Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Mosaicatcher Update
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Thomas Weber
Mosaicatcher Update
Commits
74d6ab6d
Commit
74d6ab6d
authored
6 years ago
by
Sascha Meiers
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of
https://github.com/friendsofstrandseq/pipeline
parents
c6ab4003
a8fa0baa
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
utils/add_jump_probs.R
+174
-0
174 additions, 0 deletions
utils/add_jump_probs.R
utils/mosaiClassifier/haploAndGenoName.R
+20
-1
20 additions, 1 deletion
utils/mosaiClassifier/haploAndGenoName.R
with
194 additions
and
1 deletion
utils/add_jump_probs.R
0 → 100644
+
174
−
0
View file @
74d6ab6d
library
(
GenomicRanges
)
library
(
ggplot2
)
library
(
rgl
)
dir
<-
"/local/home/maryam/research/hackathons/simulation-29May-2018/pipeline/"
binRCfile
<-
paste0
(
dir
,
"counts/simulation0-50000/50000_fixed.txt.gz"
)
BRfile
<-
paste0
(
dir
,
"segmentation2/simulation0-50000/50000_fixed.many.txt"
)
infoFile
<-
paste0
(
dir
,
"counts/simulation0-50000/50000_fixed.info"
)
stateFile
<-
paste0
(
dir
,
"strand_states/simulation0-50000/final.txt"
)
trueSVfile
<-
paste0
(
dir
,
"simulation/variants/genome0-50000.txt"
)
counts
<-
fread
(
paste
(
"zcat"
,
binRCfile
))
info
<-
fread
(
infoFile
)
strand
<-
fread
(
stateFile
)
segs
<-
fread
(
BRfile
)
trueSVs
<-
fread
(
trueSVfile
)
probs
<-
mosaiClassifierPrepare
(
counts
,
info
,
strand
,
segs
)
probs
<-
mosaiClassifierCalcProbs
(
probs
)
probs
<-
mosaiClassifierPostProcessing
(
probs
,
haplotypeMode
=
T
)
probs
<-
forceBiallelic
(
probs
)
SV.calls
<-
makeSVCallSimple
(
probs
,
full.calls
=
T
)
# adding genotype classes
probs
[,
geno_class
:=
haplo_code_to_geno_class
(
haplotype
)]
getJumpProb
<-
function
(
probs
,
aggregateCells
=
T
)
{
# computing geno_class probs
jump.probs
<-
probs
[,
.
(
class
=
class
[
1
],
nb_p
=
nb_p
[
1
],
expected
=
expected
[
1
],
allele
=
allele
[
1
],
geno_class_pp
=
sum
(
nb_hap_pp
)),
by
=
.
(
sample
,
cell
,
chrom
,
start
,
end
,
geno_class
)]
# computing jump probs
# sorting the probs table
setkey
(
jump.probs
,
sample
,
chrom
,
start
,
end
,
cell
,
geno_class
)
# shift the probs column by size of #cells x #geno_classes(4)
numCells
<-
length
(
unique
(
probs
$
cell
))
numGenoClasses
<-
4
# output jump probs
jump.probs
<-
jump.probs
[,
next_seg_geno_class_pp
:=
data.table
::
shift
(
geno_class_pp
,
n
=
numCells
*
numGenoClasses
,
fill
=
NA
,
type
=
"lead"
),
by
=
chrom
]
# computing jump probs per segment per cell
jump.probs
<-
jump.probs
[,
.
(
class
=
class
[
1
],
nb_p
=
nb_p
[
1
],
expected
=
expected
[
1
],
allele
=
allele
[
1
],
jump_pp
=
1
-
sum
(
geno_class_pp
*
next_seg_geno_class_pp
)),
by
=
.
(
sample
,
chrom
,
start
,
end
,
cell
)]
# compute jump probs per segment
jump.probs.segs
<-
jump.probs
[,
.
(
class
=
class
[
1
],
nb_p
=
nb_p
[
1
],
expected
=
expected
[
1
],
allele
=
allele
[
1
],
log_jump_pp
=
sum
(
log
(
jump_pp
))),
by
=
.
