Newer
Older
configfile: "Snake.config_embl.yaml"

Thomas Weber
committed
import pandas as pd
from pprint import pprint
# print(os.listdir(os.getcwd()))
# print(os.listdir("bam"))
# TODO I/O : Function to define inputs ; simplify list/dict system
# TODO Use remote file system to download example files
SAMPLE,BAM = glob_wildcards(config["input_bam_location"] + "{sample}/selected/{bam}.bam")

Thomas Weber
committed
# pprint(SAMPLE)
# pprint(BAM)
SAMPLES = sorted(set(SAMPLE))
CELL_PER_SAMPLE= defaultdict(list)
BAM_PER_SAMPLE = defaultdict(list)
for sample,bam in zip(SAMPLE,BAM):
BAM_PER_SAMPLE[sample].append(bam)
CELL_PER_SAMPLE[sample].append(bam.replace(".sort.mdup",""))
ALLBAMS_PER_SAMPLE = defaultdict(list)
for sample in SAMPLES:
ALLBAMS_PER_SAMPLE[sample] = glob_wildcards(config["input_bam_location"] + "{}/all/{{bam}}.bam".format(sample)).bam
print("Detected {} samples:".format(len(SAMPLES)))
for s in SAMPLES:
print(" {}:\t{} cells\t {} selected cells".format(s, len(ALLBAMS_PER_SAMPLE[s]), len(BAM_PER_SAMPLE[s])))

Thomas Weber
committed
# pprint(BAM_PER_SAMPLE)
# pprint(CELL_PER_SAMPLE)
# FIXME : tmp solution to remove bad cells => need to fix this with combination of ASHLEYS ?
exclude_list = ['BM510x3PE20490']
BAM_PER_SAMPLE = {k:sorted([e for e in v if e.split('.')[0] not in exclude_list]) for k,v in BAM_PER_SAMPLE.items()}
CELL_PER_SAMPLE = {k:sorted([e for e in v if e not in exclude_list]) for k,v in CELL_PER_SAMPLE.items()}

Thomas Weber
committed
# pprint(BAM_PER_SAMPLE)
# pprint(CELL_PER_SAMPLE)
# Current state of the pipeline:
# ==============================
# * count reads in the BAM files (in fixed and variable-width bins of various sizes)
# * determine strand states of each chromosome in each single cell, including SCEs
# * plot all single cell libraries in different window sizes
# * calculate a segmentation into potential SVs using Mosaicatcher
METHODS = [
"simpleCalls_llr4_poppriorsTRUE_haplotagsTRUE_gtcutoff0_regfactor6_filterFALSE",
"simpleCalls_llr4_poppriorsTRUE_haplotagsFALSE_gtcutoff0.05_regfactor6_filterTRUE",
]
# FIXME : move to yaml/json settings or to something else
BPDENS = [
"selected_j{}_s{}_scedist{}".format(joint, single, scedist) for joint in [0.1] for single in [0.5] for scedist in [20]
]

Thomas Weber
committed
# print(BPDENS)
# # Todo: specify an exact version of the singularity file!
# print(SAMPLES)
# print(CELL_PER_SAMPLE)
# print(CELL_PER_SAMPLE.values())
# print([sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e])
# # print(expand([SAMPLES, [sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]]))
# print(expand(["{sample}/{cell}"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e]))
# # exit()
# print(expand([config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"], zip, sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ))
final_list = [config['input_bam_location'] + "{}/{}.bam".format(key, nested_key) for key in BAM_PER_SAMPLE for nested_key in BAM_PER_SAMPLE[key] ]

Thomas Weber
committed
rule all:
input:

Thomas Weber
committed
expand(config["output_location"] + "counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "plots/{sample}/{window}.pdf", sample=SAMPLES, window=[100000])
# expand(config["output_location"] + "norm_counts/{sample}/{window}.txt.gz", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "norm_counts/{sample}/{window}.info", sample=SAMPLES, window=[100000])

