Skip to content
Snippets Groups Projects
ploidy.hpp 20.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/*
 Copyright (C) 2017 Sascha Meiers
 Distributed under the MIT software license, see the accompanying
 file LICENSE.md or http://www.opensource.org/licenses/mit-license.php.
 */

#include <iostream>
#include <fstream>
#include <vector>
#include <unordered_map>
#include <tuple>

#include <boost/program_options/cmdline.hpp>
#include <boost/program_options/options_description.hpp>
#include <boost/program_options/parsers.hpp>
#include <boost/program_options/variables_map.hpp>
#include <boost/tokenizer.hpp>
#include <boost/filesystem.hpp>
#include <boost/progress.hpp>
#include <boost/iostreams/stream.hpp>
#include <boost/iostreams/stream_buffer.hpp>
#include <boost/iostreams/device/file.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/zlib.hpp>
#include <boost/iostreams/filter/gzip.hpp>
#include <htslib/sam.h>

#include "version.hpp"
#include "intervals.hpp"
#include "counter.hpp"
#include "distribution.hpp"
#include "hmm.hpp"
#include "iocounts.hpp"

using interval::Interval;
using count::TGenomeCounts;
using count::Counter;

std::vector<std::string> get_states(unsigned ploidy)
{
    assert(ploidy>0 && ploidy < 6);
    std::vector<std::string> states;
    for (unsigned len=1; len < ploidy+1; ++len) {
        for (unsigned w = 0; w <= len; ++w) {

            unsigned c = len - w;
            std::string s;
            for (unsigned i = 0; i < w; ++i)
                s.push_back('W');
            for (unsigned i = 0; i < c; ++i)
                s.push_back('C');
            states.push_back(std::move(s));
        }
    }
    return states;
}


void setup_HMM_emissions(hmm::HMM<unsigned, hmm::MultiVariate<hmm::NegativeBinomial>> & hmm,
                         unsigned ploidy,
                         double nb_p,
                         double nb_r,
                         double nb_a,
                         double prior,
                         unsigned max_ploidy = 4)
{
    assert(max_ploidy>0 && max_ploidy<6);
    std::vector<hmm::MultiVariate<hmm::NegativeBinomial>> emissions;

    double prior_others = (1-prior)/static_cast<double>(max_ploidy);

    //std::cout << "MultiVariate<NegativeBinomial>:" << std::endl;
    for (unsigned len=1; len < max_ploidy+1; ++len) {
        for (unsigned w = 0; w <= len; ++w) {
            // e.g. WWWW (with N=4) should be  NB[p,a] x NB[p,(1-a)r]
            // or   WWWC                       NB[p,3/4r] x NB[p,1/4r]
            // but  WW ??        I decide for  NB[p,2/4r] x NB[p,a]
            unsigned c = len - w;
            double fac_w = (w==0 ? nb_a : w/static_cast<double>(max_ploidy) );
            double fac_c = (c==0 ? nb_a : c/static_cast<double>(max_ploidy) );
            hmm::MultiVariate<hmm::NegativeBinomial> distribution
                ({  hmm::NegativeBinomial(nb_p, fac_w * nb_r),
                    hmm::NegativeBinomial(nb_p, fac_c * nb_r)
                }, (len == ploidy ? prior : prior_others));
            emissions.push_back(std::move(distribution));

            // DEBUG
            //std::cout << std::setprecision(3) << "\t" << "p = " << nb_p << "\tcell_mean = " << nb_r/nb_p*(1-nb_p) << "\tState = ";
            //for (unsigned x = 0; x < w; ++x) std::cout << "W";
            //for (unsigned x = 0; x < c; ++x) std::cout << "C";
            //std::cout << "\tFactors = [" << fac_w << "\t" << fac_c << "]\t means = [" << fac_w * nb_r/nb_p*(1-nb_p) << "\t" <<  fac_c * nb_r/nb_p*(1-nb_p) << "]" << std::endl;

        }
    }
    //std::cout << "-" << std::endl;
    hmm.set_emissions(emissions);
}


void setup_HMM_emissions(hmm::HMM<unsigned, hmm::CombinedNegBinAndBinomial> & hmm,
                         unsigned ploidy,
                         double nb_p,
                         double nb_r,
                         double nb_a,
                         double prior,
                         unsigned max_ploidy)
{
    assert(max_ploidy>0 && max_ploidy<6);
    std::vector<hmm::CombinedNegBinAndBinomial> emissions;

    double prior_others = (1-prior)/static_cast<double>(max_ploidy);

    //std::cout << "CombinedNegBinAndBinomial:" << std::endl;
    for (unsigned len=1; len < max_ploidy+1; ++len) {
        for (unsigned w = 0; w <= len; ++w) {

            unsigned c = len - w;
            double ratio = (c == 0 || c == len ? (c == 0 ? 0.02 : 0.98) : static_cast<double>(c)/static_cast<double>(len) );
            double r     = (len == 0 ? nb_a : nb_r * static_cast<double>(len)/static_cast<double>(max_ploidy));
            emissions.push_back(hmm::CombinedNegBinAndBinomial(nb_p, r, ratio, (len == ploidy ? prior : prior_others)));

            // DEBUG
            //std::cout << std::setprecision(3) << "\t" << "p = " << nb_p << "\tcell_mean = " << nb_r/nb_p*(1-nb_p) << "\tState = ";
            //for (unsigned x = 0; x < w; ++x) std::cout << "W";
            //for (unsigned x = 0; x < c; ++x) std::cout << "C";
            //std::cout << "\t NB mean = " << r/nb_p*(1-nb_p) << "\tBinomial ratio = " << ratio << std::endl;

        }
    }
    //std::cout << "-" << std::endl;
    hmm.set_emissions(emissions);

    std::cout << "NB params for ploidy " << ploidy << ": p = " << nb_p << "\tr = " << nb_r << "\tmean = " << nb_r/nb_p*(1-nb_p) << std::endl;   
}






template <typename TDistribution>
typename hmm::HMM<unsigned, TDistribution> setup_HMM(unsigned max_ploidy, double p_trans)
{
    assert(max_ploidy>0 && max_ploidy<6);
    std::vector<std::string> states = get_states(max_ploidy);
    std::vector<double> initials(states.size(), 1/static_cast<double>(states.size()));
    std::vector<double> transitions(states.size() * states.size(), p_trans);
    for (unsigned i = 0; i < states.size(); ++i) {
        transitions[i * states.size() + i] = 1 - (states.size() - 1) * p_trans;
    }
    hmm::HMM<unsigned, TDistribution> hmm(states);
    hmm.set_initials(initials);
    hmm.set_transitions(transitions);
    return hmm;
}


template <typename TDistribution>
void run_generic_HMM(std::vector<TGenomeCounts> & counts,
                     std::vector<unsigned> const & good_cells,
                     std::vector<CellInfo>  & cells,
                     std::vector<unsigned> const & good_bins,
                     std::vector<int32_t> const & good_map,
                     std::unordered_map<std::string, SampleInfo> const & samples,
                     float p_trans,
                     double prior,
                     unsigned ploidy = 2,
                     unsigned max_ploidy = 4)
{
    // Set up and run HMM:
    hmm::HMM<unsigned, TDistribution> hmm = setup_HMM<TDistribution>(max_ploidy, p_trans);

    //std::cout << "HMM states: ";
    //for (auto x: hmm.state_labels) {std::cout << x << "\t";}
    //std::cout << std::endl;

    for (auto i = good_cells.begin(); i != good_cells.end(); ++i)
    {
        // set NB(n,p) parameters according to `p` of sample and mean of cell.
        float p = samples.at(cells[*i].sample_name).p;
        float r = (float)cells[*i].mean_bin_count * p / (1-p);
        float a = 0.05;

        setup_HMM_emissions(hmm, ploidy, p, r, a, prior, max_ploidy);
        run_HMM(hmm, counts[*i], good_bins, good_map);
    }

}








struct Conf_ploidy {
    std::vector<boost::filesystem::path> f_in;
    boost::filesystem::path f_out;
    boost::filesystem::path f_bins;
    boost::filesystem::path f_excl;
    boost::filesystem::path f_info;
    boost::filesystem::path f_segments;
    unsigned ploidy;
    unsigned max_ploidy;
    int minMapQual;
    unsigned int window;
    std::string model;
    double prior;
    Conf_ploidy() : max_ploidy(4)
    {}
};





int main_hmm(int argc, char **argv)
{

    // Command line options
    Conf_ploidy conf;
    boost::program_options::options_description generic("Generic options");
    generic.add_options()
    ("help,?", "show help message")
    ("verbose,v", "Be more verbose in the output")
    ("mapq,q", boost::program_options::value<int>(&conf.minMapQual)->default_value(10), "min mapping quality")
    ("window,w", boost::program_options::value<unsigned int>(&conf.window)->default_value(500000), "window size of fixed windows")
    ("out,o", boost::program_options::value<boost::filesystem::path>(&conf.f_out)->default_value("out.txt.gz"), "output file for counts + strand state (gz)")
    ("bins,b", boost::program_options::value<boost::filesystem::path>(&conf.f_bins), "BED file with manual bins (disables -w). See also 'makebins'")
    ("exclude,x", boost::program_options::value<boost::filesystem::path>(&conf.f_excl), "Exclude chromosomes and regions")
    ("info,i", boost::program_options::value<boost::filesystem::path>(&conf.f_info), "Write info about samples")
    ("ploidy,p", boost::program_options::value<unsigned>(&conf.ploidy)->default_value(2), "Assume cells have this ploidy level (max 4)")
    ("prior,P",  boost::program_options::value<double>(&conf.prior)->notifier(in_range(0,1,"prior")), "Prior probability for copy number <p> (penalize other copy number states. Default: All copy numbers are equally probable)")
    ("model,m", boost::program_options::value<std::string>(&conf.model)->default_value("multiNB"), "Models for HMM: multiNB, Binomial+NB")
    ;

    boost::program_options::options_description hidden("Hidden options");
    hidden.add_options()
    ("input-file", boost::program_options::value<std::vector<boost::filesystem::path> >(&conf.f_in), "input bam file(s)")
    ;

    boost::program_options::positional_options_description pos_args;
    pos_args.add("input-file", -1);

    boost::program_options::options_description cmdline_options;
    cmdline_options.add(generic).add(hidden);
    boost::program_options::options_description visible_options;
    visible_options.add(generic);
    boost::program_options::variables_map vm;

    boost::program_options::store(boost::program_options::command_line_parser(argc, argv).options(cmdline_options).positional(pos_args).run(), vm);
    boost::program_options::notify(vm);

    // Check command line arguments
    if (!vm["window"].defaulted() && vm.count("bins")) {
        std::cerr << "[Error] -w and -b cannot be specified together" << std::endl << std::endl;
        goto print_usage_and_exit;
    }
    if (vm.count("bins") && vm.count("exclude")) {
        std::cerr << "[Error] Exclude chromosomes (-x) have no effect when -b is specified. Stop" << std::endl << std::endl;
        goto print_usage_and_exit;
    }
    if (conf.model != "multiNB" && conf.model != "Binomial+NB") {
        std::cerr << "[Error] Unknown --model for the HMM." << std::endl << std::endl;
        goto print_usage_and_exit;
    }
    if (vm.count("prior") && (conf.prior < 0 || conf.prior > 1)) {
        std::cerr << "[Error] Prior probability (for CN " << conf.ploidy << ") has to be between 0 and 1. By default all CNs will be equally likely" << std::endl << std::endl;
        goto print_usage_and_exit;
    }

    if (vm.count("help") || !vm.count("input-file"))
    {
    print_usage_and_exit:
        std::cout << std::endl;
        std::cout << "Mosaicatcher " << STRINGIFYMACRO(MOSAIC_VERSION_MAJOR);
        std::cout << "." << STRINGIFYMACRO(MOSAIC_VERSION_MINOR) << std::endl;
        std::cout << "> Count reads from Strand-seq BAM files..." << std::endl;
        std::cout << "  Now for different ploidy levels, too!" << std::endl;
        std::cout << std::endl;
        std::cout << "Usage:   " << argv[0] << " --ploidy N [OPTIONS] <cell1.bam> <cell2.bam> ..." << std::endl << std::endl;
        std::cout << visible_options << std::endl;
        std::cout << "Notes:" << std::endl;
        std::cout << "  * writes a table of bin counts and state classifcation as a gzip file (default: out.txt.gz)" << std::endl;
        std::cout << "  * Reads are counted by start position" << std::endl;
        std::cout << "  * One cell per BAM file, including SM tag in header" << std::endl;
        std::cout << "  * For paired-end data, only read 1 is counted" << std::endl;
        return vm.count("help") ? 0 : 1;
    }


    /////////////////////////////////////////////////////////// global variables
    /* leave one BAM header open to get chrom names & lengths */
    bam_hdr_t* hdr = NULL;

    /* regarding each cell */
    std::vector<CellInfo>       cells(conf.f_in.size());
    std::vector<TGenomeCounts>  counts(conf.f_in.size());
    std::vector<unsigned>       good_cells;

    /* regarding each sample */
    std::unordered_map<std::string, SampleInfo> samples;

    /* regarding bins */
    std::vector<Interval>       bins;
    std::vector<int32_t>        chrom_map;
    std::vector<unsigned>       good_bins;
    std::vector<int32_t>        good_map;
    ////////////////////////////////////////////////////////////////////////////



    //
    // Chapter: Binning & counting
    // ===========================
    //

    // Read sample names from headers.
    // Keep one header throughout the program.
    if (vm.count("verbose")) std::cout << "[Info] Exploring SAM headers..." << std::endl;
    for(unsigned i = 0; i < conf.f_in.size(); ++i)
    {
        cells[i].id = (int32_t)i;
        cells[i].bam_file = conf.f_in[i].string();
        samFile* samfile = sam_open(conf.f_in[i].string().c_str(), "r");
        if (samfile == NULL) {
            std::cerr << "[Error] Fail to open file " << conf.f_in[i].string() << std::endl;
            return 1;
        }
        hdr = sam_hdr_read(samfile);
        if (!get_RG_tag("SM", hdr->text, cells[i].sample_name)) {
            std::cerr << "[Error] Each BAM file has to have exactly one RG tag. Group cells " << std::endl;
            std::cerr << "        belonging to the same sample by the SM tag." << std::endl;
            std::cerr << "        Problematic file: " << conf.f_in[i].string() << std::endl << std::endl;
            goto print_usage_and_exit;
        }
        if (!get_RG_tag("ID", hdr->text, cells[i].cell_name, /*allow_multiple_matches = */ true)) {
            std::cerr << "[Error] Each BAM file has to have exactly one RG tag." << std::endl;
            std::cerr << "        Problematic file: " << conf.f_in[i].string() << std::endl;
            goto print_usage_and_exit;
        }
        sam_close(samfile);
    }


    // Bin the genome
    unsigned median_binsize;
    chrom_map = std::vector<int32_t>(hdr->n_targets, -1);
    if (vm.count("bins"))
    {
        if (!read_dynamic_bins(bins,
                               chrom_map,
                               conf.f_bins.string().c_str(),
                               hdr))
            return 1;
        TMedianAccumulator<unsigned> med_acc;
        for (Interval const & b : bins)
            med_acc(b.end - b.start);
        median_binsize = boost::accumulators::median(med_acc);
        if (vm.count("verbose")) std::cout << "[Info] Reading " << bins.size() << " variable-width bins with median bin size of " << round(median_binsize/1000) << "kb" << std::endl;
    }
    else
    {
        std::vector<Interval> exclude;
        if (vm.count("exclude")) {
            read_exclude_file(conf.f_excl.string(), hdr, exclude, vm.count("verbose"));
            sort(exclude.begin(), exclude.end(), interval::invt_less);
        }
        if (vm.count("verbose")) std::cout << "[Info] Creating " << round(conf.window/1000) << "kb bins with " << exclude.size() << " excluded regions" << std::endl;
        create_fixed_bins(bins,
                          chrom_map,
                          conf.window,
                          exclude,
                          hdr->n_targets,
                          hdr->target_len);
        median_binsize = conf.window;
    }
    // add last element for easy calculation of number of bins
    chrom_map.push_back((int32_t)bins.size());


    // Count in bins. If A bam file cannot be read, the cell is ignored and
    //     the respective entry in `counts` and `cells` will be erased.
    if (vm.count("verbose")) std::cout << "[Info] Reading " << conf.f_in.size() <<  " BAM files...";
    boost::progress_display show_progress1(conf.f_in.size());
    for (unsigned i = 0, i_f = 0; i_f < conf.f_in.size(); ++i, ++i_f)
    {
        if (!count_sorted_reads(conf.f_in[i_f].string(),
                                bins,
                                chrom_map,
                                hdr,
                                conf.minMapQual,
                                counts[i],
                                cells[i]))
        {
            std::cerr << "[Warning] Ignoring cell " << conf.f_in[i_f].string() << std::endl;
            counts.erase(counts.begin()+i);
            cells.erase(cells.begin()+i);
            --i;
        }
        ++show_progress1;
    }





    //
    // Chapter: Filter cells and bins and estimate NB parameter p
    // ==========================================================
    //

    // median per cell
    count::set_median_per_cell(counts, cells);

    // filter cells with low counts
    good_cells = count::get_good_cells(counts, cells);

    // filter bins with abnormal counts
    if (good_cells.size() < 5) {
        std::cerr << "[Warning] Only few cells with sufficient coverage. I will not filter bad bins" << std::endl;
        good_bins.resize(bins.size());
        std::iota(good_bins.begin(), good_bins.end(), 0); // fill with 0,1,2,...
    } else {
        good_bins = count::get_good_bins(counts, cells, good_cells);
        if (vm.count("verbose")) std::cout << "[Info] Filtered out " << bins.size() - good_bins.size() << " bad bins" << std::endl;
    }

    // build chrom_map for good bins
    good_map = std::vector<int32_t>(chrom_map.size() - 1, -1);
    int32_t pos = 0;
    for (int32_t chr = 0; chr < static_cast<int32_t>(good_map.size()); ++chr) {
        while (pos < good_bins.size() && bins[good_bins[pos]].chr < chr)
            ++pos;
        // now goodit is either at first occurence of chr, or at the end.
        if (pos >= good_bins.size()) good_map[chr] = (int32_t)good_bins.size();
        else good_map[chr] = pos;
    }
    // add last element for easy calculation of number of bins
    good_map.push_back((int32_t)good_bins.size());



    // calculate cell means and cell variances, grouped by sample (not cell)
    calculate_new_cell_mean(samples, cells, counts, good_cells, good_bins);


    // Estimation of parameter p per sample (should work even with one cell only)
    for (auto it = samples.begin(); it != samples.end(); ++it) {
        SampleInfo & s = it->second;
        s.p = std::inner_product(s.means.begin(), s.means.end(), s.means.begin(), 0.0f) \
        / std::inner_product(s.means.begin(), s.means.end(), s.vars.begin(), 0.0f);
    }





    //
    // Chapter: Run HMM
    // ================
    //
    double prior = (vm.count("prior") ? conf.prior : 1.0/static_cast<double>(conf.max_ploidy));
    std::cout << "[Info] Running HMM with model " << conf.model << " and expected ploidy ";
    std::cout << std::setprecision(3) << conf.ploidy << " (prior = " << prior << ")" << std::endl;
    if (conf.model == "multiNB")
        run_generic_HMM<hmm::MultiVariate<hmm::NegativeBinomial>>(
                    counts,
                    good_cells,
                    cells,
                    good_bins,
                    good_map,
                    samples,
                    10.0f / bins.size(),
                    prior,
                    conf.ploidy,
                    conf.max_ploidy);
    if (conf.model == "Binomial+NB")
        run_generic_HMM<hmm::CombinedNegBinAndBinomial>(
                    counts,
                    good_cells,
                    cells,
                    good_bins,
                    good_map,
                    samples,
                    10.0f / bins.size(),
                    prior,
                    conf.ploidy,
                    conf.max_ploidy);



    // Print cell information:
    if (vm.count("info")) {
        if (vm.count("verbose")) std::cout << "[Write] Cell summary: " << conf.f_info.string() << std::endl;
        write_cell_info(conf.f_info.string(), cells);
    }


    // Write final counts + classification
    std::cout << "[Write] count table: " << conf.f_out.string() << std::endl;
    {
        // TODO: why do I pass vector<pair>? I could make it two separate vectors. Just check where else the io function is called.
        struct sample_cell_name_wrapper {
            std::vector<CellInfo> const & cells;
            sample_cell_name_wrapper(std::vector<CellInfo> const & cells) : cells(cells)
            {}
            std::pair<std::string,std::string> operator[](size_t i) const {
                return std::make_pair(cells[i].sample_name, cells[i].cell_name);
            }
        };

        if (!io::write_counts_gzip(conf.f_out.string(),
                                   counts,
                                   bins,
                                   hdr->target_name,
                                   sample_cell_name_wrapper(cells)) )
            return 1;
    }
    
    return 0;
}