity running env
# WARNING : I/O path definition
# WARNING : Try to find a solution to install stranphaser in a conda environment => contact david porubsky to move on the bioconductor ?

Thomas Weber
committed
# rule install_StrandPhaseR:
# output:
# "utils/R-packages/StrandPhaseR/R/StrandPhaseR"
# log:
# "log/install_StrandPhaseR.log"
# shell:
# """
# TAR=$(which tar) Rscript utils/install_strandphaser.R > {log} 2>&1
# """
# TODO : replace by clean config file if possible or by temporary removed file
rule prepare_strandphaser_config_per_chrom:
"""
rule fct: prepare config file used by strandphaser
input: input used only for wildcards : sample, window & bpdens
output: config file used by strandphaser
"""

Thomas Weber
committed
config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state"
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR.{chrom}.config"
run:
with open(output[0], "w") as f:
print("[General]", file = f)
print("numCPU = 1", file = f)
print("chromosomes = '" + wildcards.chrom + "'", file = f)
if (config["paired_end"]):
print("pairedEndReads = TRUE", file = f)
else:
print("pairedEndReads = FALSE", file = f)
print("min.mapq = 10", file = f)
print("", file = f)
print("[StrandPhaseR]", file = f)
print("positions = NULL", file = f)
print("WCregions = NULL", file = f)
print("min.baseq = 20", file = f)
print("num.iterations = 2", file = f)
print("translateBases = TRUE", file = f)
print("fillMissAllele = NULL", file = f)
print("splitPhasedReads = TRUE", file = f)
print("compareSingleCells = TRUE", file = f)
print("callBreaks = FALSE", file = f)
print("exportVCF = '", wildcards.sample, "'", sep = "", file = f)
print("bsGenome = '", config["R_reference"], "'", sep = "", file = f)
# # TODO : TMP solution
# # CHECKME : need to check with people if SNP genotyping file is mandatory => will simplify things
# def locate_snv_vcf(wildcards):
# if "snv_calls" not in config or wildcards.sample not in config["snv_calls"] or config["snv_calls"][wildcards.sample] == "":
# if "snv_sites_to_genotype" in config and config["snv_sites_to_genotype"] != "" :
# if os.path.isfile(config["snv_sites_to_genotype"]):
# return "snv_genotyping/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "external_snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
"""
rule fct: run strandphaser for each chromosome
input: strandphaser_input.txt from rule convert_strandphaser_input ; genotyped snv for each chrom by freebayes ; configfile created by rule prepare_strandphaser_config_per_chrom ; bam folder
output:
"""
input:
wcregions = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_input.txt",
snppositions = config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf",
configfile = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR.{chrom}.config",
# DOCME : used as an input to call the installation

Thomas Weber
committed
# strandphaser = "utils/R-packages/StrandPhaseR/R/StrandPhaseR",
# strandphaser = config["strandphaser"],
bamfolder = config["input_bam_location"] + "{sample}/selected"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt",
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf"
log:
"log/run_strandphaser_per_chrom/{sample}/{window}.{bpdens}/{chrom}.log"
shell:
"""
{config[Rscript]} utils/StrandPhaseR_pipeline.R \