Thomas Weber
committed
# expand(config["output_location"] + "segmentation/{sample}/{window}.txt", sample=SAMPLES, window=[100000]),
# expand(config["output_location"] + "snv_calls/{sample}/merged.bam", sample=SAMPLES)
# expand(config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf", sample=SAMPLES, window=[100000], chrom=config["chromosomes"]),

Thomas Weber
committed
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz", sample=SAMPLES, cell=[sub_e for e in list(CELL_PER_SAMPLE.values()) for sub_e in e], window=[100000], ),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
# expand(config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),
expand(config["output_location"] + "haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens}.Rdata", sample=SAMPLES, window=[100000], bpdens=BPDENS, chrom=config["chromosomes"]),

Thomas Weber
committed
# expand(config["input_bam_location"] + "{sample}/{folder}/{bam}.{chrom}.txt",
# sample=SAMPLES,
# folder=["all", "selected"],
# bam=final_list,
# chrom=config['chromosomes'])

Thomas Weber
committed
# FIXME : To solve : cell wildcard (dict type) comparatively to others that are list type
################################################################################

Thomas Weber
committed
# TMP solution by extracting chrom in BAM files #
################################################################################

Thomas Weber
committed
# rule simplify_bam_files:

Thomas Weber
committed
# bam = config["input_bam_location"] + "{sample}/{folder}/{bam}.bam"
# output:
# bam_with_header = config["output_location"] + "lite_bam_with_full_header/" + "{sample}/{folder}/{bam}.bam"
# bam_without_header = config["output_location"] + "lite_bam_with_lite_header/" + "{sample}/{folder}/{bam}.bam"

Thomas Weber
committed
# config["input_bam_location"] + "bam_modif/{sample}/{folder}/{bam}.log"

Thomas Weber
committed
# cat \
# <(samtools view -H {input.bam} | grep -P "^@HD|^@RG|^\@SQ\\tSN:chr21|^@PG") \
# <(samtools view {input.bam} chr21) |\
# samtools view -bo {output.bam_without_header} \
# > {log} 2>&1 ;
# cat \
# <(samtools view -H {input.bam}) \
# <(samtools view {input.bam} chr21) |\
# samtools view -bo {output.bam_with_header} \
# > {log} 2>&1 ;

Thomas Weber
committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
################################################################################
# Read counting #
################################################################################
# CHECKME : exclude file rule useful ?
rule generate_exclude_file_1:
output:
config["output_location"] + "log/exclude_file.temp"
input:
bam = expand(config["input_bam_location"] + "{sample}/selected/{bam}.bam", sample = SAMPLES[0], bam = BAM_PER_SAMPLE[SAMPLES[0]][0])
log:
config["output_location"] + "log/generate_exclude_file_1.log"
params:
samtools = config["samtools"]
shell:
"""
{params.samtools} view -H {input.bam} | awk "/^@SQ/" > {output}
"""
rule generate_exclude_file_2:
output:
config["output_location"] + "log/exclude_file"
input:
config["output_location"] + "log/exclude_file.temp"
params:
chroms = config["chromosomes"]
run:
with open(input[0]) as f:
with open(output[0],"w") as out:
for line in f:
contig = line.strip().split()[1]
contig = contig[3:]
# if contig not in params.chroms:
# print(contig, file = out)
# CHECKME : same as above for input ???
# TODO : Simplify expand command
# DOCME : mosaic count read orientation ?
rule mosaic_count:
"""
rule fct: Call mosaic count C++ function to count reads in each BAM file according defined window
input: For the moment, individual BAM file in the selected folder of the associated sample
output: counts: read counts for the BAM file according defined window ; info file : summary statistics
bam = lambda wc: expand(config["input_bam_location"] + wc.sample + "/selected/{bam}.bam", bam = BAM_PER_SAMPLE[wc.sample]) if wc.sample in BAM_PER_SAMPLE else "FOOBAR",

