Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Mosaicatcher Update
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Thomas Weber
Mosaicatcher Update
Commits
fd43409f
Commit
fd43409f
authored
6 years ago
by
Tobias Marschall
Browse files
Options
Downloads
Patches
Plain Diff
Some code formatting and cleanup
parent
b29fae87
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
utils/plot-clustering.R
+45
-51
45 additions, 51 deletions
utils/plot-clustering.R
with
45 additions
and
51 deletions
utils/plot-clustering.R
+
45
−
51
View file @
fd43409f
plot.clustering
<-
function
(
inputfile
,
bin.bed.filename
,
position.outputfile
,
chromosome.outputfile
)
{
# setwd("/Users/jeong/Documents/Strand_Seq/TALL_analysis/sv_calls_new_1008") ##This folder need to be changed ( /path/to/sv_calls )
genome_bins
<-
read.table
(
bin.bed.filename
,
sep
=
'\t'
,
header
=
F
,
comment.char
=
""
)
list_directory
<-
dir
(
"./"
,
full.names
=
TRUE
)
# files <- list.files(paste0(list_directory[m], '/100000_fixed_norm.selected_j0.1_s0.5'), pattern=".txt$", full.names=TRUE)
# plotname<-paste0("Mosaic_plot_", strsplit(list_directory[m], './/')[[1]][2], "_position.pdf")
pdf
(
position.outputfile
,
width
=
11
,
height
=
10
)
# filename<-strsplit(files[k], './/')[[1]][2]
data1
<-
read.table
(
inputfile
,
sep
=
'\t'
,
header
=
T
,
comment.char
=
""
)
data1
$
color
<-
0
ash12rainbow
<-
c
(
"#77AADD"
,
"#4477AA"
,
"#114477"
,
"#CC99BB"
,
"#AA4488"
,
"#771155"
,
"#DDDD77"
,
"#AAAA44"
,
"#777711"
,
"#DDAA77"
,
"#AA7744"
,
"#774411"
)
sv_call_name
<-
c
(
"del_h1"
,
"del_h2"
,
"del_hom"
,
"dup_h1"
,
"dup_h2"
,
"dup_hom"
,
"inv_h1"
,
"inv_h2"
,
"inv_hom"
,
"idup_h1"
,
"idup_h2"
,
"complex"
)
for
(
j
in
1
:
length
(
sv_call_name
)){
tmp
<-
which
(
data1
[,
9
]
==
sv_call_name
[
j
])
data1
[
tmp
,
15
]
<-
j
tmp
<-
which
(
data1
[,
9
]
==
sv_call_name
[
j
])
data1
[
tmp
,
15
]
<-
j
}
data1_pos
<-
data1
[,
1
:
3
]
data1_pos_uniq
<-
unique
(
data1_pos
)
data1_pos_uniq_sort
<-
data1_pos_uniq
[
data1_pos_uniq
$
chrom
==
"chr1"
,]
chrom
<-
c
(
"chr1"
,
"chr2"
,
"chr3"
,
"chr4"
,
"chr5"
,
"chr6"
,
"chr7"
,
"chr8"
,
"chr9"
,
"chr10"
,
"chr11"
,
"chr12"
,
"chr13"
,
"chr14"
,
"chr15"
,
"chr16"
,
"chr17"
,
"chr18"
,
"chr19"
,
"chr20"
,
"chr21"
,
"chr22"
,
"chrX"
)
for
(
i
in
2
:
length
(
chrom
)){
data1_pos_uniq_sort
<-
rbind
(
data1_pos_uniq_sort
,
data1_pos_uniq
[
data1_pos_uniq
$
chrom
==
chrom
[
i
],])
data1_pos_uniq_sort
<-
rbind
(
data1_pos_uniq_sort
,
data1_pos_uniq
[
data1_pos_uniq
$
chrom
==
chrom
[
i
],])
}
data1_pos_uniq_sort
$
posind
<-
c
(
1
:
nrow
(
data1_pos_uniq_sort
))
data1_cell
<-
data1
[,
5
]
...
...