(
sample
,
chrom
,
start
,
end
)]
# remove NA values
jump.probs.segs
<-
jump.probs.segs
[
!
is.na
(
log_jump_pp
)]
if
(
aggregateCells
){
return
(
jump.probs
)
}
else
{
return
(
jump.probs.segs
)
}
}
# this function adds a column to the SV.calls table showing the number of similar
# SV calls among the cells for each segment and its next segment
getSVconsistency
<-
function
(
SV.calls
)
{
setkey
(
SV.calls
,
sample
,
chrom
,
start
,
end
,
cell
)
numCells
<-
length
(
unique
(
probs
$
cell
))
# adding the column for SV calls of the next segments
SV.calls
[,
next_seg_sv_call_haplotype
:=
data.table
::
shift
(
sv_call_haplotype
,
n
=
numCells
,
fill
=
NA
,
type
=
"lead"
),
by
=
chrom
]
SV.calls
[
!
is.na
(
next_seg_sv_call_haplotype
),
consistantCells
:=
length
(
which
(
sv_call_haplotype
==
next_seg_sv_call_haplotype
)),
by
=
.
(
sample
,
chrom
,
start
,
end
)]
SV.calls.consistency
<-
SV.calls
[,
.
(
cell
=
cell
[
1
],
class
=
class
[
1
],
consistantCells
=
consistantCells
[
1
]),
by
=
.
(
sample
,
chrom
,
start
,
end
)]
return
(
SV.calls.consistency
[
!
is.na
(
consistantCells
)])
}
getAggProbDiff
<-
function
(
probs
)
{
setkey
(
probs
,
sample
,
chrom
,
start
,
end
,
cell
)
numCells
<-
length
(
unique
(
probs
$
cell
))
numHaps
<-
length
(
unique
(
probs
$
haplotype
))
# adding the column for agg hap prob of the next segments
probs
[,
next_seg_agg_hap_pp
:=
data.table
::
shift
(
agg_hap_pp
,
n
=
numCells
*
numHaps
,
fill
=
NA
,
type
=
"lead"
),
by
=
chrom
]
probs
<-
probs
[
!
is.na
(
next_seg_agg_hap_pp
),
.
(
agg_hap_log_pp_diff
=
sum
(
exp
(
agg_hap_pp
+
next_seg_agg_hap_pp
))),
by
=
.
(
sample
,
chrom
,
start
,
end
)]
return
(
probs
)
}
getTrueSV_BRs
<-
function
(
probs
,
trueSVs
)
{
# adding vaf column to trueSVs
trueSVs
[,
vaf
:=
.N
,
by
=
.
(
chrom
,
start
,
end
)]
# labeling each segment based on whether the end breakpoint is true or false
# creating a GRanges object for trueSVs and predicted SVs
true.SVs.gr
<-
GRanges
(
unique
(
trueSVs
[,
.
(
chrom
,
start
,
end
,
vaf
)]))
segs.gr
<-
GRanges
(
unique
(
probs
[,
.
(
chrom
,
start
,
end
)]))
# finding overlaps between the true and the detected SVs
ovp
<-
findOverlaps
(
segs.gr
,
true.SVs.gr
)
# create a data.table of the overlapping segments
overlap
<-
data.table
(
chrom
=
as.character
(
seqnames
((
segs.gr
[
queryHits
(
ovp
)]))),
pred.end
=
end
(
segs.gr
[
queryHits
(
ovp
)]),
true.start
=
start
(
true.SVs.gr
[
subjectHits
(
ovp
)]),
true.end
=
end
(
true.SVs.gr
[
subjectHits
(
ovp
)]),
vaf
=
true.SVs.gr
$
vaf
[
subjectHits
(
ovp
)])
# label a predicted end as false if it doesn't match (distance less than 0.5*binSize) any start and end in the true SVs
bin.size
<-
median
(
counts
[,
end
-
start
])
overlap
[,
trueBR
:=
min
(
abs
(
pred.end
-
true.start
),
abs
(
pred.end
-
true.end
))
<=
bin.size
/
2
,
by
=
.
(
pred.end
,
true.start
,
true.end
)]
# remove repetitive predicted segments
overlap
<-
overlap
[,
{
if
(
all
(
!
trueBR
))
{
head
(
.SD
,
1
)}
else
{
head
(
.SD
[
trueBR
],
1
)
}},
by
=
.