Thomas Weber
committed
{config[output_location]}strand_states/{wildcards.sample}/{wildcards.window}.{wildcards.bpdens}/StrandPhaseR_analysis.{wildcards.chrom} \
{input.configfile} \
{input.wcregions} \
{input.snppositions} \
$(pwd)/utils/R-packages/ \
"""
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
rule merge_strandphaser_vcfs:
input:
vcfs=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz", chrom=config["chromosomes"]),
tbis=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz.tbi", chrom=config["chromosomes"]),
output:
vcf=config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.vcf.gz"
log:
"log/merge_strandphaser_vcfs/{sample}/{window}.{bpdens}.log"
shell:
"(bcftools concat -a {input.vcfs} | bcftools view -o {output.vcf} -O z --genotype het --types snps - ) > {log} 2>&1"
rule combine_strandphaser_output:
input:
expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", chrom = config["chromosomes"])
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_output.txt"
log:
"log/combine_strandphaser_output/{sample}/{window}.{bpdens}.log"
shell:
"""
set +o pipefail
cat {input} | head -n1 > {output};
tail -q -n+2 {input} >> {output};
"""
rule convert_strandphaser_output:
input:
phased_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_output.txt",
initial_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# info = config["output_location"] + "counts/{sample}/500000_fixed.info"
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/final.txt"
log:
"log/convert_strandphaser_output/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_output.R"
################################################################################
# Haplotagging #
################################################################################
rule haplotag_bams:
input:
vcf = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz",
tbi = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz.tbi",
bam = config["input_bam_location"] + "{sample}/selected/{bam}.bam",
bai = config["input_bam_location"] + "{sample}/selected/{bam}.bam.bai"
output:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/{bam}.bam",
log:
config["output_location"] + "log/haplotag_bams/{sample}/{window}.{bpdens}/{bam}.log"
params:
ref = config["reference"]
shell:
"whatshap haplotag -o {output.bam} -r {params.ref} {input.vcf} {input.bam} > {log} 2>{log}"
rule create_haplotag_segment_bed:
input:
segments = config["output_location"] + "segmentation2/{sample}/{size}{what}.{bpdens}.txt",
output:
bed = config["output_location"] + "haplotag/bed/{sample}/{size,[0-9]+}{what}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.bed",
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v s={wildcards.size} -f utils/command3.awk {input.segments} > {output.bed}
"""
rule create_haplotag_table:
input:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam",
bai = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam.bai",
bed = config["output_location"] + "haplotag/bed/{sample}/{window}.{bpdens}.bed"
output:
tsv = config["output_location"] + "haplotag/table/{sample}/by-cell/haplotag-counts.{cell}.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
log:
config["output_location"] + "log/create_haplotag_table/{sample}.{cell}.{window}.{bpdens}.log"
script:
"utils/haplotagTable.snakemake.R"
rule merge_haplotag_tables:
input:
tsvs = lambda wc: [config["output_location"] + "haplotag/table/{}/by-cell/haplotag-counts.{}.{}.{}.tsv".format(wc.sample,cell,wc.window,wc.bpdens) for cell in BAM_PER_SAMPLE[wc.sample]],
output:
tsv = config["output_location"] + "haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
shell:
"(head -n1 {input.tsvs[0]} && tail -q -n +2 {input.tsvs}) > {output.tsv}"

Thomas Weber
committed
################################################################################
# MosaiClassifier #
################################################################################
rule mosaiClassifier_calc_probs:
input:
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info",
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt",
bp = config["output_location"] + "segmentation2/{sample}/{window}.{bpdens}.txt"
output:
output = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/probabilities.Rdata"
log:
config["output_location"] + "log/mosaiClassifier_calc_probs/{sample}/{window}.{bpdens}.log"
script:
"utils/mosaiClassifier.snakemake.R"
rule create_haplotag_likelihoods:
input:
haplotag_table = config["output_location"] + 'haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens}.tsv',
sv_probs_table = config["output_location"] + 'sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata',
output:
config["output_location"] + 'haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.Rdata'
log:
config["output_location"] + "log/create_haplotag_likelihoods/{sample}.{window}.{bpdens}.log"
script:
"utils/haplotagProbs.snakemake.R"

Thomas Weber
committed
rule mosaiClassifier_make_call:

Thomas Weber
committed
input:
probs = config["output_location"] + 'haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens}.Rdata'

Thomas Weber
committed
output:
config["output_location"] + "sv_calls/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}_filterFALSE.txt"
params:
minFrac_used_bins = 0.8

Thomas Weber
committed
log:
config["output_location"] + "log/mosaiClassifier_make_call/{sample}/{window}.{bpdens}.llr{llr}.poppriors{pop_priors}.haplotags{use_haplotags}.gtcutoff{gtcutoff}.regfactor{regfactor}.log"
script:
"utils/mosaiClassifier_call.snakemake.R"
# CHECKME : check if still useful ?

Thomas Weber
committed
rule mosaiClassifier_make_call_biallelic:
input:
probs = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata"

Thomas Weber
committed
output:
config["output_location"] + "sv_calls/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/biAllelic_llr{llr}.txt"

Thomas Weber
committed
log:
config["output_location"] + "log/mosaiClassifier_make_call_biallelic/{sample}/{window}.{bpdens}.{llr}.log"

