Skip to content
Snippets Groups Projects
test_roiset.py 9.5 KiB
Newer Older
import numpy as np
from model_server.conf.testing import output_path
from model_server.extensions.chaeo.conf.testing import multichannel_zstack, pixel_classifier, pipeline_params
from model_server.base.roiset import RoiSetMetaParams
from model_server.base.roiset import _get_label_ids, RoiSet
from model_server.base.accessors import generate_file_accessor, InMemoryDataAccessor, write_accessor_data_to_file
from model_server.extensions.ilastik.models import IlastikPixelClassifierModel
from model_server.base.models import DummyInstanceSegmentationModel
class BaseTestRoiSetMonoProducts(object):

    def setUp(self) -> None:
        # need test data incl obj map
        self.stack = generate_file_accessor(multichannel_zstack['path'])
        self.stack_ch_seg = self.stack.get_one_channel_data(pipeline_params['segmentation_channel'])
        self.stack_ch_pa = self.stack.get_one_channel_data(pipeline_params['patches_channel'])
        self.pxmodel = IlastikPixelClassifierModel(
            {'project_file': pixel_classifier['path']},
        mip = InMemoryDataAccessor(
            self.stack_ch_seg.data.max(axis=-1, keepdims=True)
        )
        pxmap, _ = self.pxmodel.infer(mip)
        write_accessor_data_to_file(output_path / 'pxmap.tif', pxmap)
        self.seg_mask = InMemoryDataAccessor(
            pxmap.get_one_channel_data(
                pipeline_params['pxmap_channel']
            ).data > pipeline_params['pxmap_threshold']
        )
        write_accessor_data_to_file(output_path / 'seg_mask.tif', self.seg_mask)
class TestRoiSetMonoProducts(BaseTestRoiSetMonoProducts, unittest.TestCase):
    def _make_roi_set(self, mask_type='boxes', **kwargs):
        id_map = _get_label_ids(self.seg_mask)
                mask_type=mask_type,
                filters=kwargs.get('filters', {'area': {'min': 1e3, 'max': 1e4}}),
                expand_box_by=(64, 2)
    def test_roi_mask_shape(self, **kwargs):
        roiset = self._make_roi_set(**kwargs)
        zmask_acc = InMemoryDataAccessor(zmask)
        self.assertTrue(zmask_acc.is_mask())

        # assert dimensionality of zmask
        self.assertGreater(zmask_acc.shape_dict['Z'], 1)
        self.assertEqual(zmask_acc.shape_dict['C'], 1)
        write_accessor_data_to_file(output_path / 'zmask.tif', zmask_acc)

        # mask values are not just all True or all False
        self.assertTrue(np.any(zmask))
        self.assertFalse(np.all(zmask))

        # assert non-trivial meta info in boxes
        sh = roiset.get_df().iloc[1]['mask'].shape
        ar = roiset.get_df().iloc[1]['area']
        self.assertGreaterEqual(sh[0] * sh[1], ar)
Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
    def test_roiset_from_non_zstacks(self, **kwargs):
        acc_zstack_slice = InMemoryDataAccessor(self.stack_ch_pa.data[:, :, :, 0])
        self.assertEqual(acc_zstack_slice.nz, 1)
        id_map = _get_label_ids(self.seg_mask)
        roiset = RoiSet(acc_zstack_slice, id_map, params=RoiSetMetaParams(mask_type='boxes'))
        zmask = roiset.get_zmask()

        zmask_acc = InMemoryDataAccessor(zmask)
        self.assertTrue(zmask_acc.is_mask())

Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
    def test_slices_are_valid(self):
            ebb = roiset.acc_raw.data[s]
            self.assertEqual(len(ebb.shape), 4)
            self.assertTrue(np.all([si >= 1 for si in ebb.shape]))

Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
    def test_rel_slices_are_valid(self):
            ebb = roiset.acc_raw.data[roi.slice]
            self.assertEqual(len(ebb.shape), 4)
            self.assertTrue(np.all([si >= 1 for si in ebb.shape]))
            rbb = ebb[roi.relative_slice]
            self.assertEqual(len(rbb.shape), 4)
            self.assertTrue(np.all([si >= 1 for si in rbb.shape]))

Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
    def test_make_2d_patches(self):
        roiset = self._make_roi_set()
            output_path / '2d_patches',
            draw_bounding_box=True,
        )
        self.assertGreaterEqual(len(files), 1)

Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
    def test_make_3d_patches(self):
        roiset = self._make_roi_set()
            output_path / '3d_patches',
            make_3d=True)
        self.assertGreaterEqual(len(files), 1)

    def test_export_annotated_zstack(self):
        roiset = self._make_roi_set()
        file = roiset.export_annotated_zstack(
            output_path / 'annotated_zstack',
        )
        result = generate_file_accessor(Path(file['location']) / file['filename'])
        self.assertEqual(result.shape, roiset.acc_raw.shape)

        id_map = _get_label_ids(self.seg_mask)
        roiset = RoiSet(self.stack_ch_pa, id_map, params=RoiSetMetaParams(mask_type='boxes'))
        from base.roiset import project_stack_from_focal_points
            df['centroid-0'].to_numpy(),
            df['centroid-1'].to_numpy(),
            df['zi'].to_numpy(),
        )

        self.assertEqual(img.shape[0:2], self.stack.shape[0:2])

        write_accessor_data_to_file(
            output_path / 'flattened.tif',
            InMemoryDataAccessor(img)
Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
    def test_make_binary_masks(self):
        roiset = self._make_roi_set()
        files = roiset.export_patch_masks(output_path / '2d_mask_patches', )
        self.assertGreaterEqual(len(files), 1)

    def test_classify_by(self):
        roiset = self._make_roi_set()
        roiset.classify_by('dummy_class', 0, DummyInstanceSegmentationModel())
        self.assertTrue(all(roiset.get_df()['classify_by_dummy_class'].unique() == [1]))
        self.assertTrue(all(np.unique(roiset.object_class_maps['dummy_class'].data) == [0, 1]))
    def test_raw_patches_are_correct_shape(self):
        roiset = self._make_roi_set()
        patches = roiset.get_raw_patches()
        np, h, w, nc, nz = patches.shape
        self.assertEqual(np, roiset.count)
        self.assertEqual(nc, roiset.acc_raw.chroma)

    def test_patch_masks_are_correct_shape(self):
        roiset = self._make_roi_set()
        patch_masks = roiset.get_patch_masks()
        np, h, w, nc, nz = patch_masks.shape
        self.assertEqual(np, roiset.count)
        self.assertEqual(nc, 1)

class TestRoiSetMultichannelProducts(BaseTestRoiSetMonoProducts, unittest.TestCase):

    def setUp(self) -> None:
        super().setUp()
        id_map = _get_label_ids(self.seg_mask)
            params=RoiSetMetaParams(
                expand_box_by=(128, 2),
                mask_type='boxes',
                filters={'area': {'min': 1e3, 'max': 1e4}},
            )
        )

    def test_multichannel_to_mono_2d_patches(self):
        files = self.roiset.export_patches(
            output_path / 'multichannel' / 'mono_2d_patches',
        result = generate_file_accessor(Path(files[0]['location']) / files[0]['patch_filename'])
        self.assertEqual(result.chroma, 1)
    def test_multichannnel_to_mono_2d_patches_rgb_bbox(self):
        files = self.roiset.export_patches(
            output_path / 'multichannel' / 'mono_2d_patches_rgb_bbox',
            white_channel=3,
            draw_bounding_box=True,
            bounding_box_channel=1,
        )
        result = generate_file_accessor(Path(files[0]['location']) / files[0]['patch_filename'])
        self.assertEqual(result.chroma, 3)

    def test_multichannnel_to_rgb_2d_patches_bbox(self):
        files = self.roiset.export_patches(
            output_path / 'multichannel' / 'rgb_2d_patches_bbox',
        result = generate_file_accessor(Path(files[0]['location']) / files[0]['patch_filename'])
    def test_multichannnel_to_rgb_2d_patches_contour(self):
        files = self.roiset.export_patches(
            output_path / 'multichannel' / 'rgb_2d_patches_contour',
            rgb_overlay_channels=(3, None, None),
            rgb_overlay_weights=(0.1, 1.0, 1.0)
        result = generate_file_accessor(Path(files[0]['location']) / files[0]['patch_filename'])
        self.assertEqual(result.chroma, 3)
        self.assertEqual(result.get_one_channel_data(2).data.max(), 0)  # blue channel is black
    def test_multichannel_to_multichannel_tif_patches(self):
        files = self.roiset.export_patches(
            output_path / 'multichannel' / 'multichannel_tif_patches',
        )
        result = generate_file_accessor(Path(files[0]['location']) / files[0]['patch_filename'])
        self.assertEqual(result.chroma, 5)
    def test_multichannel_annotated_zstack(self):
Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
        file = self.roiset.export_annotated_zstack(
            output_path / 'multichannel' / 'annotated_zstack',
            'test_multichannel_annotated_zstack',
        )
Christopher Randolph Rhodes's avatar
Christopher Randolph Rhodes committed
        result = generate_file_accessor(Path(file['location']) / file['filename'])
        self.assertEqual(result.chroma, self.stack.chroma)
        self.assertEqual(result.nz, self.stack.nz)