Skip to content
Snippets Groups Projects
cilia.py 5.56 KiB
Newer Older
import json
from concurrent import futures

import numpy as np
import h5py
import pandas as pd

from heimdall import view, to_source
from elf.skeleton import skeletonize
from scripts.attributes.cilia_attributes import (compute_centerline,
                                                 get_bb, load_seg,
                                                 make_indexable)


# NOTE the current paths don't look that great.
# probably need to play with the teasar parameters a bit to improve this
def view_centerline(raw, obj, path, compare_skeleton=False):
    path = make_indexable(path)
    cline = np.zeros(obj.shape, dtype='uint32')
    cline[path] = 1

    if compare_skeleton:
        coords, _ = skeletonize(obj)
        coords = make_indexable(coords)
        skel = np.zeros(obj.shape, dtype='uint32')
        skel[coords] = 1

        view(raw, obj.astype('uint32'), cline, skel)
    else:
        view(raw, obj.astype('uint32'), cline)
def check_lens(cilia_ids=None, compare_skeleton=False):
    path = '../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5'
    path_raw = '../data/rawdata/sbem-6dpf-1-whole-raw.h5'
    table = '../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv'
    table = pd.read_csv(table, sep='\t')
    table.set_index('label_id')

    with open('precomputed_cilia.json') as f:
        skeletons = json.load(f)

    if cilia_ids is None:
        cilia_ids = range(len(table))

    resolution = [.025, .01, .01]
    with h5py.File(path, 'r') as f, h5py.File(path_raw, 'r') as fr:
        ds = f['t00000/s00/0/cells']
        dsr = fr['t00000/s00/0/cells']
        for cid in cilia_ids:
            if cid in (0, 1, 2):
                continue

            print(cid)
            obj_path = skeletons[cid]
            if obj_path is None:
                print("Skipping cilia", cid)
                continue
            print(len(obj_path))

            bb = get_bb(table, cid, resolution)
            raw = dsr[bb]
            obj = ds[bb] == cid
            view_centerline(raw, obj, obj_path, compare_skeleton)


def precompute():
    path = '../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5'
    table = '../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv'
    table = pd.read_csv(table, sep='\t')
    table.set_index('label_id')

    resolution = [.025, .01, .01]
    with h5py.File(path) as f:
        ds = f['t00000/s00/0/cells']

        def precomp(cid):
            if cid in (0, 1, 2):
                return
            print(cid)
            obj = load_seg(ds, table, cid, resolution)
            if obj.sum() == 0:
                return
            path = compute_centerline(obj, [res * 1000 for res in resolution])
            return path

        n_cilia = len(table)
        with futures.ThreadPoolExecutor(16) as tp:
            tasks = [tp.submit(precomp, cid) for cid in range(n_cilia)]
            # tasks = [tp.submit(precomp, cid) for cid in (3, 4, 5)]
            results = [t.result() for t in tasks]

        with open('precomputed_cilia.json', 'w') as f:
            json.dump(results, f)


def grid_search():
    path = '../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5'
    table = '../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv'
    table = pd.read_csv(table, sep='\t')
    table.set_index('label_id')

    label_id = 11

    penalty_scales = [1000, 2500, 5000, 10000]
    penalty_exponents = [2, 4, 8, 16]

    resolution = [.025, .01, .01]
    with h5py.File(path) as f:
        ds = f['t00000/s00/0/cells']

        def precomp(cid, penalty_scale, penalty_exponent):
            print("scale:", penalty_scale, "exponent:", penalty_exponent)
            obj = load_seg(ds, table, cid, resolution)
            path = compute_centerline(obj, [res * 1000 for res in resolution],
                                      penalty_scale=penalty_scale, penalty_exponent=penalty_exponent)
            return {'penalty_scale': penalty_scale, 'penalty_exponent': penalty_exponent, 'path': path}

        with futures.ThreadPoolExecutor(16) as tp:
            tasks = [tp.submit(precomp, label_id, penalty_scale, penalty_exponent)
                     for penalty_scale in penalty_scales for penalty_exponent in penalty_exponents]
            results = [t.result() for t in tasks]

        with open('grid_search.json', 'w') as f:
            json.dump(results, f)


def eval_gridsearch():
    with open('grid_search.json') as f:
        results = json.load(f)

    path_raw = '../data/rawdata/sbem-6dpf-1-whole-raw.h5'
    path = '../data/0.5.1/segmentations/sbem-6dpf-1-whole-segmented-cilia-labels.h5'
    table = '../data/0.5.1/tables/sbem-6dpf-1-whole-segmented-cilia-labels/default.csv'
    table = pd.read_csv(table, sep='\t')
    table.set_index('label_id')

    label_id = 11

    resolution = [.025, .01, .01]
    with h5py.File(path, 'r') as f, h5py.File(path_raw, 'r') as fr:
        ds = f['t00000/s00/0/cells']
        dsr = fr['t00000/s00/0/cells']
        bb = get_bb(table, label_id, resolution)

        raw = dsr[bb]
        obj = (ds[bb] == label_id).astype('uint32')

        sources = [to_source(raw, name='raw'), to_source(obj, name='mask')]
        for res in results:
            line = np.zeros_like(obj)
            path = make_indexable(res['path'])
            line[path] = 1
            name = '%i_%i' % (res['penalty_scale'], res['penalty_exponent'])
            sources.append(to_source(line, name=name))

        view(*sources)


if __name__ == '__main__':
    # precompute()
    # grid_search()

    check_lens([11], compare_skeleton=True)
    # eval_gridsearch()