@@ -42,11 +37,12 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
result_sv
<-
matrix
(
0
,
nrow
(
data1_cell_uniq_sort
),
nrow
(
data1_pos_uniq
))
for
(
i
in
1
:
nrow
(
data1
)){
pos_ind
<-
which
(
data1_pos_uniq_sort
[,
1
]
==
data1
[
i
,
1
]
&
data1_pos_uniq_sort
[,
2
]
==
data1
[
i
,
2
]
&
data1_pos_uniq_sort
[,
3
]
==
data1
[
i
,
3
])
cell_ind
<-
which
(
data1_cell_uniq_sort
[,
1
]
==
data1
[
i
,
5
])
result
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
13
]
result_sv
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
15
]
pos_ind
<-
which
(
data1_pos_uniq_sort
[,
1
]
==
data1
[
i
,
1
]
&
data1_pos_uniq_sort
[,
2
]
==
data1
[
i
,
2
]
&
data1_pos_uniq_sort
[,
3
]
==
data1
[
i
,
3
])
cell_ind
<-
which
(
data1_cell_uniq_sort
[,
1
]
==
data1
[
i
,
5
])
result
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
13
]
result_sv
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
15
]
}
rownames
(
result
)
<-
data1_cell_uniq_sort
colnames
(
result
)
<-
data1_pos_uniq_sort
$
posind
result
[
result
==
Inf
]
<-
max
(
result
[
result
!=
Inf
])
...
...
@@ -72,6 +68,7 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
library
(
pheatmap
)
library
(
gplots
)
library
(
ComplexHeatmap
)
breaksList
=
seq
(
4
,
30
,
by
=
0.1
)
breaksList
=
append
(
breaksList
,
max
(
result
))
breaksList
=
append
(
breaksList
,
-1
,
0
)
...
...
@@ -86,40 +83,40 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
res
<-
pheatmap
(
result
,
border_color
=
NA
,
show_rownames
=
T
,
show_colnames
=
F
,
cluster_cols
=
F
,
cluster_rows
=
T
,
clustering_method
=
"ward.D"
,
scale
=
"none"
,
col
=
mycol
,
cex
=
0.7
,
main
=
inputfile
,
annotation_col
=
col_annotation
,
annotation_colors
=
anno_colors
,
breaks
=
breaksList
,
annotation_legend
=
FALSE
)
#pheatmap(result_sv[res$tree_row$order,], border_color = NA, show_rownames=T, show_colnames=F, cluster_cols=F, cluster_rows=F, scale="none", cex=0.7, col=c("white", "#77AADD", "#4477AA", "#114477", "#CC99BB", "#AA4488", "#771155", "#DDDD77", "#AAAA44", "#777711", "#DDAA77", "#AA7744", "#774411"), main=filename, annotation_col = col_annotation, annotation_colors = anno_colors, annotation_legend = FALSE, legend=TRUE, legend_labels <- c("none", "del_h1", "del_h2", "del_hom", "dup_h1", "dup_h2", "dup_hom", "inv_h1", "inv_h2", "inv_hom", "idup_h1", "idup_h2", "complex"))
chr_name
<-
matrix
(
"chr"
,
ncol
(
result
),
1
)
for
(
i
in
1
:
ncol
(
result
)){
chr_name
[
i
,
1
]
<-
paste0
(
data1_pos_uniq_sort
[
i
,
1
],
'_'
,
data1_pos_uniq_sort
[
i
,
2
],
'_'
,
data1_pos_uniq_sort
[
i
,
3
])
chr_name
[
i
,
1
]
<-
paste0
(
data1_pos_uniq_sort
[
i
,
1
],
'_'
,
data1_pos_uniq_sort
[
i
,
2
],
'_'
,
data1_pos_uniq_sort
[
i
,
3
])
}
colnames
(
result_sv
)
<-
chr_name
colors
=
structure
(
c
(
"white"
,
"#77AADD"
,
"#4477AA"
,
"#114477"
,
"#CC99BB"
,
"#AA4488"
,
"#771155"
,
"#DDDD77"
,
"#AAAA44"
,
"#777711"
,
"#DDAA77"
,
"#AA7744"
,
"#774411"
),
names
