Newer
Older
from math import floor, sqrt
from pathlib import Path
import numpy as np

Christopher Randolph Rhodes
committed
import pandas as pd
from scipy.stats import moment
from skimage.filters import sobel
from skimage.io import imsave

Christopher Randolph Rhodes
committed
from skimage.measure import shannon_entropy
from tifffile import imwrite
from extensions.chaeo.annotators import draw_box_on_patch
from model_server.accessors import GenericImageDataAccessor, InMemoryDataAccessor
from model_server.process import pad, rescale, resample_to_8bit
def _make_rgb(zs):
h, w, c, nz = zs.shape
assert c <= 3
outdata = np.zeros((h, w, 3, nz), dtype=zs.dtype)
outdata[:, :, 0:c, :] = zs[:, :, :, :]
return outdata
def _focus_metrics():
return {
'max_intensity': lambda x: np.max(x),
'stdev': lambda x: np.std(x),
'max_sobel': lambda x: np.max(sobel(x)),
'rms_sobel': lambda x: sqrt(np.mean(sobel(x) ** 2)),
'entropy': lambda x: shannon_entropy(x),
'moment': lambda x: moment(x.flatten(), moment=2),
}
def _write_patch_to_file(where, fname, data):
ext = fname.split('.')[-1].upper()
where.mkdir(parents=True, exist_ok=True)
if ext == 'PNG':
assert data.dtype == 'uint8', f'Invalid data type {data.dtype}'
assert data.shape[2] <= 3, f'Cannot export images with more than 3 channels as PNGs'
assert data.shape[3] == 1, f'Cannot export z-stacks as PNGs'
if data.shape[2] == 1:
outdata = data[:, :, 0, 0]
elif data.shape[2] == 2: # add a blank blue channel
outdata = _make_rgb(data)
else: # preserve RGB order
outdata = data[:, :, :, 0]
imsave(where / fname, outdata, check_contrast=False)
return True
elif ext in ['TIF', 'TIFF']:
zcyx = np.moveaxis(data, [3, 2, 0, 1], [0, 1, 2, 3])
imwrite(where / fname, zcyx, imagej=True)
return True
else:
raise Exception(f'Unsupported file extension: {ext}')
def export_patch_masks_from_zstack(
where: Path,
zmask_meta: list,
pad_to: int = 256,
prefix='mask',
):
exported = []
for mi in zmask_meta:
obj = mi['info']
mask = np.expand_dims(mi['mask'], (2, 3))
if pad_to:
mask = pad(mask, pad_to)
ext = 'png'
fname = f'{prefix}-la{obj.label:04d}-zi{obj.zi:04d}.{ext}'
mask8bit = 255 * mask.astype('uint8')
_write_patch_to_file(where, fname, mask8bit)
exported.append(fname)
return exported
def export_patches_from_zstack(
where: Path,
stack: GenericImageDataAccessor,
zmask_meta: list,
rescale_clip: float = 0.0,
pad_to: int = 256,
make_3d: bool = False,
focus_metric: str = None,
# assert stack.chroma == 1, 'Expecting monochromatic image data'
assert stack.nz > 1, 'Expecting z-stack'
exported = []
for mi in zmask_meta:
obj = mi['info']
sl = mi['slice']
rbb = mi['relative_bounding_box']
x0 = rbb['x0']
y0 = rbb['y0']
x1 = rbb['x1']
y1 = rbb['y1']
patch3d = stack.data[sl]
ph, pw, pc, pz = patch3d.shape
# make a 3d patch
if make_3d:
patch = patch3d
# make a 2d patch, find optimal z-position determined by focus_metric function
elif focus_metric is not None:
foc = _focus_metrics()[focus_metric]
sp_sl = np.s_[y0: y1, x0: x1, :, :]
subpatch = patch3d[sp_sl]
patch = np.zeros([ph, pw, pc, 1], dtype=patch3d.dtype)
for ci in range(0, pc):
me = [foc(subpatch[:, :, ci, zi]) for zi in range(0, pz)]
zif = np.argmax(me)
patch[:, :, ci, 0] = patch3d[:, :, ci, zif]
# make a 2d patch from middle of z-stack
zim = floor(pz / 2)
patch = patch3d[:, :, :, [zim]]
assert len(patch.shape) == 4
assert patch.shape[2] == stack.chroma
if rescale_clip is not None:
patch = rescale(patch, rescale_clip)
if kwargs.get('draw_bounding_box') is True:
bci = kwargs.get('bounding_box_channel', 0)
assert bci < 3
if bci > 0:
patch = _make_rgb(patch)
for zi in range(0, patch.shape[3]):
patch[:, :, bci, zi] = draw_box_on_patch(
patch[:, :, bci, zi],
((x0, y0), (x1, y1)),
)
if pad_to:
patch = pad(patch, pad_to)
ext = 'tif' if make_3d else 'png'
fname = f'{prefix}-la{obj.label:04d}-zi{obj.zi:04d}.{ext}'

Christopher Randolph Rhodes
committed
_write_patch_to_file(where, fname, resample_to_8bit(patch))
exported.append(fname)

Christopher Randolph Rhodes
committed
return exported

Christopher Randolph Rhodes
committed
def export_3d_patches_with_focus_metrics(
where: Path,
stack: GenericImageDataAccessor,
zmask_meta: list,
rescale_clip: float = 0.0,
pad_to: int = 256,
prefix='patch',
**kwargs
):
"""
Export 3D patches as multi-level z-stacks, along with CSV of various focus methods for each z-position
:param kwargs:
annotate_focus_metric: name focus metric to use when drawing bounding box at optimal focus z-position

Christopher Randolph Rhodes
committed
:return:
list of exported files
"""
assert stack.chroma == 1, 'Expecting monochromatic image data'
assert stack.nz > 1, 'Expecting z-stack'
def get_zstack_focus_metrics(zs):
nz = zs.shape[3]
me = _focus_metrics()

Christopher Randolph Rhodes
committed
dd = {}
for zi in range(0, nz):
spf = zs[:, :, :, zi]

Christopher Randolph Rhodes
committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
dd[zi] = {k: me[k](spf) for k in me.keys()}
return dd
exported = []
patch_meta = []
for mi in zmask_meta:
obj = mi['info']
sl = mi['slice']
rbb = mi['relative_bounding_box']
patch = stack.data[sl]
assert len(patch.shape) == 4
assert patch.shape[2] == stack.chroma
if rescale_clip is not None:
patch = rescale(patch, rescale_clip)
# unpack relative bounding box and define subset of patch data
x0 = rbb['x0']
y0 = rbb['y0']
x1 = rbb['x1']
y1 = rbb['y1']
sp_sl = np.s_[y0: y1, x0: x1, :, :]
subpatch = patch[sp_sl]
# compute focus metrics for all z-levels
me_dict = get_zstack_focus_metrics(subpatch)
patch_meta.append({'label': obj.label, 'zi': obj.zi, 'metrics': me_dict})
me_df = pd.DataFrame(me_dict).T
# drawing bounding box only on focused slice
ak = kwargs.get('annotate_focus_metric')
if ak and ak in me_df.columns:

Christopher Randolph Rhodes
committed
zi_foc = me_df.idxmax().to_dict()[ak]
patch[:, :, 0, zi_foc] = draw_box_on_patch(
patch[:, :, 0, zi_foc],
((x0, y0), (x1, y1)),
)
if pad_to:
patch = pad(patch, pad_to)
fstem = f'{prefix}-la{obj.label:04d}-zi{obj.zi:04d}'
_write_patch_to_file(where, fstem + '.tif', resample_to_8bit(patch))
exported.append(fstem + '.tif')
me_df.to_csv(where / (fstem + '.csv'))
exported.append(fstem + '.csv')
return exported
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def export_multichannel_patches_from_zstack(
where: Path,
stack: GenericImageDataAccessor,
zmask_meta: list,
ch_rgb_overlay: tuple = None,
overlay_gain: tuple = (1.0, 1.0, 1.0),
ch_white: int = None,
**kwargs
):
def _safe_add(a, g, b):
assert a.dtype == b.dtype
assert a.shape == b.shape
assert g >= 0.0
return np.clip(
a.astype('uint32') + g * b.astype('uint32'),
0,
np.iinfo(a.dtype).max
).astype(a.dtype)
idata = stack.data
if ch_white:
assert ch_white < stack.chroma
mdata = idata[:, :, [ch_white, ch_white, ch_white], :]
else:
mdata = idata
if ch_rgb_overlay:
assert len(ch_rgb_overlay) == 3
assert len(overlay_gain) == 3
for ii, ci in enumerate(ch_rgb_overlay):
if ci is None:
continue
assert isinstance(ci, int)
assert ci < stack.chroma
mdata[:, :, ii, :] = _safe_add(
mdata[:, :, ii, :],
overlay_gain[ii],
idata[:, :, ci, :]
)
mstack = InMemoryDataAccessor(mdata)
return export_patches_from_zstack(
where, mstack, zmask_meta, **kwargs
)