Thomas Weber
committed
bai = lambda wc: expand(config["input_bam_location"] + wc.sample + "/selected/{bam}.bam.bai", bam = BAM_PER_SAMPLE[wc.sample]) if wc.sample in BAM_PER_SAMPLE else "FOOBAR",
# excl = config["output_location"] + "log/exclude_file"

Thomas Weber
committed
counts = config["output_location"] + "counts/{sample}/{window}.txt.fixme.gz",
info = config["output_location"] + "counts/{sample}/{window}.info"
config["output_location"] + "log/{sample}/mosaic_count.{window}.log"
mc_command = config["mosaicatcher"]
{params.mc_command} count \
--verbose \
--do-not-blacklist-hmm \
-o {output.counts} \
-i {output.info} \
-w {wildcards.window} \
{input.bam}
> {log} 2>&1

Thomas Weber
committed
rule tmp_filter_mosaic_count_by_chr:
input:
config["output_location"] + "counts/{sample}/{window}.txt.fixme.gz"
output:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
run:
df = pd.read_csv(input[0], compression='gzip', sep='\t')
df = df.loc[df['chrom'].isin(wildcards.chromosomes)]
df.to_csv(output[0], compression='gzip', sep='\t', index=False)
# FIXME : Missing plots in final PDF ; R script + inputs to check
rule plot_mosaic_counts:
"""
rule fct: Plot function of read counts for each bam file
input: mosaic count outputs (counts & info)
output: Generate figure based on couting results
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info"
config["output_location"] + "plots/{sample}/{window}.pdf"
config["output_location"] + "log/plot_mosaic_counts/{sample}/{window}.log"
plot_command = "Rscript " + config["plot_script"]
shell:
"""
{params.plot_command} {input.counts} {input.info} {output} > {log} 2>&1
"""
################################################################################
# Normalize counts #
################################################################################
# TODO : Reference blacklist BED file to retrieve easily on Git/Zenodo/remote system