=
c
(
0
:
12
))
sv_list
=
c
(
"none"
,
"del_h1"
,
"del_h2"
,
"del_hom"
,
"dup_h1"
,
"dup_h2"
,
"dup_hom"
,
"inv_h1"
,
"inv_h2"
,
"inv_hom"
,
"idup_h1"
,
"idup_h2"
,
"complex"
)
sv_tmp
<-
matrix
(
0
,
13
,
1
)
for
(
i
in
1
:
13
){
sv_tmp
[
i
,
1
]
<-
sum
(
result_sv
==
(
i
-1
))
}
for
(
i
in
1
:
13
){
sv_tmp
[
i
,
1
]
<-
sum
(
result_sv
==
(
i
-1
))
}
sv_list_sub
<-
sv_list
[
sv_tmp
>
0
]
mat
<-
as.data.frame
(
result_sv
[
res
$
tree_row
$
order
,])
ha_column
=
HeatmapAnnotation
(
df
=
data.frame
(
type1
=
data1_pos_uniq_sort
$
color
),
col
=
list
(
type1
=
c
(
"magenta"
=
"magenta"
,
"purple"
=
"purple"
)))
#ht1 = Heatmap(mat, name = "", col=c("white", "#77AADD", "#4477AA", "#114477", "#CC99BB", "#AA4488", "#771155", "#DDDD77", "#AAAA44", "#777711", "#DDAA77", "#AA7744", "#774411"), heatmap_legend_param = list(labels = c("none", "del_h1", "del_h2", "del_hom", "dup_h1", "dup_h2", "dup_hom", "inv_h1", "inv_h2", "inv_hom", "idup_h1", "idup_h2", "complex")),cluster_rows = FALSE, cluster_columns = FALSE, column_title = filename, row_names_gp = gpar(fontsize = 5), column_names_gp = gpar(fontsize = 3), column_title_gp = gpar(fontsize = 7, fontface = "bold"), top_annotation = ha_column)
ht1
=
Heatmap
(
mat
,
name
=
""
,
col
=
colors
,
heatmap_legend_param
=
list
(
labels
=
sv_list_sub
),
cluster_rows
=
FALSE
,
cluster_columns
=
FALSE
,
column_title
=
inputfile
,
row_names_gp
=
gpar
(
fontsize
=
5
),
column_names_gp
=
gpar
(
fontsize
=
1
),
column_title_gp
=
gpar
(
fontsize
=
7
,
fontface
=
"bold"
),
top_annotation
=
ha_column
)
col
=
list
(
type1
=
c
(
"magenta"
=
"magenta"
,
"purple"
=
"purple"
)))
ht1
=
Heatmap
(
mat
,
name
=
""
,
col
=
colors
,
heatmap_legend_param
=
list
(
labels
=
sv_list_sub
),
cluster_rows
=
FALSE
,
cluster_columns
=
FALSE
,
column_title
=
inputfile
,
row_names_gp
=
gpar
(
fontsize
=
5
),
column_names_gp
=
gpar
(
fontsize
=
1
),
column_title_gp
=
gpar
(
fontsize
=
7
,
fontface
=
"bold"
),
top_annotation
=
ha_column
)
draw
(
ht1
,
show_annotation_legend
=
FALSE
)
dev.off
()
dev.off
()
pdf
(
chromosome.outputfile
,
width
=
11
,
height
=
5
)
data1
<-
read.table
(
inputfile
,
sep
=
'\t'
,
header
=
T
,
comment.char
=
""
)
data1
$
color
<-
0
ash12rainbow
<-
c
(
"#77AADD"
,
"#4477AA"
,
"#114477"
,
"#CC99BB"
,
"#AA4488"
,
"#771155"
,
"#DDDD77"
,
"#AAAA44"
,
"#777711"
,
"#DDAA77"
,
"#AA7744"
,
"#774411"
)
sv_call_name
<-
c
(
"del_h1"
,
"del_h2"
,
"del_hom"
,
"dup_h1"
,
"dup_h2"
,
"dup_hom"
,
"inv_h1"
,
"inv_h2"
,
"inv_hom"
,
"idup_h1"
,
"idup_h2"
,
"complex"
)
for
(
j
in
1
:
length
(
sv_call_name
)){
tmp
<-
which
(
data1
[,
9
]
==
sv_call_name
[
j
])
data1
[
tmp
,
15
]
<-
j
tmp
<-
which
(
data1
[,
9
]
==
sv_call_name
[
j
])
data1
[
tmp
,
15
]
<-
j
}
colors
=
structure
(
c
(
"white"
,
"#77AADD"
,
"#4477AA"
,
"#114477"
,
"#CC99BB"
,
"#AA4488"
,
"#771155"
,
"#DDDD77"
,
"#AAAA44"
,
"#777711"
,
"#DDAA77"
,
"#AA7744"
,
"#774411"
),
names
=
c
(
0
:
12
))
...
...
@@ -130,7 +127,7 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
chrom
<-
c
(
"chr1"
,
"chr2"
,
"chr3"
,
"chr4"
,
"chr5"
,
"chr6"
,
"chr7"
,
"chr8"
,
"chr9"
,
"chr10"
,
"chr11"
,
"chr12"
,
"chr13"
,
"chr14"
,
"chr15"
,
"chr16"
,
"chr17"
,
"chr18"
,
"chr19"
,
"chr20"
,
"chr21"
,
"chr22"
,
"chrX"
)
for
(
i
in
2
:
length
(
chrom
)){
data1_pos_uniq_sort
<-
rbind
(
data1_pos_uniq_sort
,
data1_pos_uniq
[
data1_pos_uniq
$
chrom
==
chrom
[
i
],])
data1_pos_uniq_sort
<-
rbind
(
data1_pos_uniq_sort
,
data1_pos_uniq
[
data1_pos_uniq
$
chrom
==
chrom
[
i
],])
}
data1_pos_uniq_sort
$
posind
<-
c
(
1
:
nrow
(
data1_pos_uniq_sort
))
...
...
@@ -142,10 +139,10 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
result_sv
<-
matrix
(
0
,
nrow
(
data1_cell_uniq_sort
),
nrow
(
data1_pos_uniq
))
for
(
i
in
1
:
nrow
(
data1
)){
pos_ind
<-
which
(
data1_pos_uniq_sort
[,
1
]
==
data1
[
i
,
1
]
&
data1_pos_uniq_sort
[,
2
]
==
data1
[
i
,
2
]
&
data1_pos_uniq_sort
[,
3
]
==
data1
[
i
,
3
])
cell_ind
<-
which
(
data1_cell_uniq_sort
[,
1
]
==
data1
[
i
,
5
])
result
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
13
]
result_sv
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
15
]
pos_ind
<-
which
(
data1_pos_uniq_sort
[,
1
]
==
data1
[
i
,
1
]
&
data1_pos_uniq_sort
[,
2
]
==
data1
[
i
,
2
]
&
data1_pos_uniq_sort
[,
3
]
==
data1
[
i
,
3
])
cell_ind
<-
which
(
data1_cell_uniq_sort
[,
1
]
==
data1
[
i
,
5
])
result
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
13
]
result_sv
[
cell_ind
,
pos_ind
]
<-
data1
[
i
,
15
]
}
rownames
(
result
)
<-
data1_cell_uniq_sort
colnames
(
result
)
<-
data1_pos_uniq_sort
$
posind
...
...
@@ -153,10 +150,6 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
rownames
(
result_sv
)
<-
data1_cell_uniq_sort
colnames
(
result_sv
)
<-
data1_pos_uniq_sort
$
posind
library
(
pheatmap
)
library
(
gplots
)
breaksList
=
seq
(
4
,
30
,
by
=
0.1
)
breaksList
=
append
(
breaksList
,
max
(
result
))
breaksList
=
append
(
breaksList
,
-1
,
0
)
...
...
@@ -164,28 +157,26 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
res
<-
pheatmap
(
result
,
border_color
=
NA
,
show_rownames
=
T
,
show_colnames
=
F
,
cluster_cols
=
F
,
cluster_rows
=
T
,
clustering_method
=
"ward.D"
,
scale
=
"none"
,
col
=
mycol
,
cex
=
0.5
,
main
=
inputfile
)
##Assign sv calls to the genome-wide bins (200kb)
par
(
"mar"
)
par
(
mar
=
c
(
0.5
,
0.5
,
0.5
,
0.5
))
genome_bins_sort
<-
genome_bins
[
genome_bins
[,
1
]
==
chrom
[
1
],]
for
(
i
in
2
:
length
(
chrom
)){
genome_bins_sort
<-
rbind
(
genome_bins_sort
,
genome_bins
[
genome_bins
[,
1
]
==
chrom
[
i
],])
genome_bins_sort
<-
rbind
(
genome_bins_sort
,
genome_bins
[
genome_bins
[,
1
]
==
chrom
[
i
],])
}
result_sv_bins
<-
matrix
(
0
,
nrow
(
genome_bins_sort
),
nrow
(
result_sv
))
for
(
i
in
1
:
ncol
(
result_sv
)){
num_bins1
<-
which
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])
&
genome_bins_sort
[,
2
]
<=
data1_pos_uniq_sort
[
i
,
2
]
&
genome_bins_sort
[,
3
]
>
data1_pos_uniq_sort
[
i
,
2
])
num_bins2
<-
which
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])