Thomas Weber
committed
script:
"utils/mosaiClassifier_call_biallelic.snakemake.R"
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
################################################################################
# PostProcessing #
################################################################################
# DOCME : perl in conda
rule postprocessing_filter:
input:
calls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}_filterFALSE.txt"
output:
calls = config["output_location"] + "postprocessing/filter/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}.txt"
shell:
'utils/filter_MosaiCatcher_calls.pl {input.calls} > {output.calls}'
rule postprocessing_merge:
input:
calls = config["output_location"] + "postprocessing/filter/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}.txt"
output:
calls = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}.txt"
shell:
'utils/group_nearby_calls_of_same_AF_and_generate_output_table.pl {input.calls} > {output.calls}'
rule postprocessing_sv_group_table:
input:
calls = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}.txt"
output:
grouptrack = config["output_location"] + "postprocessing/group-table/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}.tsv"
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/create-sv-group-track.py {input.calls} > {output.grouptrack}
"""
rule filter_calls:
input:
inputcalls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}_filterFALSE.txt",
mergedcalls = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}.txt",
output:
calls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}_filterTRUE.txt"
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/apply_filter.py {input.inputcalls} {input.mergedcalls} > {output.calls}
"""
rule call_complex_regions:
input:
calls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.txt",
output:
complex = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.complex.tsv",
log:
config["output_location"] + "log/call_complex_regions/{sample}/{window}.{bpdens}.{method}_filter{filter}.log"
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/call-complex-regions.py \
--merge_distance 5000000 \
--ignore_haplotypes \
--min_cell_count 2 {input.calls} > {output.complex} 2>{log}
"""
################################################################################
# Summary statistics on sv calls #
################################################################################
rule summary_statistics:
input:
segmentation = config["output_location"] + 'segmentation2/{sample}/{window}.{bpdens}.txt',
strandstates = config["output_location"] + 'strand_states/{sample}/{window}.{bpdens}/initial_strand_state',
sv_calls = config["output_location"] + 'sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.txt',
complex = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.complex.tsv",
merged = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/{method}.txt",
output:
tsv = config["output_location"] + 'stats/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/{method}_filter{filter,(TRUE|FALSE)}.tsv',
log:
config["output_location"] + 'log/summary_statistics/{sample}/{window}.{bpdens}/{method}_filter{filter}.log'
run:
p = []
try:
f = config["ground_truth_clonal"][wildcards.sample]
if len(f) > 0:
p.append('--true-events-clonal')
p.append(f)
except KeyError:
pass
try:
f = config["ground_truth_single_cell"][wildcards.sample]
if len(f) > 0:
p.append('--true-events-single-cell')
p.append(f)
except KeyError:
pass
if wildcards.filter == 'TRUE':
p.append('--merged-file')
p.append(input.merged)
additional_params = ' '.join(p)
shell('utils/callset_summary_stats.py --segmentation {input.segmentation} --strandstates {input.strandstates} --complex-regions {input.complex} {additional_params} {input.sv_calls} > {output.tsv} ')
rule aggregate_summary_statistics:
input:
tsv=expand(config["output_location"] + "stats/{{sample}}/{window}.{bpdens}/{method}.tsv", window = [100000], bpdens = BPDENS, method = METHODS),
output:
tsv=config["output_location"] + "stats-merged/{sample}/stats.tsv"
shell:
"(head -n1 {input.tsv[0]} && (tail -n1 -q {input.tsv} | sort -k1) ) > {output}"
# CHECKME : to check & see if it's working
################################################################################
# Ploidy estimation #
################################################################################
# TODO : merge into one file by sample
rule estimate_ploidy:
input:
config["output_location"] + "counts/{sample}/100000.txt.gz"
output:
config["output_location"] + "ploidy/{sample}/ploidy.{chrom}.txt"
log:
config["output_location"] + "log/estimate_ploidy/{sample}/{chrom}.log"
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
python utils/ploidy-estimator.py --chromosome {wildcards.chrom} {input} > {output}
"""
################################################################################
# Plots #
################################################################################
# FIXME : Missing plots in final PDF ; R script + inputs to check
# CHECKME : check if possible to switch from PDF to svg (or both) to produce lighter files
rule plot_mosaic_counts:
"""
rule fct: Plot function of read counts for each bam file
input: mosaic count outputs (counts & info)
output: Generate figure based on couting results
"""
input:
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "plots/{sample}/{window}.pdf"
log:
config["output_location"] + "log/plot_mosaic_counts/{sample}/{window}.log"
params:
plot_command = config["Rscript"] + " " + config["plot_script"]
shell:
"""
{params.plot_command} {input.counts} {input.info} {output} > {log} 2>&1
"""
rule generate_halo_json:
input:
counts = config["output_location"] + "counts/{sample}/{windows}.txt.gz",