Thomas Weber
committed
# TODO : check if inversion file is corresponded to previously published
rule merge_blacklist_bins:
"""
rule fct: Call Python script to merge HGVSC normalization defined file & inversion whitelist file
input: norm: HGSVC predefined BED file by the group ; whitelist: whitelist inversion file predefined by the group
norm = "utils/normalization/HGSVC.{window}.txt",
whitelist = "utils/normalization/inversion-whitelist.tsv",
merged = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv"
config["output_location"] + "log/merge_blacklist_bins/{window}.log"
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
utils/merge-blacklist.py --merge_distance 500000 {input.norm} --whitelist {input.whitelist} --min_whitelist_interval_size 100000 > {output.merged} 2>> {log}
# FIXME : snakemake ambiguity with I/O paths
# CHECKME : Check R code for normalization
rule normalize_counts:
"""
rule fct: Normalization of mosaic counts based on merged normalization file produced with a linear relation (count * scaling_factor)
input: counts: counts file coming from `rule mosaic_count` ; norm: merged normalization file produced by `rule merge_blacklist_bins`
output: normalized counts based predefined factors for each window
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
norm = config["output_location"] + "normalizations/HGSVC.{window}.merged.tsv",
config["output_location"] + "norm_counts/{sample}/{window}.txt.gz"
config["output_location"] + "log/normalize_counts/{sample}/{window}.log"
shell:
"""
Rscript utils/normalize.R {input.counts} {input.norm} {output} 2>&1 > {log}
"""
# FIXME : cleaner way to symlink info files
rule link_normalized_info_file:
"""
rule fct: Symlink info file ouput mosaic count to normalization count directory
input: Global summary statistics produced by mosaic count
output: symlink in norm_counts output directory
info = config["output_location"] + "counts/{sample}/{window}.info"
info = config["output_location"] + "norm_counts/{sample}/{window}.info"
run:
d = os.path.dirname(output.info)
file = os.path.basename(output.info)
shell("cd {d} && ln -s {input.info} {file}")
################################################################################
# Joint Segmentation #
################################################################################
# CHECKME : @Marco mention on Gitlab
# CHECKME : parameters
# DOCME : check segmentation results to better understand
"""
rule fct: Identify breakpoints of futur SV based on normalized read counts
input: mosaic [normalized] counts
output: Segmentation tab file
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt.fixme"
log:
config["output_location"] + "log/segmentation/{sample}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
"""
# FIXME: no difference observed before/after awk command
# FIXME: This is a workaround because latest versions of "mosaic segment" don't compute the "bps" column properly. Remove once fixed in the C++ code.
rule fix_segmentation:
"""
rule fct:
input:
output:
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt.fixme"
output:
config["output_location"] + "segmentation/{sample}/{window,\d+}.txt"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v name={wildcards.sample} -v window={wildcards.window} -f utils/command2.awk {input} > {output}
"""
# Pick a few segmentations and prepare the input files for SV classification
# TODO : replace R script by integrating directly pandas in the pipeline
# CHECKME : used ???
rule prepare_segments:
"""
rule fct: selection of appropriate segmentation according breakpoint density (k) selected by the user : many : 60%, medium : 40%, few : 20%
input: mosaic segment output segmentation file
output: lite file with appropriate k according the quartile defined by the user
"""
input:
config["output_location"] + "segmentation/{sample}/{window}.txt"
output:
config["output_location"] + "segmentation2/{sample}/{window}.{bpdens,(many|medium|few)}.txt"
log:
config["output_location"] + "log/prepare_segments/{sample}/{window}.{bpdens}.log"
params:
quantile = lambda wc: config["bp_density"][wc.bpdens]
script:
"utils/helper.prepare_segments.R"
################################################################################
# Single-Cell Segmentation #
################################################################################
# TODO : replace awk external file command with something else
rule extract_single_cell_counts:
"""
rule fct: extract from count the rows coming from the given cell
input: mosaic count output file for the sample according a given window
output: count per cell file for the sample according a given window
"""
input:
config["output_location"] + "counts/{sample}/{window}.txt.gz"
output:
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window,[0-9]+}.txt.gz"
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
zcat {input} | awk -v name={wildcards.cell} -f utils/command1.awk | gzip > {output}
"""
rule segment_one_cell:
rule fct: Same as `rule segmentation` : mosaic segment function but for individual cell
input: mosaic count splitted by cell produced by `rule extract_single_cell_counts`
output: Segmentation file for an individual cell
config["output_location"] + "counts-per-cell/{sample}/{cell}/{window}.txt.gz"
config["output_location"] + "segmentation-per-cell/{sample}/{cell}/{window,\d+}.txt"
config["output_location"] + "log/segmentation-per-cell/{sample}/{cell}/{window}.log"
params:
mc_command = config["mosaicatcher"],
min_num_segs = lambda wc: math.ceil(200000 / float(wc.window)) # bins to represent 200 kb
shell:
"""
{params.mc_command} segment \
--remove-none \
--forbid-small-segments {params.min_num_segs} \
-M 50000000 \
-o {output} \
{input} > {log} 2>&1
# URGENT : If one bad cell is detected => pipeline stop => need to fix this
################################################################################
# StrandPhaseR things #
################################################################################
# DOCME : how to handle when multiple chrom orientation
"""
RPE1-WT RPE1WTPE20492 chr10 0 27300000 WW
RPE1-WT RPE1WTPE20492 chr10 27300000 110600000 WC
RPE1-WT RPE1WTPE20492 chr10 110600000 127100000 CC
RPE1-WT RPE1WTPE20492 chr10 127100000 133797422 WC
"""
"selected_j0.1_s0.5_scedist20"
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance 500 000 \
--sce_add_cutoff 20 000 000 \
--min_diff_jointseg 0.1 \
--min_diff_singleseg 0.5 \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
{input.singleseg} > {log} 2>&1
"""
rule segmentation_selection:
"""
rule fct:
input: mosaic read counts (txt.gz) & stats info (.info) + joint & sc segmentation
output: initial_strand_state used for the following by strandphaser
"""
input:
counts=config["output_location"] + "counts/{sample}/{window}.txt.gz",
jointseg=config["output_location"] + "segmentation/{sample}/{window}.txt",
singleseg=lambda wc: [config["output_location"] + "segmentation-per-cell/{}/{}/{}.txt".format(wc.sample, cell, wc.window) for cell in CELL_PER_SAMPLE[wc.sample]],
info=config["output_location"] + "counts/{sample}/{window}.info",
output:
jointseg=config["output_location"] + "segmentation2/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",
singleseg=config["output_location"] + "segmentation-singlecell/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.txt",

Thomas Weber
committed
strand_states=config["output_location"] + "strand_states/{sample}/{window,[0-9]+}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}/initial_strand_state",
config["output_location"] + "log/segmentation_selection/{sample}/{window}.selected_j{min_diff_jointseg}_s{min_diff_singleseg}_scedist{additional_sce_cutoff}.log"
params:
cellnames = lambda wc: ",".join(cell for cell in CELL_PER_SAMPLE[wc.sample]),
sce_min_distance = 500000,
shell:
"""
PYTHONPATH="" # Issue #1031 (https://bitbucket.org/snakemake/snakemake/issues/1031)
./utils/detect_strand_states.py \
--sce_min_distance {params.sce_min_distance} \
--sce_add_cutoff {wildcards.additional_sce_cutoff}000000 \
--min_diff_jointseg {wildcards.min_diff_jointseg} \
--min_diff_singleseg {wildcards.min_diff_singleseg} \
--output_jointseg {output.jointseg} \
--output_singleseg {output.singleseg} \
--output_strand_states {output.strand_states} \
--samplename {wildcards.sample} \
--cellnames {params.cellnames} \
{input.info} \
{input.counts} \
{input.jointseg} \
"""
# TODO : replace R script by integrating directly pandas in the pipeline / potentialy use piped output to following rule ?

Thomas Weber
committed
"""
rule fct: extract only segmentation with WC orientation
input: initial_strand_state file coming from rule segmentation_selection & info file from mosaic count output
output: filtered TSV file with start/end coordinates of WC-orientated segment to be used by strandphaser
"""

Thomas Weber
committed
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# URGENT : hard coded 500000 file name ???
# info = config["output_location"] + "counts/{sample}/500000.info"
# FIXME : quick workaround with {window} wc
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_input.txt"
log:
config["output_location"] + "log/convert_strandphaser_input/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_input.R"
# TODO : make something similar to mosaic with C++ dep
# CHECKME : check if possible to write something more snakemak"ic" & compliant with conda/singularity running env
# WARNING : I/O path definition
# WARNING : Try to find a solution to install stranphaser in a conda environment => contact david porubsky to move on the bioconductor ?

Thomas Weber
committed
# rule install_StrandPhaseR:
# output:
# "utils/R-packages/StrandPhaseR/R/StrandPhaseR"
# log:
# "log/install_StrandPhaseR.log"
# shell:
# """
# TAR=$(which tar) Rscript utils/install_strandphaser.R > {log} 2>&1
# """
# TODO : replace by clean config file if possible or by temporary removed file
rule prepare_strandphaser_config_per_chrom:
"""
rule fct: prepare config file used by strandphaser
input: input used only for wildcards : sample, window & bpdens
output: config file used by strandphaser
"""

Thomas Weber
committed
config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state"
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR.{chrom}.config"
run:
with open(output[0], "w") as f:
print("[General]", file = f)
print("numCPU = 1", file = f)
print("chromosomes = '" + wildcards.chrom + "'", file = f)
if (config["paired_end"]):
print("pairedEndReads = TRUE", file = f)
else:
print("pairedEndReads = FALSE", file = f)
print("min.mapq = 10", file = f)
print("", file = f)
print("[StrandPhaseR]", file = f)
print("positions = NULL", file = f)
print("WCregions = NULL", file = f)
print("min.baseq = 20", file = f)
print("num.iterations = 2", file = f)
print("translateBases = TRUE", file = f)
print("fillMissAllele = NULL", file = f)
print("splitPhasedReads = TRUE", file = f)
print("compareSingleCells = TRUE", file = f)
print("callBreaks = FALSE", file = f)
print("exportVCF = '", wildcards.sample, "'", sep = "", file = f)
print("bsGenome = '", config["R_reference"], "'", sep = "", file = f)
# # TODO : TMP solution
# # CHECKME : need to check with people if SNP genotyping file is mandatory => will simplify things
# def locate_snv_vcf(wildcards):
# if "snv_calls" not in config or wildcards.sample not in config["snv_calls"] or config["snv_calls"][wildcards.sample] == "":
# if "snv_sites_to_genotype" in config and config["snv_sites_to_genotype"] != "" :
# if os.path.isfile(config["snv_sites_to_genotype"]):
# return "snv_genotyping/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
# else:
# return "external_snv_calls/{}/{}.vcf".format(wildcards.sample, wildcards.chrom)
rule run_strandphaser_per_chrom:
"""
rule fct: run strandphaser for each chromosome
input: strandphaser_input.txt from rule convert_strandphaser_input ; genotyped snv for each chrom by freebayes ; configfile created by rule prepare_strandphaser_config_per_chrom ; bam folder
output:
"""
input:
wcregions = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_input.txt",
snppositions = config["output_location"] + "snv_genotyping/{sample}/{chrom}.vcf",
configfile = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/StrandPhaseR.{chrom}.config",
# DOCME : used as an input to call the installation

Thomas Weber
committed
# strandphaser = "utils/R-packages/StrandPhaseR/R/StrandPhaseR",
# strandphaser = config["strandphaser"],
bamfolder = config["input_bam_location"] + "{sample}/selected"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt",
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf"
log:
"log/run_strandphaser_per_chrom/{sample}/{window}.{bpdens}/{chrom}.log"
shell:
"""
{config[Rscript]} utils/StrandPhaseR_pipeline.R \

Thomas Weber
committed
{config[output_location]}strand_states/{wildcards.sample}/{wildcards.window}.{wildcards.bpdens}/StrandPhaseR_analysis.{wildcards.chrom} \
{input.configfile} \
{input.wcregions} \
{input.snppositions} \
$(pwd)/utils/R-packages/ \
"""
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
rule compress_vcf:
"""
rule fct:
input:
output:
"""
input:
vcf="{file}.vcf",
output:
vcf="{file}.vcf.gz",
# log:
# "log/compress_vcf/{file}.log"
shell:
"bgzip {input.vcf}"
rule index_vcf:
"""
rule fct:
input:
output:
"""
input:
vcf="{file}.vcf.gz",
output:
tbi="{file}.vcf.gz.tbi",
shell:
"tabix -p vcf {input.vcf}"
rule merge_strandphaser_vcfs:
input:
vcfs=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz", chrom=config["chromosomes"]),
tbis=expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/VCFfiles/{chrom}_phased.vcf.gz.tbi", chrom=config["chromosomes"]),
output:
vcf=config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.vcf.gz"
log:
"log/merge_strandphaser_vcfs/{sample}/{window}.{bpdens}.log"
shell:
"(bcftools concat -a {input.vcfs} | bcftools view -o {output.vcf} -O z --genotype het --types snps - ) > {log} 2>&1"
rule combine_strandphaser_output:
input:
expand(config["output_location"] + "strand_states/{{sample}}/{{window}}.{{bpdens}}/StrandPhaseR_analysis.{chrom}/Phased/phased_haps.txt", chrom = config["chromosomes"])
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/strandphaser_output.txt"
log:
"log/combine_strandphaser_output/{sample}/{window}.{bpdens}.log"
shell:
"""
set +o pipefail
cat {input} | head -n1 > {output};
tail -q -n+2 {input} >> {output};
"""
rule convert_strandphaser_output:
input:
phased_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/strandphaser_output.txt",
initial_states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/initial_strand_state",
# info = config["output_location"] + "counts/{sample}/500000_fixed.info"
info = config["output_location"] + "counts/{sample}/{window}.info"
output:
config["output_location"] + "strand_states/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/final.txt"
log:
"log/convert_strandphaser_output/{sample}/{window}.{bpdens}.log"
script:
"utils/helper.convert_strandphaser_output.R"
################################################################################
# Haplotagging #
################################################################################
rule haplotag_bams:
input:
vcf = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz",
tbi = config["output_location"] + "phased-snvs/{sample}/{window}.{bpdens}.vcf.gz.tbi",
bam = config["input_bam_location"] + "{sample}/selected/{bam}.bam",
bai = config["input_bam_location"] + "{sample}/selected/{bam}.bam.bai"
output:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/{bam}.bam",
log:
config["output_location"] + "log/haplotag_bams/{sample}/{window}.{bpdens}/{bam}.log"
params:
ref = config["reference"]
shell:
"whatshap haplotag -o {output.bam} -r {params.ref} {input.vcf} {input.bam} > {log} 2>{log}"
rule create_haplotag_segment_bed:
input:
segments = config["output_location"] + "segmentation2/{sample}/{size}{what}.{bpdens}.txt",
output:
bed = config["output_location"] + "haplotag/bed/{sample}/{size,[0-9]+}{what}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.bed",
shell:
"""
# Issue #1022 (https://bitbucket.org/snakemake/snakemake/issues/1022)
awk -v s={wildcards.size} -f utils/command3.awk {input.segments} > {output.bed}
"""
rule create_haplotag_table:
input:
bam = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam",
bai = config["output_location"] + "haplotag/bam/{sample}/{window}.{bpdens}/{cell}.bam.bai",
bed = config["output_location"] + "haplotag/bed/{sample}/{window}.{bpdens}.bed"
output:
tsv = config["output_location"] + "haplotag/table/{sample}/by-cell/haplotag-counts.{cell}.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
log:
config["output_location"] + "log/create_haplotag_table/{sample}.{cell}.{window}.{bpdens}.log"
script:
"utils/haplotagTable.snakemake.R"
rule merge_haplotag_tables:
input:
tsvs = lambda wc: [config["output_location"] + "haplotag/table/{}/by-cell/haplotag-counts.{}.{}.{}.tsv".format(wc.sample,cell,wc.window,wc.bpdens) for cell in BAM_PER_SAMPLE[wc.sample]],
output:
tsv = config["output_location"] + "haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.tsv"
shell:
"(head -n1 {input.tsvs[0]} && tail -q -n +2 {input.tsvs}) > {output.tsv}"

Thomas Weber
committed
################################################################################
# MosaiClassifier #
################################################################################
rule mosaiClassifier_calc_probs:
input:
counts = config["output_location"] + "counts/{sample}/{window}.txt.gz",
info = config["output_location"] + "counts/{sample}/{window}.info",
states = config["output_location"] + "strand_states/{sample}/{window}.{bpdens}/final.txt",
bp = config["output_location"] + "segmentation2/{sample}/{window}.{bpdens}.txt"
output:
output = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/probabilities.Rdata"
log:
config["output_location"] + "log/mosaiClassifier_calc_probs/{sample}/{window}.{bpdens}.log"
script:
"utils/mosaiClassifier.snakemake.R"
rule create_haplotag_likelihoods:
input:
haplotag_table = config["output_location"] + "haplotag/table/{sample}/full/haplotag-counts.{window}.{bpdens}.tsv",
sv_probs_table = config["output_location"] + "sv_probabilities/{sample}/{window}.{bpdens}/probabilities.Rdata",
output:
config["output_location"] + "haplotag/table/{sample}/haplotag-likelihoods.{window}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}.Rdata"
log:
config["output_location"] + "log/create_haplotag_likelihoods/{sample}.{window}.{bpdens}.log"

Thomas Weber
committed
params:
chroms = config["chromosomes"]
shell:
"/home/tweber/.conda/envs/strandseqnation/bin/Rscript afac/haplotagProbs.snakemake.R {input.haplotag_table} {input.sv_probs_table} {output}"
rule mosaiClassifier_calc_probs:
input:
counts = "counts/{sample}/{windows}.txt.gz",
info = "counts/{sample}/{windows}.info",
states = "strand_states/{sample}/{windows}.{bpdens}/final.txt",
bp = "segmentation2/{sample}/{windows}.{bpdens}.txt"
output:
output = "sv_probabilities/{sample}/{windows}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/probabilities.Rdata"
log:
"log/mosaiClassifier_calc_probs/{sample}/{windows}.{bpdens}.log"
script:

Thomas Weber
committed
"utils/mosaiClassifier.snakemake.R"

Thomas Weber
committed
rule mosaiClassifier_make_call_biallelic:
input:
probs = "sv_probabilities/{sample}/{windows}.{bpdens}/probabilities.Rdata"
output:
"sv_calls/{sample}/{windows}.{bpdens,selected_j[0-9\\.]+_s[0-9\\.]+_scedist[0-9\\.]+}/biAllelic_llr{llr}.txt"
log:
"log/mosaiClassifier_make_call_biallelic/{sample}/{windows}.{bpdens}.{llr}.log"
script:
"utils/mosaiClassifier_call_biallelic.snakemake.R"

Thomas Weber
committed
################################################################################
# Call SNVs #
################################################################################
# TODO : to move in utils category
rule mergeBams:
"""
rule fct:
input:
output:
"""
input:
lambda wc: expand(config["input_bam_location"] + wc.sample + "/all/{bam}.bam", bam = ALLBAMS_PER_SAMPLE[wc.sample]) if wc.sample in ALLBAMS_PER_SAMPLE else "FOOBAR",
output:

Thomas Weber
committed
config["output_location"] + "snv_calls/{sample}/merged.unsorted.bam"
log:
config["output_location"] + "log/mergeBams/{sample}.log"
threads:
4
shell:
# FIXME : Samtools 1.10 from Conda env not working ; 1.9 from Seneca working > change it into conda env yml file
config["samtools"] + " merge -@ {threads} {output} {input} 2>&1 > {log}"
# "samtools" + " merge -@ {threads} {output} {input} 2>&1 > {log}"

Thomas Weber
committed
rule sort_bam:
input:
config["output_location"] + "snv_calls/{sample}/merged.unsorted.bam"
output:
config["output_location"] + "snv_calls/{sample}/merged.bam"
shell:
config["samtools"] + " sort {input} -o {output}"
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
# TODO : to move in utils category
rule index_bam:
"""
rule fct:
input:
output:
"""
input:
"{file}.bam"
output:
"{file}.bam.bai"
log:
"{file}.bam.log"
shell:
config["samtools"] + " index {input} 2> {log}"
# "samtools" + " index {input} 2> {log}"
rule regenotype_SNVs:
"""
rule fct:
input:
output:
"""
input:
bam = config["output_location"] + "snv_calls/{sample}/merged.bam",
bai = config["output_location"] + "snv_calls/{sample}/merged.bam.bai",
sites = config["snv_sites_to_genotype"],
output:
vcf = config["output_location"] + "snv_genotyping/{sample}/{chrom,chr[0-9A-Z]+}.vcf"
log:
config["output_location"] + "log/snv_genotyping/{sample}/{chrom}.log"
params:
fa = config["reference"],
# bcftools = config["bcftools"]
shell:
# CHECKME : Samtools / BCFtools / freebayes path definition through conda env
# CHECKME : interest of using -r parameters for freebayes => split by chroms
"""
(freebayes \
-f {params.fa} \
-r {wildcards.chrom} \
-@ {input.sites} \
--only-use-input-alleles {input.bam} \
--genotype-qualities \
| bcftools view \
--exclude-uncalled \
--genotype het \
--types snps \

Thomas Weber
committed
--include "QUAL>=10" \
> {output.vcf}) 2> {log}
"""