&
genome_bins_sort
[,
2
]
<=
data1_pos_uniq_sort
[
i
,
3
]
&
genome_bins_sort
[,
3
]
>
data1_pos_uniq_sort
[
i
,
3
])
if
(
sum
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])
&
genome_bins_sort
[,
2
]
<=
data1_pos_uniq_sort
[
i
,
3
]
&
genome_bins_sort
[,
3
]
>
data1_pos_uniq_sort
[
i
,
3
])
==
0
){
num_bins2
<-
max
(
which
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])))
}
num_bins
<-
c
(
num_bins1
:
num_bins2
)
for
(
j
in
1
:
length
(
num_bins
)){
result_sv_bins
[
num_bins
[
j
],]
<-
t
(
as.matrix
(
result_sv
[,
i
]))}
cat
(
paste0
(
i
,
' '
))
num_bins1
<-
which
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])
&
genome_bins_sort
[,
2
]
<=
data1_pos_uniq_sort
[
i
,
2
]
&
genome_bins_sort
[,
3
]
>
data1_pos_uniq_sort
[
i
,
2
])
num_bins2
<-
which
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])
&
genome_bins_sort
[,
2
]
<=
data1_pos_uniq_sort
[
i
,
3
]
&
genome_bins_sort
[,
3
]
>
data1_pos_uniq_sort
[
i
,
3
])
if
(
sum
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])
&
genome_bins_sort
[,
2
]
<=
data1_pos_uniq_sort
[
i
,
3
]
&
genome_bins_sort
[,
3
]
>
data1_pos_uniq_sort
[
i
,
3
])
==
0
){
num_bins2
<-
max
(
which
(
genome_bins_sort
[,
1
]
==
as.character
(
data1_pos_uniq_sort
[
i
,
1
])))
}
num_bins
<-
c
(
num_bins1
:
num_bins2
)
for
(
j
in
1
:
length
(
num_bins
)){
result_sv_bins
[
num_bins
[
j
],]
<-
t
(
as.matrix
(
result_sv
[,
i
]))}
cat
(
paste0
(
i
,
' '
))
}
widths
<-
matrix
(
0
,
length
(
chrom
),
1
)
...
...
@@ -196,13 +187,16 @@ plot.clustering <- function(inputfile, bin.bed.filename, position.outputfile, ch
mat2
<-
result_sv_bins
[,
res
$
tree_row
$
order
]
mat2
<-
mat2
[,
ncol
(
mat2
)
:
1
]
dnull
<-
matrix
(
0
,
nrow
(
mat2
),
ncol
(
mat2
))
#par(mfrow=c(1, 23))
l
<-
layout
(
matrix
(
seq
(
1
,
23
),
1
,
23
,
byrow
=
TRUE
),
widths
=
widths
)
for
(
i
in
1
:
length
(
chrom
)){
d
=
mat2
[
gos2
$
chrom
==
chrom
[
i
],]
#if (sum(d)==1){image(seq_len(1), seq_len(length(d)), as.matrix(t(d)), zlim=c(0, 12), col=colors, xlab="", ylab="", axes=FALSE, main=chrom[i], cex.main=0.8);box() }
if
(
sum
(
d
)
==
0
){
image
(
seq_len
(
nrow
(
dnull
)),
seq_len
(
ncol
(
dnull
)),
dnull
,
zlim
=
c
(
0
,
12
),
col
=
"white"
,
xlab
=
""
,
ylab
=
""
,
axes
=
FALSE
,
main
=
chrom
[
i
],
cex.main
=
0.8
);
box
()
}
if
(
sum
(
d
)
>
1
){
image
(
seq_len
(
nrow
(
d
)),
seq_len
(
ncol
(
d
)),
d
,
zlim
=
c
(
0
,
12
),
col
=
colors
,
xlab
=
""
,
ylab
=
""
,
axes
=
FALSE
,
main
=
chrom
[
i
],
cex.main
=
0.8
);
box
()
}
for
(
i
in
1
:
length
(
chrom
)){
d
=
mat2
[
gos2
$
chrom
==
chrom
[
i
],]
if
(
sum
(
d
)
==
0
){
image
(
seq_len
(
nrow
(
dnull
)),
seq_len
(
ncol
(
dnull
)),
dnull
,
zlim
=
c
(
0
,
12
),
col
=
"white"
,
xlab
=
""
,
ylab
=
""
,
axes
=
FALSE
,
main
=
chrom
[
i
],
cex.main
=
0.8
);
box
()
}
if
(
sum
(
d
)
>
1
){
image
(
seq_len
(
nrow
(
d
)),
seq_len
(
ncol
(
d
)),
d
,
zlim
=
c
(
0
,
12
),
col
=
colors
,
xlab
=
""
,
ylab
=
""
,
axes
=
FALSE
,
main
=
chrom
[
i
],
cex.main
=
0.8
);
box
()
}
}
dev.off
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment