Newer
Older
import unittest
import os
import sys
import json
from shutil import rmtree
import numpy as np
import pandas
import h5py
from cluster_tools.node_labels import NodeLabelWorkflow
sys.path.append('../..')
# check new version of gene mapping against original
class TestCellNucleusMapping(unittest.TestCase):
tmp_folder = 'tmp'
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
try:
rmtree(self.tmp_folder)
except OSError:
pass
def test_cell_nucleus_mappings(self):
from scripts.attributes.cell_nucleus_mapping import map_cells_to_nuclei
segmentation_folder = '../../data/0.1.1/segmentations'
seg_path = os.path.join(segmentation_folder,
'sbem-6dpf-1-whole-segmented-cells-labels.h5')
segmentation_folder = '../../data/0.0.0/segmentations'
nuc_path = os.path.join(segmentation_folder,
'sbem-6dpf-1-whole-segmented-nuclei-labels.h5')
with h5py.File(seg_path, 'r') as f:
max_id = f['t00000/s00/0/cells'].attrs['maxId']
label_ids = np.arange(max_id + 1, dtype='uint64')
output_path = os.path.join(self.tmp_folder, 'table-test.csv')
config_folder = os.path.join(self.tmp_folder, 'configs')
os.makedirs(config_folder, exist_ok=True)
conf = NodeLabelWorkflow.get_config()['global']
shebang = '#! /g/kreshuk/pape/Work/software/conda/miniconda3/envs/cluster_env37/bin/python'
conf.update({'shebang': shebang})
with open(os.path.join(config_folder, 'global.config'), 'w') as f:
json.dump(conf, f)
target = 'local'
max_jobs = 60
map_cells_to_nuclei(label_ids, seg_path, nuc_path, output_path,
tmp_folder=self.tmp_folder, target=target, max_jobs=max_jobs)
table = pandas.read_csv(output_path, sep='\t')
assert len(table) == max_id + 1
# make sure each nucleus is mapped only once
nucleus_ids = table['nucleus_id'].values
nucleus_ids, id_counts = np.unique(nucleus_ids, return_counts=True)
nucleus_ids, id_counts = nucleus_ids[1:], id_counts[1:]
self.assertEqual(id_counts.sum(), id_counts.size)
if __name__ == '__main__':
unittest.main()