Newer
Older
configfile: "config/Snake.config_embl.yaml"

Thomas Weber
committed
import pandas as pd
from pprint import pprint
# print(os.listdir(os.getcwd()))
# print(os.listdir("bam"))
# TODO I/O : Function to define inputs ; simplify list/dict system
# TODO Use remote file system to download example files
def handle_input_data(thisdir, exclude_list=list):
"""
"""
# Parsing folder
data = [(r,file.replace('.bam', '')) for r, d, f in os.walk(thisdir) for file in f if ".bam" in file and ".bai" not in file]
# Building pandas df based on folder structure
df = pd.DataFrame(data,columns=['Folder','File'])
# Defining cols
df['all/selected'] = df['Folder'].apply(lambda r: r.split('/')[-1])
df['Sample'] = df['Folder'].apply(lambda r: r.split('/')[-2])
df['Cell'] = df['File'].apply(lambda r: r.split('.')[0])
df['Full_path'] = df['Folder'] + "/" + df['File']
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Filtering based on exclude list defined
df_config_files = df.loc[~df['Cell'].isin(exclude_list)]
# Export dicts
SAMPLES = sorted(df_config_files.Sample.unique().tolist())
BAM_PER_SAMPLE = df_config_files.loc[df_config_files['all/selected'] == "selected"].groupby('Sample')['File'].apply(list).to_dict()
CELL_PER_SAMPLE = df_config_files.loc[df_config_files['all/selected'] == "selected"].groupby('Sample')['Cell'].apply(list).to_dict()
ALLBAMS_PER_SAMPLE = df_config_files.loc[df_config_files['all/selected'] == "all"].groupby('Sample')['File'].apply(list).to_dict()
return SAMPLES, BAM_PER_SAMPLE, CELL_PER_SAMPLE, ALLBAMS_PER_SAMPLE, df_config_files
# FIXME : tmp solution to remove bad cells => need to fix this with combination of ASHLEYS ?
# TODO : other solution by giving in config file, CLI input ?
exclude_list = ['BM510x3PE20490']
SAMPLES, BAM_PER_SAMPLE, CELL_PER_SAMPLE, ALLBAMS_PER_SAMPLE, df_config_files = handle_input_data(thisdir=config["input_bam_location"], exclude_list=exclude_list)
# SAMPLE, BAM = glob_wildcards(config["input_bam_location"] + "{sample}/selected/{bam}.bam")
# SAMPLES = sorted(set(SAMPLE))
# CELL_PER_SAMPLE= defaultdict(list)
# BAM_PER_SAMPLE = defaultdict(list)
# for sample,bam in zip(SAMPLE,BAM):
# BAM_PER_SAMPLE[sample].append(bam)
# CELL_PER_SAMPLE[sample].append(bam.replace(".sort.mdup",""))
# ALLBAMS_PER_SAMPLE = defaultdict(list)
# for sample in SAMPLES:
# ALLBAMS_PER_SAMPLE[sample] = glob_wildcards(config["input_bam_location"] + "{}/all/{{bam}}.bam".format(sample)).bam
# pprint(ALLBAMS_PER_SAMPLE)
print("Detected {} samples:".format(len(SAMPLES)))
for s in SAMPLES:
print(" {}:\t{} cells\t {} selected cells".format(s, len(ALLBAMS_PER_SAMPLE[s]), len(BAM_PER_SAMPLE[s])))

Thomas Weber
committed
# pprint(BAM_PER_SAMPLE)
# pprint(CELL_PER_SAMPLE)
# BAM_PER_SAMPLE = {k:sorted([e for e in v if e.split('.')[0] not in exclude_list]) for k,v in BAM_PER_SAMPLE.items()}
# CELL_PER_SAMPLE = {k:sorted([e for e in v if e not in exclude_list]) for k,v in CELL_PER_SAMPLE.items()}

Thomas Weber
committed
# pprint(BAM_PER_SAMPLE)
# pprint(CELL_PER_SAMPLE)
# Current state of the pipeline:
# ==============================
# * count reads in the BAM files (in fixed and variable-width bins of various sizes)
# * determine strand states of each chromosome in each single cell, including SCEs
# * plot all single cell libraries in different window sizes
# * calculate a segmentation into potential SVs using Mosaicatcher
METHODS = [
"simpleCalls_llr4_poppriorsTRUE_haplotagsTRUE_gtcutoff0_regfactor6_filterFALSE",
"simpleCalls_llr4_poppriorsTRUE_haplotagsFALSE_gtcutoff0.05_regfactor6_filterTRUE",
]
# FIXME : move to yaml/json settings or to something else
BPDENS = [
"selected_j{}_s{}_scedist{}".format(joint, single, scedist) for joint in [0.1] for single in [0.5] for scedist in [20]
]

Thomas Weber
committed
# print(BPDENS)
# # Todo: specify an exact version of the singularity file!
# print(SAMPLES)
# print(CELL_PER_SAMPLE)
# print(CELL_PER_SAMPLE.values())
# print([sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e])
# # print(expand([SAMPLES, [sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]]))
# print(expand(["{sample}/{cell}"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]))
# # exit()
# print(expand([config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ))
final_list = [config['input_bam_location'] + "{}/{}.bam".format(key, nested_key) for key in BAM_PER_SAMPLE for nested_key in BAM_PER_SAMPLE[key] ]

Thomas Weber
committed
rule all:
input:
expand(config["output_location"] + "plots/{sample}/{window}.pdf", sample = SAMPLES, window = [100000]),
# expand(config["output_location"] + "counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "plots/{sample}/{window}.pdf", sample=SAMPLES, window=[100000])
# expand(config["output_location"] + "norm_counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "norm_counts/{sample}/{window}.info", sample=SAMPLES, window=[100000])

Thomas Weber
committed
# expand(config["output_location"] + "segmentation/{sample}/{window}.txt", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "snv_calls/{sample}/merged.bam", sample=SAMPLES)
# expand(config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf", sample=SAMPLES, window=[100000], chrom=config["chromosomes"]),

Thomas Weber
committed
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens}.Rdata", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/biAllelic_llr4.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/biAllelic_llr4.complex.tsv", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/{method}.txt",
# sample = SAMPLES,
# window = [100000],
# bpdens = BPDENS,
# method = list(set(m.replace('_filterTRUE','').replace('_filterFALSE','') for m in METHODS))),
# expand(config["output_location"] + "stats-merged/{sample}/stats.tsv", sample = SAMPLES),

Thomas Weber
committed
# expand(config["input_bam_location"] + "{sample}/{folder}/{bam}.{chrom}.txt",
# sample=SAMPLES,
# folder=["all", "selected"],
# bam=final_list,
# chrom=config['chromosomes'])
expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/plots/sv_calls/{method}.{chrom}.pdf",
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
chrom = config["chromosomes"],
window = [100000],
bpdens = BPDENS,
method = METHODS),
# expand("ploidy/{sample}/ploidy.{chrom}.txt", sample = SAMPLES, chrom = config["chromosomes"]),
expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/plots/sv_consistency/{method}.consistency-barplot-{plottype}.pdf",
sample = SAMPLES,
window = [100000],
bpdens = BPDENS,
method = METHODS,
plottype = ["byaf","bypos"]),
expand(config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/plots/sv_clustering/{method}-{plottype}.pdf",
sample = SAMPLES,
window = [100000],
bpdens = BPDENS,
method = METHODS,
plottype = ["position","chromosome"]),
expand(config["output_location"] + "halo/{sample}/{window}.json.gz",
sample = SAMPLES,
window = [100000]),
expand(config["output_location"] + "ploidy/{sample}/ploidy.{chrom}.txt", sample = SAMPLES, chrom = config["chromosomes"]),
# expand("stats-merged/{sample}/stats.tsv", sample = SAMPLES),
# expand("postprocessing/merge/{sample}/{window}.{bpdens}/{method}.txt",
# sample = SAMPLES,
# window = [100000],
# bpdens = BPDENS,
# method = list(set(m.replace('_filterTRUE','').replace('_filterFALSE','') for m in METHODS))),

Thomas Weber
committed
# FIXME : To solve : cell wildcard (dict type) comparatively to others that are list type
################################################################################

Thomas Weber
committed
# TMP solution by extracting chrom in BAM files #
################################################################################

Thomas Weber
committed
# rule simplify_bam_files:

Thomas Weber
committed
# bam = config["input_bam_location"] + "{sample}/{folder}/{bam}.bam"
# output:
# bam_with_header = config["output_location"] + "lite_bam_with_full_header/" + "{sample}/{folder}/{bam}.bam"
# bam_without_header = config["output_location"] + "lite_bam_with_lite_header/" + "{sample}/{folder}/{bam}.bam"

Thomas Weber
committed
# config["input_bam_location"] + "bam_modif/{sample}/{folder}/{bam}.log"

Thomas Weber
committed
# cat \
# <(samtools view -H {input.bam} | grep -P "^@HD|^@RG|^\@SQ\\tSN:chr21|^@PG") \
# <(samtools view {input.bam} chr21) |\
# samtools view -bo {output.bam_without_header} \
# > {log} 2>&1 ;
# cat \
# <(samtools view -H {input.bam}) \
# <(samtools view {input.bam} chr21) |\
# samtools view -bo {output.bam_with_header} \
# > {log} 2>&1 ;

Thomas Weber
committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
################################################################################
# Read counting #
################################################################################
# CHECKME : exclude file rule useful ?
rule generate_exclude_file_1:
output:
config["output_location"] + "log/exclude_file.temp"
input:
bam = expand(config["input_bam_location"] + "{sample}/selected/{bam}.bam", sample = SAMPLES[0], bam = BAM_PER_SAMPLE[SAMPLES[0]][0])
log:
config["output_location"] + "log/generate_exclude_file_1.log"
params:
samtools = config["samtools"]
shell:
"""
{params.samtools} view -H {input.bam} | awk "/^@SQ/" > {output}
"""
rule generate_exclude_file_2:
output:
config["output_location"] + "log/exclude_file"
input:
config["output_location"] + "log/exclude_file.temp"
params:
chroms = config["chromosomes"]
run:
with open(input[0]) as f:
with open(output[0],"w") as out:
for line in f:
contig = line.strip().split()[1]
contig = contig[3:]
# if contig not in params.chroms:
# print(contig, file = out)
# CHECKME : same as above for input ???
# TODO : Simplify expand command
# DOCME : mosaic count read orientation ?
rule mosaic_count:
"""
rule fct: Call mosaic count C++ function to count reads in each BAM file according defined window
input: For the moment, individual BAM file in the selected folder of the associated sample
output: counts: read counts for the BAM file according defined window ; info file : summary statistics
bam = lambda wc: expand(config["input_bam_location"] + wc.sample + "/selected/{bam}.bam", bam = BAM_PER_SAMPLE[wc.sample]) if wc.sample in BAM_PER_SAMPLE else "FOOBAR",

Thomas Weber
committed
bai = lambda wc: expand(config["input_bam_location"] + wc.sample + "/selected/{bam}.bam.bai", bam = BAM_PER_SAMPLE[wc.sample]) if wc.sample in BAM_PER_SAMPLE else "FOOBAR",
# excl = config["output_location"] + "log/exclude_file"

Thomas Weber
committed
counts = config["output_location"] + "counts/{sample}/{window}.txt.fixme.gz",
info = config["output_location"] + "counts/{sample}/{window}.info"
config["output_location"] + "log/{sample}/mosaic_count.{window}.log"
mc_command = config["mosaicatcher"]
{params.mc_command} count \
--verbose \
--do-not-blacklist-hmm \
-o {output.counts} \
-i {output.info} \
-w {wildcards.window} \
{input.bam}
> {log} 2>&1

Thomas Weber
committed
rule tmp_filter_mosaic_count_by_chr:
input:
config["output_location"] + "counts/{sample}/{window}.txt.fixme.gz"
output:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
run:
df = pd.read_csv(input[0], compression='gzip', sep='\t')
df = df.loc[df['chrom'].isin(wildcards.chromosomes)]
df.to_csv(output[0], compression='gzip', sep='\t', index=False)
################################################################################
# Normalize counts #
################################################################################
# TODO : Reference blacklist BED file to retrieve easily on Git/Zenodo/remote system

Thomas Weber
committed
# TODO : check if inversion file is corresponded to previously published
rule merge_blacklist_bins:
"""
rule fct: Call Python script to merge HGVSC normalization defined file & inversion whitelist file
input: norm: HGSVC predefined BED file by the group ; whitelist: whitelist inversion file predefined by the group
norm = "utils/normalization/HGSVC.{window}.txt",
whitelist = "utils/normalization/inversion-whitelist.tsv",
merged = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv"
config["output_location"] + "log/merge_blacklist_bins/{window}.log"
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/merge-blacklist.py --merge_distance 500000 {input.norm} --whitelist {input.whitelist} --min_whitelist_interval_size 100000 > {output.merged} 2>> {log}
# FIXME : snakemake ambiguity with I/O paths
# CHECKME : Check R code for normalization
rule normalize_counts:
"""
rule fct: Normalization of mosaic counts based on merged normalization file produced with a linear relation (count * scaling_factor)
input: counts: counts file coming from `rule mosaic_count` ; norm: merged normalization file produced by `rule merge_blacklist_bins`
output: normalized counts based predefined factors for each window
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
norm = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv",
config["output_location"] + "norm_counts/{sample}/{window}.txt.gz"
config["output_location"] + "log/normalize_counts/{sample}/{window}.log"
shell:
"""
Rscript utils/normalize.R {input.counts} {input.norm} {output} 2>&1 > {log}
"""
# FIXME : cleaner way to symlink info files
rule link_normalized_info_file:
"""
rule fct: Symlink info file ouput mosaic count to normalization count directory
input: Global summary statistics produced by mosaic count
output: symlink in norm_counts output directory
info = config["output_location"] + "counts/{sample}/{window}.info"
info = config["output_location"] + "norm_counts/{sample}/{window}.info"
run:
d = os.path.dirname(output.info)
file = os.path.basename(output.info)
shell("cd {d} && ln -s {input.info} {file}")
################################################################################
# Joint Segmentation #
################################################################################
# CHECKME : @Marco mention on Gitlab
# CHECKME : parameters
# DOCME : check segmentation results to better understand
"""
rule fct: Identify breakpoints of futur SV based on normalized read counts
input: mosaic [normalized] counts
output: Segmentation tab file
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt.fixme"
log:
config["output_location"] + "log/segmentation/{sample}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
"""
# FIXME: no difference observed before/after awk command
# FIXME: This is a workaround because latest versions of "mosaic segment" don't compute the "bps" column properly. Remove once fixed in the C++ code.
rule fix_segmentation:
"""
rule fct:
input:
output:
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt.fixme"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v name={wildcards.sample} -v window={wildcards.window} -f utils/command2.awk {input} > {output}
"""
# Pick a few segmentations and prepare the input files for SV classification
# TODO : replace R script by integrating directly pandas in the pipeline
# CHECKME : used ???
rule prepare_segments:
"""
rule fct: selection of appropriate segmentation according breakpoint density (k) selected by the user : many : 60%, medium : 40%, few : 20%
input: mosaic segment output segmentation file
output: lite file with appropriate k according the quartile defined by the user
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt"
output:
config["output_location"] + "segmentation2/{sample}/{window}.{bpdens,(many|medium|few)}.txt"
log:
config["output_location"] + "log/prepare_segments/{sample}/{window}.{bpdens}.log"
params:
quantile = lambda wc: config["bp_density"][wc.bpdens]
script:
"utils/helper.prepare_segments.R"
################################################################################
# Single-Cell Segmentation #
################################################################################
# TODO : replace awk external file command with something else
rule extract_single_cell_counts:
"""
rule fct: extract from count the rows coming from the given cell
input: mosaic count output file for the sample according a given window
output: count per cell file for the sample according a given window
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window,[0-9]+}.txt.gz"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
zcat {input} | awk -v name={wildcards.cell} -f utils/command1.awk | gzip > {output}
"""
rule segment_one_cell:
rule fct: Same as `rule segmentation` : mosaic segment function but for individual cell
input: mosaic count splitted by cell produced by `rule extract_single_cell_counts`
output: Segmentation file for an individual cell
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"
config["output_location"] + "segmentation-per-cell/{sample}/{cell}/{window,\d+}.txt"
config["output_location"] + "log/segmentation-per-cell/{sample}/{cell}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
# URGENT : If one bad cell is detected => pipeline stop => need to fix this
# DOCME : how to handle when multiple chrom orientation
"""
RPE1-WT RPE1WTPE20492 chr10 0 27300000 WW
RPE1-WT RPE1WTPE20492 chr10 27300000 110600000 WC
RPE1-WT RPE1WTPE20492 chr10 110600000 127100000 CC
RPE1-WT RPE1WTPE20492 chr10 127100000 133797422 WC
"""
"selected_j0.1_s0.5_scedist20"
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance 500 000 \
--sce_add_cutoff 20 000 000 \
--min_diff_jointseg 0.1 \
--min_diff_singleseg 0.5 \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
{input.singleseg} > {log} 2>&1
"""
rule segmentation_selection:
"""
rule fct:
input: mosaic read counts (txt.gz) & stats info (.info) + joint & sc segmentation
output: initial_strand_state used for the following by strandphaser
"""
input:
counts=config["output_location"] + "counts/{sample}/{window}.txt.gz",
jointseg=config["output_location"] + "segmentation/{sample}/{window}.txt",
singleseg=lambda wc: [config["output_location"] + "segmentation-per-cell/{}/{}/{}.txt".format(wc.sample, cell, wc.window) for cell in CELL_PER_SAMPLE[wc.sample]],
info=config["output_location"] + "counts/{sample}/{window}.info",
output:
jointseg=config["output_location"] + "segmentation2/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",
singleseg=config["output_location"] + "segmentation-singlecell/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",

Thomas Weber
committed
strand_states=config["output_location"] + "strand_states/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}/initial_strand_state",
config["output_location"] + "log/segmentation_selection/{sample}/{window}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.log"
params:
cellnames = lambda wc: ",".join(cell for cell in CELL_PER_SAMPLE[wc.sample]),
sce_min_distance = 500000,
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance {params.sce_min_distance} \
--sce_add_cutoff {wildcards.additional_sce_cutoff}000000 \
--min_diff_jointseg {wildcards.min_diff_jointseg} \
--min_diff_singleseg {wildcards.min_diff_singleseg} \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
"""
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
################################################################################
# REGENOTYPE SNV #
################################################################################
rule regenotype_SNVs:
"""
rule fct:
input:
output:
"""
input:
bam = config["output_location"] + "snv_calls/{sample}/merged.bam",
bai = config["output_location"] + "snv_calls/{sample}/merged.bam.bai",
sites = config["snv_sites_to_genotype"],
output:
vcf = config["output_location"] + "snv_genotyping/{sample}/{chrom,chr[0-9A-Z]+}.vcf"
log:
config["output_location"] + "log/snv_genotyping/{sample}/{chrom}.log"
params:
fa = config["reference"],
# bcftools = config["bcftools"]
shell:
# CHECKME : Samtools / BCFtools / freebayes path definition through conda env
# CHECKME : interest of using -r parameters for freebayes => split by chroms
"""
(freebayes \
-f {params.fa} \
-r {wildcards.chrom} \
-@ {input.sites} \
--only-use-input-alleles {input.bam} \
--genotype-qualities \
| bcftools view \
--exclude-uncalled \
--genotype het \
--types snps \
--include "QUAL>=10" \
> {output.vcf}) 2> {log}
"""
################################################################################
# StrandPhaseR things #
################################################################################
# TODO : replace R script by integrating directly pandas in the pipeline / potentialy use piped output to following rule ?

Thomas Weber
committed
"""
rule fct: extract only segmentation with WC orientation
input: initial_strand_state file coming from rule segmentation_selection & info file from mosaic count output
output: filtered TSV file with start/end coordinates of WC-orientated segment to be used by strandphaser
"""

Thomas Weber
committed
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# URGENT : hard coded 500000 file name ???
# info = config["output_location"] + "counts/{sample}/500000.info"
# FIXME : quick workaround with {window} wc
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_input.txt"
log:
config["output_location"] + "log/convert_strandphaser_input/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_input.R"
# TODO : make something similar to mosaic with C++ dep
# CHECKME : check if possible to write something more snakemak"ic" & compliant with conda/singularity running env
# WARNING : I/O path definition
# WARNING : Try to find a solution to install stranphaser in a conda environment => contact david porubsky to move on the bioconductor ?

Thomas Weber
committed
# rule install_StrandPhaseR:
# output:
# "utils/R-packages/StrandPhaseR/R/StrandPhaseR"
# log:
# "log/install_StrandPhaseR.log"
# shell:
# """
# TAR=$(which tar) Rscript utils/install_strandphaser.R > {log} 2>&1
# """
# TODO : replace by clean config file if possible or by temporary removed file
rule prepare_strandphaser_config_per_chrom:
"""
rule fct: prepare config file used by strandphaser
input: input used only for wildcards : sample, window & bpdens
output: config file used by strandphaser
"""

Thomas Weber
committed
config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state"
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR.{chrom}.config"
run:
with open(output[0], "w") as f:
print("[General]", file = f)
print("numCPU = 1", file = f)
print("chromosomes = '" + wildcards.chrom + "'", file = f)
if (config["paired_end"]):
print("pairedEndReads = TRUE", file = f)
else:
print("pairedEndReads = FALSE", file = f)
print("min.mapq = 10", file = f)
print("", file = f)
print("[StrandPhaseR]", file = f)
print("positions = NULL", file = f)
print("WCregions = NULL", file = f)
print("min.baseq = 20", file = f)
print("num.iterations = 2", file = f)
print("translateBases = TRUE", file = f)
print("fillMissAllele = NULL", file = f)
print("splitPhasedReads = TRUE", file = f)
print("compareSingleCells = TRUE", file = f)
print("callBreaks = FALSE", file = f)
print("exportVCF = '", wildcards.sample, "'", sep = "", file = f)
print("bsGenome = '", config["R_reference"], "'", sep = "", file = f)
# # TODO : TMP solution
# # CHECKME : need to check with people if SNP genotyping file is mandatory => will simplify things
# def locate_snv_vcf(wildcards):
# if "snv_calls" not in config or wildcards.sample not in config["snv_calls"] or config["snv_calls"][wildcards.sample] == "":
# if "snv_sites_to_genotype" in config and config["snv_sites_to_genotype"] != "" :
# if os.path.isfile(config["snv_sites_to_genotype"]):
# return "snv_genotyping/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "external_snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
"""
rule fct: run strandphaser for each chromosome
input: strandphaser_input.txt from rule convert_strandphaser_input ; genotyped snv for each chrom by freebayes ; configfile created by rule prepare_strandphaser_config_per_chrom ; bam folder
output:
"""
input:
wcregions = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_input.txt",
snppositions = config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf",
configfile = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR.{chrom}.config",
# DOCME : used as an input to call the installation

Thomas Weber
committed
# strandphaser = "utils/R-packages/StrandPhaseR/R/StrandPhaseR",
# strandphaser = config["strandphaser"],
bamfolder = config["input_bam_location"] + "{sample}/selected"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt",
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf"
log:
"log/run_strandphaser_per_chrom/{sample}/{window}.{bpdens}/{chrom}.log"
shell:
"""
{config[Rscript]} utils/StrandPhaseR_pipeline.R \

Thomas Weber
committed
{config[output_location]}strand_states/{wildcards.sample}/{wildcards.window}.{wildcards.bpdens}/StrandPhaseR_analysis.{wildcards.chrom} \
{input.configfile} \
{input.wcregions} \
{input.snppositions} \
$(pwd)/utils/R-packages/ \
"""
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
rule merge_strandphaser_vcfs:
input:
vcfs=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz", chrom=config["chromosomes"]),
tbis=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz.tbi", chrom=config["chromosomes"]),
output:
vcf=config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.vcf.gz"
log:
"log/merge_strandphaser_vcfs/{sample}/{window}.{bpdens}.log"
shell:
"(bcftools concat -a {input.vcfs} | bcftools view -o {output.vcf} -O z --genotype het --types snps - ) > {log} 2>&1"
rule combine_strandphaser_output:
input:
expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", chrom = config["chromosomes"])
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_output.txt"
log:
"log/combine_strandphaser_output/{sample}/{window}.{bpdens}.log"
shell:
"""
set +o pipefail
cat {input} | head -n1 > {output};
tail -q -n+2 {input} >> {output};
"""
rule convert_strandphaser_output:
input:
phased_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_output.txt",
initial_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# info = config["output_location"] + "counts/{sample}/500000_fixed.info"
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/final.txt"
log:
"log/convert_strandphaser_output/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_output.R"
################################################################################
# Haplotagging #
################################################################################
rule haplotag_bams:
input:
vcf = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz",
tbi = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz.tbi",
bam = config["input_bam_location"] + "{sample}/selected/{bam}.bam",
bai = config["input_bam_location"] + "{sample}/selected/{bam}.bam.bai"
output:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/{bam}.bam",
log:
config["output_location"] + "log/haplotag_bams/{sample}/{window}.{bpdens}/{bam}.log"
params:
ref = config["reference"]
shell:
"whatshap haplotag -o {output.bam} -r {params.ref} {input.vcf} {input.bam} > {log} 2>{log}"
rule create_haplotag_segment_bed:
input:
segments = config["output_location"] + "segmentation2/{sample}/{size}{what}.{bpdens}.txt",
output:
bed = config["output_location"] + "haplotag/bed/{sample}/{size,[0-9]+}{what}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.bed",
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v s={wildcards.size} -f utils/command3.awk {input.segments} > {output.bed}
"""
rule create_haplotag_table:
input:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam",
bai = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam.bai",
bed = config["output_location"] + "haplotag/bed/{sample}/{window}.{bpdens}.bed"
output:
tsv = config["output_location"] + "haplotag/table/{sample}/by-cell/haplotag-counts.{cell}.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
log:
config["output_location"] + "log/create_haplotag_table/{sample}.{cell}.{window}.{bpdens}.log"
script:
"utils/haplotagTable.snakemake.R"
rule merge_haplotag_tables:
input:
tsvs = lambda wc: [config["output_location"] + "haplotag/table/{}/by-cell/haplotag-counts.{}.{}.{}.tsv".format(wc.sample,cell,wc.window,wc.bpdens) for cell in BAM_PER_SAMPLE[wc.sample]],
output:
tsv = config["output_location"] + "haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
shell:
"(head -n1 {input.tsvs[0]} && tail -q -n +2 {input.tsvs}) > {output.tsv}"

Thomas Weber
committed
################################################################################
# MosaiClassifier #
################################################################################
rule mosaiClassifier_calc_probs:
input:
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info",
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt",
bp = config["output_location"] + "segmentation2/{sample}/{window}.{bpdens}.txt"
output:
output = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/probabilities.Rdata"
log:
config["output_location"] + "log/mosaiClassifier_calc_probs/{sample}/{window}.{bpdens}.log"
script:
"utils/mosaiClassifier.snakemake.R"
rule create_haplotag_likelihoods:
input:
haplotag_table = config["output_location"] + 'haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens}.tsv',
sv_probs_table = config["output_location"] + 'sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata',
output:
config["output_location"] + 'haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.Rdata'
log:
config["output_location"] + "log/create_haplotag_likelihoods/{sample}.{window}.{bpdens}.log"
script:
"utils/haplotagProbs.snakemake.R"

Thomas Weber
committed
rule mosaiClassifier_make_call:

Thomas Weber
committed
input:
probs = config["output_location"] + 'haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens}.Rdata'

Thomas Weber
committed
output:
config["output_location"] + "sv_calls/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}_filterFALSE.txt"
params:
minFrac_used_bins = 0.8

Thomas Weber
committed
log:
config["output_location"] + "log/mosaiClassifier_make_call/{sample}/{window}.{bpdens}.llr{llr}.poppriors{pop_priors}.haplotags{use_haplotags}.gtcutoff{gtcutoff}.regfactor{regfactor}.log"
script:
"utils/mosaiClassifier_call.snakemake.R"
# CHECKME : check if still useful ?

Thomas Weber
committed
rule mosaiClassifier_make_call_biallelic:
input:
probs = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata"

Thomas Weber
committed
output:
config["output_location"] + "sv_calls/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/biAllelic_llr{llr}.txt"

Thomas Weber
committed
log:
config["output_location"] + "log/mosaiClassifier_make_call_biallelic/{sample}/{window}.{bpdens}.{llr}.log"

Thomas Weber
committed
script:
"utils/mosaiClassifier_call_biallelic.snakemake.R"
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
################################################################################
# PostProcessing #
################################################################################
# DOCME : perl in conda
rule postprocessing_filter:
input:
calls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}_filterFALSE.txt"
output:
calls = config["output_location"] + "postprocessing/filter/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}.txt"
shell:
'utils/filter_MosaiCatcher_calls.pl {input.calls} > {output.calls}'
rule postprocessing_merge:
input:
calls = config["output_location"] + "postprocessing/filter/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}.txt"
output:
calls = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}.txt"
shell:
'utils/group_nearby_calls_of_same_AF_and_generate_output_table.pl {input.calls} > {output.calls}'
rule postprocessing_sv_group_table:
input:
calls = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}.txt"
output:
grouptrack = config["output_location"] + "postprocessing/group-table/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}.tsv"
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/create-sv-group-track.py {input.calls} > {output.grouptrack}
"""
rule filter_calls:
input:
inputcalls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}_filterFALSE.txt",
mergedcalls = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/simpleCalls_llr{llr}_poppriors{pop_priors}_haplotags{use_haplotags}_gtcutoff{gtcutoff}_regfactor{regfactor}.txt",
output:
calls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/simpleCalls_llr{llr}_poppriors{pop_priors,(TRUE|FALSE)}_haplotags{use_haplotags,(TRUE|FALSE)}_gtcutoff{gtcutoff,[0-9\\.]+}_regfactor{regfactor,[0-9]+}_filterTRUE.txt"
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/apply_filter.py {input.inputcalls} {input.mergedcalls} > {output.calls}
"""
rule call_complex_regions:
input:
calls = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.txt",
output:
complex = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.complex.tsv",
log:
config["output_location"] + "log/call_complex_regions/{sample}/{window}.{bpdens}.{method}_filter{filter}.log"
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/call-complex-regions.py \
--merge_distance 5000000 \
--ignore_haplotypes \
--min_cell_count 2 {input.calls} > {output.complex} 2>{log}
"""
################################################################################
# Summary statistics on sv calls #
################################################################################
rule summary_statistics:
input:
segmentation = config["output_location"] + 'segmentation2/{sample}/{window}.{bpdens}.txt',
strandstates = config["output_location"] + 'strand_states/{sample}/{window}.{bpdens}/initial_strand_state',
sv_calls = config["output_location"] + 'sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.txt',
complex = config["output_location"] + "sv_calls/{sample}/{window}.{bpdens}/{method}_filter{filter}.complex.tsv",
merged = config["output_location"] + "postprocessing/merge/{sample}/{window}.{bpdens}/{method}.txt",
output:
tsv = config["output_location"] + 'stats/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/{method}_filter{filter,(TRUE|FALSE)}.tsv',
log:
config["output_location"] + 'log/summary_statistics/{sample}/{window}.{bpdens}/{method}_filter{filter}.log'
run:
p = []
try:
f = config["ground_truth_clonal"][wildcards.sample]
if len(f) > 0:
p.append('--true-events-clonal')
p.append(f)
except KeyError:
pass
try:
f = config["ground_truth_single_cell"][wildcards.sample]
if len(f) > 0:
p.append('--true-events-single-cell')
p.append(f)
except KeyError:
pass
if wildcards.filter == 'TRUE':
p.append('--merged-file')
p.append(input.merged)
additional_params = ' '.join(p)
shell('utils/callset_summary_stats.py --segmentation {input.segmentation} --strandstates {input.strandstates} --complex-regions {input.complex} {additional_params} {input.sv_calls} > {output.tsv} ')
rule aggregate_summary_statistics:
input:
tsv=expand(config["output_location"] + "stats/{{sample}}/{window}.{bpdens}/{method}.tsv", window = [100000], bpdens = BPDENS, method = METHODS),
output:
tsv=config["output_location"] + "stats-merged/{sample}/stats.tsv"
shell:
"(head -n1 {input.tsv[0]} && (tail -n1 -q {input.tsv} | sort -k1) ) > {output}"
# CHECKME : to check & see if it's working
################################################################################
# Ploidy estimation #
################################################################################
# TODO : merge into one file by sample
rule estimate_ploidy:
input:
config["output_location"] + "counts/{sample}/100000.txt.gz"