(
chrom
,
pred.end
)]
return
(
overlap
)
}
jump.probs.segs
<-
getJumpProb
(
probs
)
trueBRs
<-
getTrueSV_BRs
(
probs
,
trueSVs
)
SV.calls.consistency
<-
getSVconsistency
(
SV.calls
)
aggP.consist
<-
getAggProbDiff
(
probs
)
names
(
trueBRs
)[
2
]
<-
"end"
# merge this trueBR column with the jump probs table
jump.probs.segs
<-
merge
(
trueBRs
[,
.
(
chrom
,
end
,
trueBR
,
vaf
)],
jump.probs.segs
,
all.y
=
T
,
allow.cartesian
=
T
,
by
=
c
(
"chrom"
,
"end"
))[
is.na
(
trueBR
),
trueBR
:=
F
][
is.na
(
vaf
),
vaf
:=
0
]
SV.calls.consistency
<-
merge
(
trueBRs
[,
.
(
chrom
,
end
,
trueBR
,
vaf
)],
SV.calls.consistency
,
all.y
=
T
,
allow.cartesian
=
T
,
by
=
c
(
"chrom"
,
"end"
))[
is.na
(
trueBR
),
trueBR
:=
F
][
is.na
(
vaf
),
vaf
:=
0
]
aggP.consist
<-
merge
(
trueBRs
[,
.
(
chrom
,
end
,
trueBR
,
vaf
)],
aggP.consist
,
all.y
=
T
,
allow.cartesian
=
T
,
by
=
c
(
"chrom"
,
"end"
))[
is.na
(
trueBR
),
trueBR
:=
F
][
is.na
(
vaf
),
vaf
:=
0
]
# plotting
ggplot
(
data
=
jump.probs.segs
,
aes
(
x
=
log_jump_pp
,
y
=
end
-
start
,
col
=
trueBR
))
+
geom_point
()
+
facet_grid
(
~
trueBR
)
ggplot
(
data
=
jump.probs.segs
,
aes
(
x
=
log_jump_pp
,
y
=
vaf
,
col
=
trueBR
))
+
geom_point
()
+
facet_grid
(
~
trueBR
)
ggplot
(
data
=
SV.calls.consistency
,
aes
(
x
=
consistantCells
,
y
=
end
-
start
,
col
=
trueBR
))
+
geom_point
()
ggplot
(
data
=
SV.calls.consistency
,
aes
(
x
=
consistantCells
,
y
=
vaf
,
col
=
trueBR
))
+
geom_point
()
ggplot
(
data
=
aggP.consist
,
aes
(
x
=
agg_hap_log_pp_diff
,
y
=
end
-
start
,
col
=
trueBR
))
+
geom_point
()
+
facet_grid
(
~
trueBR
)
ggplot
(
data
=
aggP.consist
,
aes
(
x
=
agg_hap_log_pp_diff
,
y
=
vaf
,
col
=
trueBR
))
+
geom_point
()
This diff is collapsed.
Click to expand it.
utils/mosaiClassifier/haploAndGenoName.R
+
20
−
1
View file @
74d6ab6d
...
...
@@ -36,4 +36,23 @@ haplo_to_geno_name <- function(hap.name)
geno.name
<-
gsub
(
"h2"
,
"het"
,
geno.name
)
return
(
geno.name
)
}
\ No newline at end of file
}
#' translates the haplotype code to the corresponding classe of genotypes (normal, inv, CN loss, CN gain)
#'
#' @param hap.code The haplotype coding
#' @author Maryam Ghareghani
#' @export
#'
haplo_code_to_geno_class
<-
function
(
hap.code
)
{
if
(
length
(
hap.code
)
<
1
)
return
(
character
())
dd
=
as.data.table
(
str_split
(
hap.code
,
""
,
simplify
=
T
,
n
=
4
))
dd
=
dd
[,
lapply
(
.SD
,
as.integer
)]
dd
[,
state
:=
ifelse
(
V1
+
V2
+
V3
+
V4
!=
2
,
ifelse
(
V1
+
V2
+
V3
+
V4
<
2
,
"loss"
,
"gain"
),
ifelse
(
V2
+
V4
>
0
,
"inv"
,
"ref"
)
)]
return
(
dd
$
state
)
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment